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@ An autoencoder is a network trained to learn the
identity function: output = input

Stephen Scott

Outputs X, X
(= Inputs)

Xy @ Subnetwork called
W encoder f(-) maps input
Decoder
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representation

Freder @ Subnetwork called
decoder g(-) maps back
to input space

Denoising AE

Sparse AE

Contractive Inputs X,

Variational AE

@ Can be thought of as lossy compression of input

@ Need to identify the important attributes of inputs to
reproduce faithfully

t-SNE

Lincoln

Introduction

CSCE
496/896
Lecture 5:
Autoencoders

Stephen Scott

@ Autoencoding is training a network to replicate its
input to its output

@ Applications:

Unlabeled pre-training for semi-supervised learning

Learning embeddings to support information retrieval

o Generation of new instances similar to those in the

training set

Data compression
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Values

Stephen Scott 10000000 — .89 .04 .08 — 10000000
. 01000000 — .15 .99 99 — 01000000

Iniroducton 00100000 — 01 .97 27 — 00100000

Basic ldea 00010000 — .99 .97 .71 — 00010000

Stacked AE 00001000 — .03 .05 .02 — 00001000

— 00000100 — 01 .11 .88 - 00000100

Convolutions 00000010 — .80 .01 .98 — 00000010
v 00000001 — .60 .94 .01 — 00000001

Denoising AE

Sparse AE

Contractive

@ Sigmoid activation functions, 5000 training epochs,
square loss, no regularization

@ What's special about the hidden layer outputs?

Variational AE
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@ General types of autoencoders based on size of hidden
layer
o Undercomplete autoencoders have hidden layer size
smaller than input layer size
= Dimension of embedded space lower than that of input
space

= Cannot simply memorize training instances

e Overcomplete autoencoders have much larger hidden
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__ = Regularize to avoid overfitting, e.g., enforce a sparsity
Variational AE constraint

t-SNE
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Example: Principal Component Analysis

Original 3D dataset

2.0

2D projection with max variance
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@ A 3-2-3 autoencoder with linear units and square loss
performs principal component analysis: Find linear

transformation of data to maximize variance

Stacked Autoencoders

Incremental Training

f= Inputs C°PY»F?{_&T_€iers }

—2.5-2.0-1.5-1.0-0.50.0 0.5 1.0 1.5

Outputs ]' A= Hidden 1 ‘[ Outf)uts
[ Hidden 3 } """"""" -[ Hidden 3 ]
[ Hidden 1 } [ Hidden 1 ] -[ Hidden 1 ]
I e et I
Inputs. ] . [ Inputs
Phase 1 Phase 2 Phase 3
Train the first autoencoder Train the second autoencoder Stack the autoencoders

@ Can simplify training by starting with single hidden
layer H,

@ Then, train a second AE to mimic the output of H;

@ Insert this into first network

@ Can build by using H;’s output as training set for
Phase 2

Stacked Autoencoders

Visualization

Input MNIST Digit Network Output

7 7
Z Z

Weights (features selected) for five nodes from H:
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Stacked Autoencoders

784 units

784 units

R i @ A stacked
300 units autoencoder
150 units [ <— Codings has multiple

300 units

hidden layers

@ Can share parameters to reduce their number by
exploiting symmetry: W, = W, and W3 = W,

weightsl
weights2
weights3
weights4

Stacked Autoencoders
Incremental Training (Single TF Graph)

Phase 1
Training Op

MSE(Outputs - Inputs)

tf.Variable (weightsl_init, dtype=tf.float32, name="weightsl")
tf.Variable (weights2_init, dtype=tf.float32, name="weights2")
tf.transpose (weights2, name="weights3")
tf.transpose (weightsl, name="weights4")

# shared weights
# shared weights

Phase 2
Training Op

MSE(Hidden 3 - Hidden 1)

?

Outputs ]

[ Phase 1 Outputs ] [

1
Hidden 3

Same
parameters

A Fixed parameters

Hidden 2 oy ) during phase 2

Hidden 1

@ Previous approach requires multiple TensorFlow graphs

@ Can instead train both phases in a single graph: First
left side, then right

Stacked Autoencoders

Semi-Supervised Learning

f = Inputs * = Labels

Outputs ] Softmax

Hidden 3

Hidden 2

Hidden 2

Train the autoencoder
using all the data

Copy
parameters
Hidden1 |- Hidden 1
Inputs ] [ Inputs ]
Phase 1 Phase 2

Train the classifier
on the *labeled* data

@ Can pre-train network with unlabeled data
= learn useful features and then train “logic” of dense
layer with labeled data
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Transfer Learning from Trained Classifier

o Canalso (o )
transfer from a 4

classifier ( e ) ( Outeut )
trained on ( Hiddens | [ Hiddena | -VE I,’:i;its"e
. I Reuse I
different task, (Hiadens | —> ( Hiddens |
I P—  Eeeeee

€.g., transfer a ( Hidden2 | —> | Hidden2 |: .
GoogleNet T ; I s @ Fixed
architecture to m;em_] —> [ Hiogen1 ]I == "9
ultrasound [ Input layer ] —_ [ Input layer ]
classification Existing DNN New DNN for

for task A similar task B

@ Often choose existing one from a model zoo

Transposed Convolutions

Consider this example convolution

Transposed Convolutions (4)

This representation works with matrix multiplication on
flattened input:

Output (2. 2)

3

output (4 1)

P I ]wmw]m

Lincoln

Transposed Convolutions

CSCE
496/896
Lecture 5:

Autoencoders

Stephen Scott

Introduction

@ What if some encoder layers are convolutional? How to
upsample to original resolution?

o Can use, e.g., linear interpolation, bilinear
interpolation, etc.

