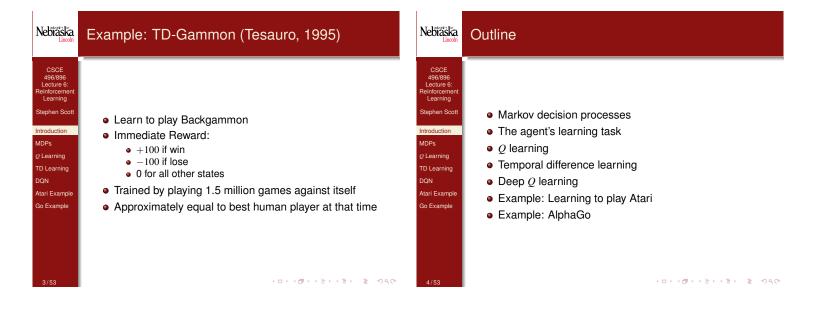
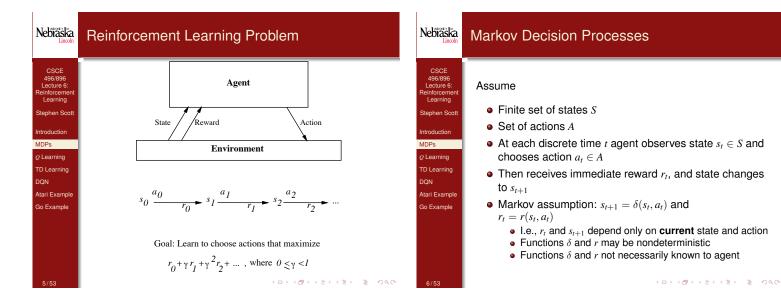
Nebraska Lincoln		Nebraska Lincoln	Introduction
CSCE 496/896 Lecture 6: Reinforcement Learning Stephen Scott Introduction	CSCE 496/896 Lecture 6: Reinforcement Learning	CSCE 496/896 Lecture 6: Reinforcement Learning Stephen Scott Introduction	 Consider learning to choose actions, e.g., Robot learning to dock on battery charger Learning to choose actions to optimize factory output
Introduction MDPs <i>Q</i> Learning TD Learning DQN Atari Example Go Example	Stephen Scott (Adapted from Eleanor Quint)	MDPs <i>Q</i> Learning TD Learning DQN Atari Example Go Example	 Learning to play Backgammon, chess, Go, etc. Note several problem characteristics: Delayed reward (thus have problem of temporal credit assignment) Opportunity for active exploration (versus exploitation of known good actions) ⇒ Learner has some influence over the training data it sees Possibility that state only partially observable
1/53	sscott@cse.unl.edu	2/53	<□><₫><≥><≥> २०२(२)

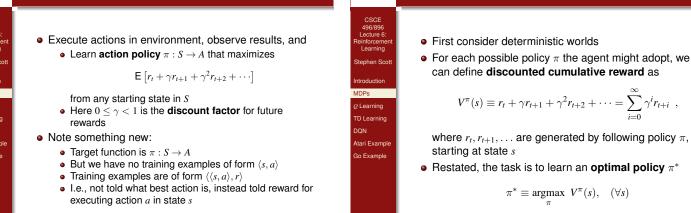




Nebraska Agent's Learning Task

496/896 Lecture Learning

MDPs O Learning DQN Atari Example Go Example



Nebraska

Value Function

Nebraska Nebraska Value Function 496/896 Lecture inforcerr Learning MDPs MDPs 2 Learning 2 Learning Q(s, a) values r(s, a) values TD Learning TD Learning G Atari Example Atari Example then on Go Example Go Example $V^*(s)$ values One optimal policy $r: S \times A \to \mathbb{R}$

What to Learn • We might try to have agent learn the evaluation function V^{π^*} (which we write as V^*) It could then do a lookahead search to choose best action from any state s because $\pi^*(s) = \operatorname{argmax} \, \left[r(s,a) + \gamma V^*(\delta(s,a)) \right] \; ,$ i.e., choose action that maximized immediate reward + discounted reward if optimal strategy followed from • E.g., $V^*(bot. ctr.) = 0 + \gamma 100 + \gamma^2 0 + \gamma^3 0 + \dots = 90$ A problem: • This works well if agent knows $\delta : S \times A \rightarrow S$, and

• But when it doesn't, it can't choose actions this way

Nebraska Lincoln	<i>Q</i> Function	Nebraska Lincoln	Traini
CSCE 496/896 Lecture 6: Reinforcement Learning Stephen Scott	• Define new function very similar to V^* : $O(s, a) \equiv r(s, a) + \gamma V^*(\delta(s, a))$	CSCE 496/896 Lecture 6: Reinforcement Learning Stephen Scott	• N
Introduction MDPs <u>Q Learning</u> TD Learning DQN	 i.e., Q(s, a) = total discounted reward if action a taken in state s and optimal choices made from then on If agent learns Q, it can choose optimal action even without knowing δ 	Introduction MDPs <u><i>Q</i> Learning</u> TD Learning DQN	• V
Atari Example Go Example	$\pi^*(s) = \underset{a}{\operatorname{argmax}} [r(s, a) + \gamma V^*(\delta(s, a))]$ = $\underset{a}{\operatorname{argmax}} Q(s, a)$	Atari Example Go Example	• L c
	• Q is the evaluation function the agent will learn		w

< ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 < の < の<</p>

Nebraska Lincoln	Training Rule to Learn Q
CSCE 496/896 Lecture 6: Beinforcement	• Note Q and V^* closely related:
Learning	$V^*(s) = \max_{a'} Q(s,a')$
Stephen Scott	$a' \rightarrow c' $
ntroduction	 Which allows us to write Q recursively as
/IDPs	$Q(s_t, a_t) = r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t)))$
2 Learning	
D Learning	$= r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')$
DQN	
Atari Example	 Let <i>Q</i> denote learner's current approximation to Q;
Go Example	consider training rule
	$\hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')$,
10/20	where s' is the state resulting from applying action a in state s

- For each s, a initialize table entry $\hat{Q}(s, a) \leftarrow 0$
- Observe current state s
- Do forever:

CSCE 496/896 Lecture 6: teinforceme Learning

tephen Sco

ntroduction

Q Learning

Atari Example

Go Example

5/53

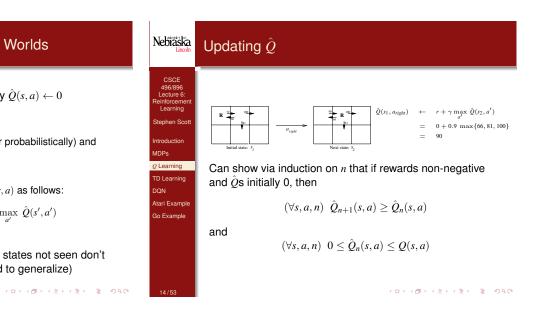
MDPs

DQN

- Select an action *a* (greedily or probabilistically) and execute it
- Receive immediate reward r
- Observe the new state s'
- Update the table entry for $\hat{Q}(s, a)$ as follows:

$$\hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')$$

- $s \leftarrow s'$
- Note that actions not taken and states not seen don't get explicit updates (might need to generalize)



Nebraska Lincoln	Updating \hat{Q}	Nebraska Lincoln	Updating \hat{Q}
CSCE 496/896 Lecture 6: Reinforcement Learning Stephen Scott Introduction MDPs <i>Q</i> Learning DQN Atari Example Go Example	 Q̂ converges to Q: Consider case of deterministic world where each ⟨s, a⟩ is visited infinitely often Proof: Define a full interval to be an interval during which each ⟨s, a⟩ is visited. Will show that during each full interval the largest error in Q̂ table is reduced by factor of γ Let Q̂_n be table after <i>n</i> updates, and Δ_n be the maximum error in Q̂_n; i.e., Δ_n = max Q̂_n(s, a) - Q(s, a) Let s' = δ(s, a) 	CSCE 496/896 Lecture 6: Reinforcement Learning Stephen Scott Introduction MDPs <i>Q</i> Learning DQN Atari Example Go Example	• For any table entry $\hat{Q}_n(s, a)$ updated on iteration $n + 1$, error in the revised estimate $\hat{Q}_{n+1}(s, a)$ is $ \hat{Q}_{n+1}(s, a) - Q(s, a) = (r + \gamma \max_{a'} \hat{Q}_n(s', a')) $ $-(r + \gamma \max_{a'} Q(s', a')) $ $= \gamma \max_{a'} \hat{Q}_n(s', a') - \max_{a'} Q(s', a') $ $(*) \leq \gamma \max_{a'} \hat{Q}_n(s', a') - Q(s', a') $ $(**) \leq \gamma \max_{a'} \hat{Q}_n(s'', a') - Q(s'', a') $ $= \gamma \Delta_n$ $(*)$ works since $ \max_a f_1(a) - \max_a f_2(a) \leq \max_a f_1(a) - f_2(a) $ (**) works since max will not decrease

16/53

イロトイ部トイミトイミト ミーのへの

Nebraska Lincoln	Updating \hat{Q}		Nebraska Lincoln	١
CSCE 496/896 Lecture 6: Rehinforcement Learning Stephen Scott Introduction MDPs <u><i>Q</i> Learning</u> DON Atari Example Go Example	 Also, Q̂₀(s, a) and Q(s, a) are both bounded ∀s, a ⇒ Δ₀ bounded Thus after k full intervals, error ≤ γ^kΔ₀ Finally, each ⟨s, a⟩ visited infinitely often ⇒ number of intervals infinite, so Δ_n → 0 as n → ∞ 	-	CSCE 496/896 Reinforcement Learning Stephen Scott Introduction MDPs <i>Q</i> Learning DQN Atari Example Go Example	

Nondeterministic Case

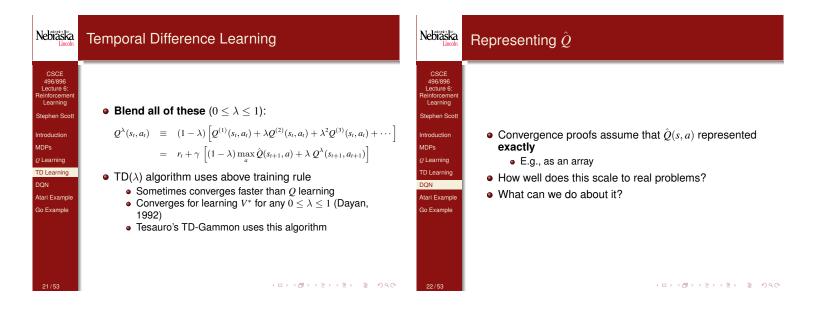
- What if reward and next state are non-deterministic?
- We redefine *V*, *Q* by taking expected values:

$$V^{\pi}(s) \equiv \mathsf{E}\left[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \cdots\right]$$
$$= \mathsf{E}\left[\sum_{i=0}^{\infty} \gamma^{i} r_{t+i}\right]$$

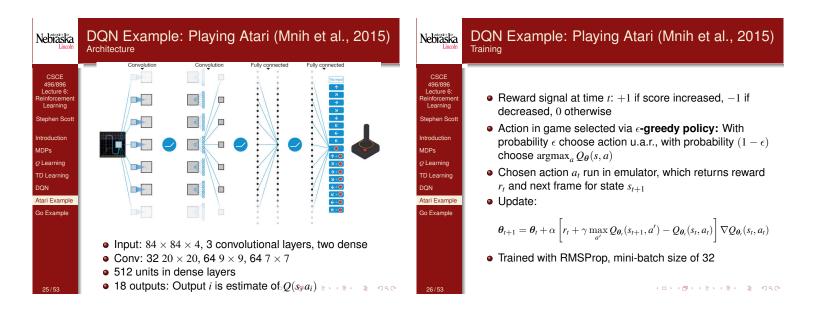
・ロト・日本・モート・モー もくの

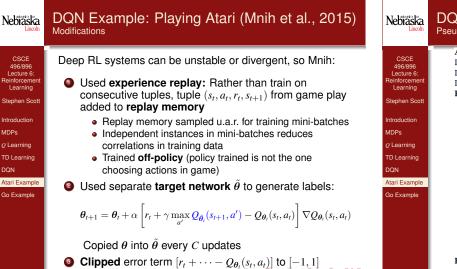
$$\begin{aligned} Q(s,a) &\equiv \mathsf{E}\left[r(s,a) + \gamma V^*(\delta(s,a))\right] \\ &= \mathsf{E}\left[r(s,a)\right] + \gamma \mathsf{E}\left[V^*(\delta(s,a))\right] \\ &= \mathsf{E}\left[r(s,a)\right] + \gamma \sum_{s'} P(s' \mid s,a) \, V^*(s') \\ &= \mathsf{E}\left[r(s,a)\right] + \gamma \sum_{s'} P(s' \mid s,a) \, \max_{a'} \, Q(s',a') \end{aligned}$$

Nebraska Nebraska Nondeterministic Case **Temporal Difference Learning** CSCE 496/896 Lecture 6: einforceme Learning CSCE 496/896 Lecture 6 einforcem • Q learning: reduce error between successive Q Learning • Q learning generalizes to nondeterministic worlds estimates • Q estimate using one-step time difference: Alter training rule to ntroductio troduction MDPs $Q^{(1)}(s_t, a_t) \equiv r_t + \gamma \max_{a} \hat{Q}(s_{t+1}, a)$ $\hat{Q}_n(s,a) \leftarrow (1-\alpha_n)\hat{Q}_{n-1}(s,a) + \alpha_n[r+\gamma \max_{a'} \hat{Q}_{n-1}(s',a')]$ Q Learning D Learning • Why not two steps? where DQN $\alpha_n = \frac{1}{1 + visits_n(s, a)}$ DQN Atari Example $Q^{(2)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \gamma^2 \max_{a} \hat{Q}(s_{t+2}, a)$ Go Example Go Example • Can still prove convergence of \hat{Q} to Q, with this and • Or n? other forms of α_n (Watkins and Dayan, 1992) $Q^{(n)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \dots + \gamma^{(n-1)} r_{t+n-1} + \gamma^n \max_{a} \hat{Q}(s_{t+n}, a)$

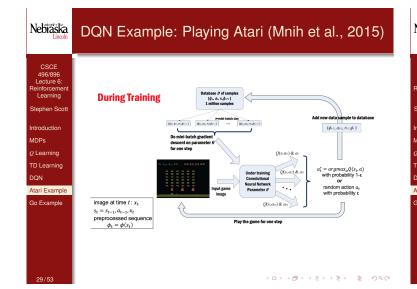


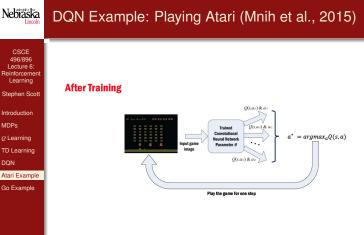
Nebraska Lincoln	Deep Q Learning	Nebraska	DQN Example: Playing Atari (Mnih et al., 2015)
CSCE 496/896 Lecture 6: Reinforcement Learning Stephen Scott Introduction MDPs <i>Q</i> Learning TD Learning DON Atari Example Go Example	 We already have machinery to approximate functions based on labeled samples Search for a deep <i>Q</i> network (DQN) to implement function <i>Q</i>_θ approximating <i>Q</i> Each training instance is <i>(s, a)</i> with label <i>y(s, a) = r + γ max_{a'} Q</i>_θ(<i>s', a')</i> I.e., take action <i>a</i> in state <i>s</i>, get reward <i>r</i> and observe new state <i>s'</i> Then use <i>Q</i>_θ to compute label <i>y(s, a)</i> and update as usual Convergence proofs break, but get scalability to large state space 	CSCE 496/896 Lecture 6: Reinforcement Learning Stephen Scott Introduction MDPs <i>Q</i> Learning DQN Atari Example Go Example	 Applied same architecture and hyperparameters to 49 Atari 2600 games System learned effective policy for each, very different, game No game-specific modifications State description consists of raw input from emulator Frames rescaled to 84 × 84, single channel Each state is sequence of four most recent frames Rather than take <i>s</i> and <i>a</i> as inputs, network takes <i>s</i> and gives prediction of <i>Q</i>(<i>s</i>, <i>a</i>) for all <i>a</i> as outputs Clipped positive rewards to +1 and negative to -1 Evaluated each policy's performance against professional human tester
23/53	<ロ> (四) (四) (三) (三) (三) (三) (三) (三) (三) (三) (三) (三	24/53	〈ロ〉〈母〉〈言〉〈言〉、言、今へぐ





Nebraska Lincoln	DQN Example: Playing Atari (Mnih et al., 2015) Pseudocode			
CSCE	Algorithm 1: deep Q-learning with experience replay. Initialize replay memory D to capacity N			
496/896 Lecture 6:	Initialize replay memory D to capacity N Initialize action-value function Q with random weights θ			
Reinforcement	Initialize target action-value function \hat{Q} with random weights $\theta^- = \theta$			
Learning	For episode = 1, M do			
Stephen Scott	Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$			
Introduction	For $t = 1, T$ do			
	With probability ε select a random action a_t			
MDPs	otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$			
Q Learning	Execute action a_t in emulator and observe reward r_t and image x_{t+1}			
TD Learning	Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$			
DQN	Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D			
Atari Example	Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D			
Go Example	if episode terminates at step $j+1$			
	$\operatorname{Set} y_{j} = \begin{cases} r_{j} & \text{if episode terminates at step } j+1\\ r_{j} + \gamma \max_{a'} \hat{\mathcal{Q}}(\phi_{j+1}, a'; \theta^{-}) & \text{otherwise} \end{cases}$			
	Perform a gradient descent step on $\left(y_j - Q(\phi_j, a_j; \theta)\right)^2$ with respect to the			
	network parameters θ			
	Every C steps reset $\hat{Q} = Q$			
	End For			
	End For			
28/53	◆□> ◆聞> ◆居> ● ● ● ●			





DQN Example: Playing Atari (Mnih et al., 2015) DQN Example: Playing Atari (Mnih et al., 2015) Nebraska Nebraska Results Results CSCE 496/896 Lecture 6 496/89 • Trained on each game for 50 million frames, no transfer learning Lear ninc • Testing: Averaged final score over 30 sessions/game • Measured performance of DQN RL and linear learner ntroductio RL (with custom features) vs. human player: MDPs MDPs 89 100(RL-random)/(human-random) O Learning 8 • I.e., human=100%, random=0% TD Learning 8

• DQN outperformed linear learner on all but 6 games, outperformed human on 22, and comparable to human on 7

DQN

Atari Example

Go Example

• Shortcoming: Performance poor (near random) when long-term planning required, e.g., Montezuma's revenge

・日本 古中 キャー・キャー しょう

DQN Atari Example Go Example Video Pinball Boxing Breakourt Star Gunner Robotank Atlantis Crazy Climber Gopher Demon Atlack ø

8

8

2

Nebraska	Go Example	Nebřaška Lincoln	AlphaGo (Silver et al., 2016) ^{Overview}
CSCE 496/896 Lecture 6: Reinforcement Learning Stephen Scott Introduction MDPs Q Learning DQN Atartic Example Go Example Ge Example Aptistico Zero Aptistico Zero Aptistico Zero	 One of the most complex board games humans have Checkers has about 10¹⁸ distinct states, Backgammon: 10²⁰, Chess: 10⁴⁷, Go: 10¹⁷⁰ Number of atoms in the universe around 10⁸¹ Another issue: Difficult to quantify goodness of a board configuration AlphaGo: Used RL and human knowledge to defeat professional player AlphaGo Zero: Improved on AlphaGo without human knowledge AlphaZero: Generalized to chess and shogi with general RL 	CSCE 496/896 Lecture 6: Reinforcement Learning Stephen Scott Introduction MDPS & Learning DON Atari Example Go Example Go Example AptraZeo	 Input: 19 × 19 × 48 image stack representing player's and opponent's board positions, number of opponent's stones that could be captured there, etc. Training Supervised learning (classification) of policy networks <i>p_π</i> and <i>p_σ</i> based on expert moves for states Transfer learning from <i>p_σ</i> to policy network <i>p_ρ</i> Reinforcement learning to refine <i>p_ρ</i> via policy gradient and self-play Regression to learn value network <i>v_θ</i> Live play Uses these networks in Monte Carlo tree search to choose actions during games 99.8% winning rate vs other Go programs and defeated human Go champion 5-0
22/52		24/52	· (日)(同)(日)(日))(日))(日))(日))(日))(日))(日))(日)

Nebraska Lincoln	AlphaGo (Silver et al., 2016) _{Overview}				
CSCE 496/896 Lecture 6:	Policy network	Value network			
Reinforcement Learning	$p_{\sigma \mid \rho}(a \mid s)$	$ u_{ heta}$ (s')			
Stephen Scott	·	•			
Introduction					
MDPs					
Q Learning	4,4				
TD Learning					
DQN					
Atari Example					
Go Example					
AlphaGo Zero AlphaZero					
Aprillari	s s s	3 3 5 S'			
35/53		<ロ> (日)			

Nebraska	AlphaGo (Silver et al., 2016) Supervised Learning			
CSCE 496/896 Lecture 6: Reinforcement Learning Stephen Scott Introduction MDPs <i>Q</i> Learning DQN Atari Example Go Example AptraGo AptraGo AptraGo	Rollout policy SL policy network • Supervised learning of policies p_{π} and p_{σ} • Board positions from KGS Go Server, labels are experts' moves • Supervised learning of policies p_{π} and • p_{σ} is full network (accuracy 57%, 3ms/move), p_{π} is simpler (accuracy 24% 2μ s/move)			
	Human expert positions			

36/53

・日本 古中 キャー・キャー しょう

AlphaGo (Silver et al., 2016) Nebraska Transfer Learning

SCE //896 ure 6: rcement	Transfer lea	rning of p_{σ} to $p_{ ho}$ ((same arch., copy	parameters)	
rning en Scott	Rollout policy	SL policy network	RL policy network	Value network	
ction	P_{π}	P_{σ}	$P_{ ho}$	$\nu_{ heta}$	
ning arning	\bowtie	Policy gr	adient		
xample ample ^{Zero}	Constant of the second s	and the second s	Contraction of the second		
	Human exper	t positions	Self-play p	positions	
53			A D > A D > A B A A	টা ব ≣া ব ≣া ব ব	٢

AlphaGo (Silver et al., 2016) Nebraska Reinforcement Learning

96/896

MDPs

DQN

O Learning

TD Learning

tari Exampl

Go Example

- Trained p_ρ via play against p_{ρ̃} (randomly selected earlier version of p_{ρ})
- For state s_t , terminal reward $z_t = +1$ if game ultimately won from s_t and -1 otherwise
- Note p_o does not compute value of actions like Q-learning does
 - It **directly** implements a policy that outputs a_t given s_t • Use policy gradient method to train:
 - If agent chooses action *a_t* in state *s_t* and ultimately wins 90% of the time, what should happen to $p_{\rho}(a_t \mid s_t)$?

• How can we make that happen?

Nebraska inforcem Learning Stenhen Scr MDPs 2 Learning TD Learning DQN Atari Example Go Example

AlphaGo (Silver et al., 2016) Policy Gradient

- REINFORCE: REward Increment = Nonnegative Factor times Offset Reinforcement times Characteristic **E**ligibility
- Perform gradient ascent to increase probability of actions that on average lead to greater rewards:

$$\Delta \rho_j = \alpha (r - b_s) \frac{\partial \log p_{\rho}(a \mid s)}{\partial \rho_i}$$

 α is learning rate, r is reward, a is action taken in state s, and b_s is **reinforcement baseline** (independent of a)

- b keeps expected update same but reduces variance
- E.g., if all actions from s good, b_s helps differentiate
- Common choice: $b_s = \hat{v}(s) =$ estimated value of s

Nebraska AlphaGo (Silver et al., 2016) Policy Gradient

496/89 Lecture

MDPs

DQN

TD Learning

Atari Example

o Example

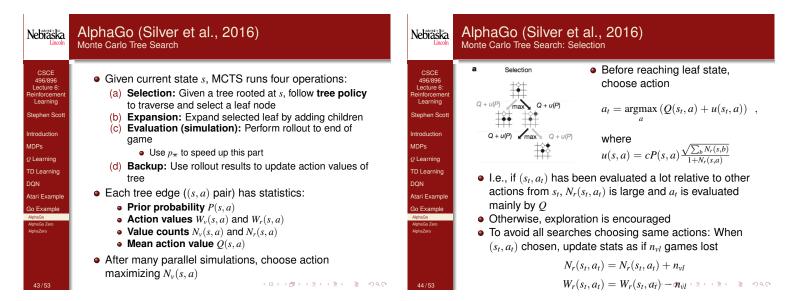
- AlphaGo uses REINFORCE with baseline $b_s = v_{\theta}(s)$, $r = z_t$, and sums over all game steps $t = 1, \ldots, T$
- Average updates over games i = 1, ..., n

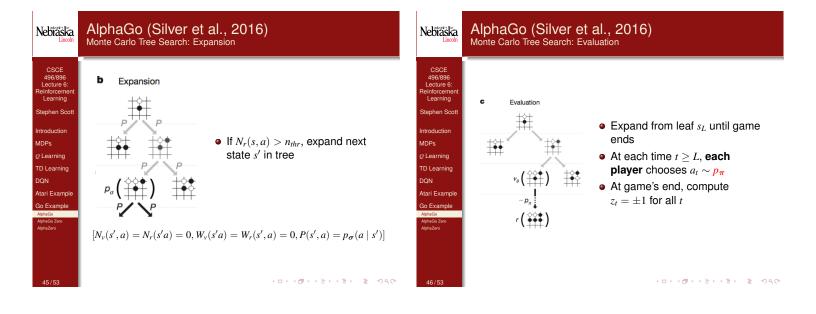
$$\Delta \boldsymbol{\rho} = \frac{\alpha}{n} \sum_{i=1}^{n} \sum_{t=1}^{T^{i}} (z_{t}^{i} - v_{\boldsymbol{\theta}}(s_{t}^{i})) \nabla_{\boldsymbol{\rho}} \log p_{\boldsymbol{\rho}}(a_{t}^{i} \mid s_{t}^{i})$$

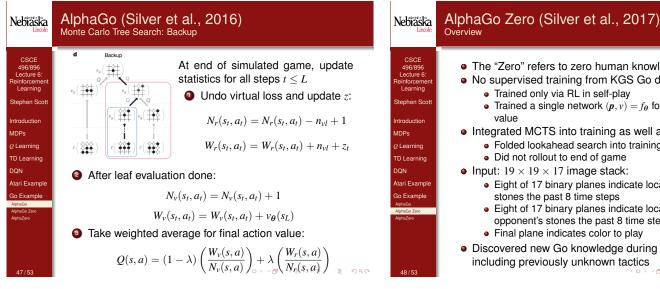
AlphaGo (Silver et al., 2016) AlphaGo (Silver et al., 2016) Nebraska Nebraska Value Learning Live Play Now, we're ready for live play • $v_{\theta}(s)$ approximates $v^{p_{\rho}}(s) =$ value of s under policy p_{ρ} • Rather than exclusively using p_{ρ} or v_{θ} to determine • Regression problem on state-outcome pairs (s, z)actions, will instead base action choice on a rollout Train with MSE MDPs algorithm • Analogous to experience replay, mitigated overfitting by O Learning O Learning Use the functions learned to simulate game play from drawing each instance from a unique self-play game: TD Learning TD Learning state *s* forward in time ("rolling it out") and computing • Choose time step U uniformly from $\{1, \ldots, 450\}$ DQN statistics about the outcome 2 Play moves $t = 1, \ldots, U$ from p_{σ} tari Exampl tari Exampl **O** Choose move a_U uniformly io Example lo Example Repeat as much as time limit allows, then choose most Play moves $t = U + 1, \ldots, T$ from p_{ρ} favorable action **(a)** Instance (s_{U+1}, z_{U+1}) added to train set ⇒ Monte Carlo Tree Search (MCTS)

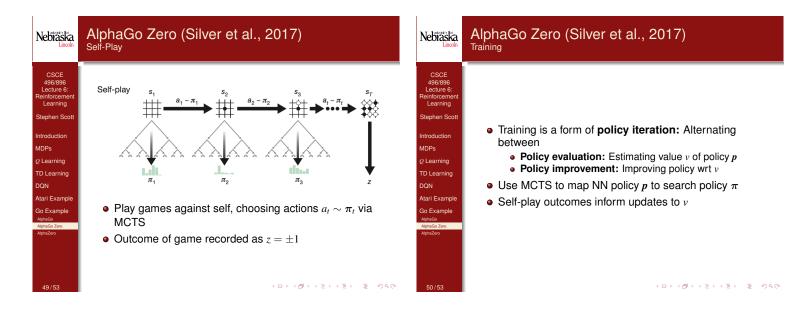
MDPs

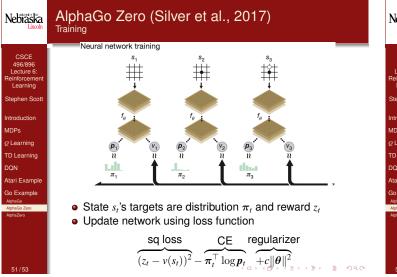
DQN











Nebraska	AlphaGo Zero (Silver e	t al., 2017)	
CSCE 496/896 Lecture 6: Reinforcement Learning Stephen Scott Introduction	a Select b Expand and evaluate a + U $b + U$ $b + D + D + Da + U$ $b + U$ $b + D + D + Da + U + D + D + D + D + D + D + D + D + D$		
MDPs Q Learning TD Learning DQN Atari Example Go Example AptraGo Zero AptraGo Zero AptraZero	 MCTS similar to that of A since no rollout: [N(s, a), (a) Select: same as before, I (b) Expand + evaluate: f_θ co symmetry) for backup ins (c) Backup: same as before, (d) Play policy: π(a s₀) = N (τ controls exploration) 	$\dot{W}(s, a), \dot{Q}(s, a), \dot{P}(s)$ but $u(s, a)$ uses N is impute value $v(s)$ (in stead of rollout to g but no N_r or W_r	$[a,a)]$ instead of N_r modulo ame end $(b)^{1/ au}$

Nebraska AlphaZero (Silver et al., 2017b)

- AlphaGo Zero's approach applied to chess and shogi
- Same use of $(\mathbf{p}, v) = f_{\boldsymbol{\theta}(s)}$ and MCTS
- Go-specific parts removed + other generalizations
- No game-specific hyperparameter tuning
 - Similar framework as Atari

Game	White	Black	Win	Draw	Loss
Chess	AlphaZero	Stockfish	25	25	0
	Stockfish	AlphaZero	3	47	0
Shogi	AlphaZero	Elmo	43	2	5
	Elmo	AlphaZero	47	0	3
Go	AlphaZero	AG0 3-day	31	-	19
	AGO 3-day	AlphaZero	29	-	21

Table 1: Tournament evaluation of *AlphaZero* in chess, shogi, and Go, as games won, drawn or lost from *AlphaZero*'s perspective, in 100 game matches against *Stockfish, Elmo*, and the previously published *AlphaGo Zero* after 3 days of training. Each program was given 1 minute of thinking time per move.

ロ> <回> <目> <目> <目> <目> <目> <目> <

IDPs

Q Learning TD Learning DQN Atari Exampl Go Example