@ Or, transposed convolution, e.g.,
tf.layers.conv2d_transpose
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Weem=l Transposed Convolutions (3)
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An alternative way of representing the kernel

0 1 2
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Convolution Matrix (4, 16)

Weet=l Transposed Convolutions (5)
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Transpose kernel, multiply by flat 2 x 2 to get flat 4 x 4
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Denoising Autoencoders
Vincent et al. (2010)
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SN @ Can train an autoencoder to learn to denoise input by

giving input corrupted instance x and targeting
uncorrupted instance x
@ Example noise models:
o Gaussian noise: ¥ = x + z, where z ~ N(0,521)
o Masking noise: zero out some fraction v of
components of x
o Salt-and-pepper noise: choose some fraction v of
components of x and set each to its min or max value
(equally likely)
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Original Images

Noisy Input
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@ An overcomplete architecture
@ Regularize outputs of hidden layer to enforce sparsity:

J(x) =T (x,8(f(x))) + aQ(h) ,

where J is loss function, f is encoder, g is decoder,
h = f(x), and Q penalizes non-sparsity of &

@ E.g., canuse Q(k) = 3, || and ReLU activation to
force many zero outputs in hidden layer

@ Can also measure average activation of i; across
mini-batch and compare it to user-specified target
sparsity value p (e.g., 0.1) via square error or

Stephen Scott
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Variational AE Kullback-Leibler divergence:

SNE 1—

GAN plogIZJr(lfp)logil7 ,
q l—gq

where g is average activation of A; over mini-batch
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Stephen Scott

Introduction
Basic Idea
Stacked AE

Hidden 2

Hidden 1

Gaussian Noise ] [ Dropout ]

Transposed
Convolutions

Denoising AE

Sparse AE

Contractive

Variational AE

t-SNE

GAN

Nebiaska

Lincoln

Denoising Autoencoders

CSCE
496/896
Lecture 5:
Autoencoders

@ How does it work?

@ Even though, e.g., MNIST data are in a
784-dimensional space, they lie on a low-dimensional
manifold that captures their most important features

@ Corruption process moves instance x off of manifold

@ Encoder fy and decoder gy are trained to project ¥ back
onto manifold

Stephen Scott

Introduction
Basic Idea
Stacked AE

Transposed
Convolutions

Denoising AE
Sparse AE

Contractive

Variational AE
t-SNE
GAN

Nebiaska

Lincoln

Contractive Autoencoders

CSCE
496/896
Lecture 5:
Autoencoders

@ Similar to sparse autoencoder, but use

j=1 i=l

Stephen Scott

Introduction
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Stacked AE
@ l.e., penalize large partial derivatives of encoder

outputs wrt input values
@ This contracts the output space by mapping input
points in a neighborhood near x to a smaller output
neighborhood near f(x)
= Resists perturbations of input x
@ If h has sigmoid activation, encoding near binary and a
CE pushes embeddings to corners of a hypercube
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Variational Autoencoders

@ VAE is an autoencoder that is also generative model
= Can generate new instances according to a probability
distribution
e E.g., hidden Markov models, Bayesian networks
o Contrast with discriminative models, which predict
classifications

@ Encoder f outputs [u, o] "

e Pair (u;,0;) parameterizes
Gaussian distribution for
dimensioni=1,...,n

o Draw z; ~ N (u;, 0;)

o Decode this latent variable z
to get g(z)

Variational Autoencoders

Architecture

4 = Inputs

Outputs

Variational Autoencoders

Reparameterization Trick

@ Cannot backprop error signal through random samples

@ Reparameterization trick emulates z ~ A (y, o) with
e~N(@O,1),z=€0+p

Encoder

(@]

Encoder

(@)
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Latent Variables

@ Independence of z dimensions makes it easy to
generate instances wrt complex distributions via
decoder g

@ Latent variables can be thought of as values of
attributes describing inputs

e E.g., for MNIST, latent variables might represent

» o

“thickness”, “slant”, “loop closure”

z X

digit
thickness 0 \ '? D) '1‘
Ioo:IzIr:)tsure % S. é 7 f q

Variational Autoencoders

Optimization

@ Maximum likelihood (ML) approach for training
generative models: find a model (@) with maximum
probability of generating the training set X

@ Achieve this by minimizing the sum of:

e End-to-end AE loss (e.g., square, cross-entropy)

o Regularizer measuring distance (K-L divergence) from
latent distribution ¢(z | x) and A/(0, ) (= standard
multivariate Gaussian)

@ N(0,1) also considered the prior distribution over z (=
distribution when no x is known)

eps = le-10

latent_loss = 0.5 x tf.reduce_sum(
tf.square (hidden3_sigma) + tf.square (hidden3_mean)
-1 - tf.log(eps + tf.square(hidden3_sigma)))

Variational Autoencoders

Example Generated Images: Random

Qo

N L sxoWw
& LU G
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Generative Adversarial Network

Variational Autoencoders

Example Generated Images: Manifold

@ Uniformly sample points in (2-dimensional) z space and
decode

COPPWWWOOD DY VI
PODLDLLWWWOWOYYNLYYLVIY
DOOLWLWWWWYYQYVII
DD MWng W QY999
NN N LYY R R

DA NYYQYIIVII 9=
HH66NYYYYVIVNI ==
LA AR AR AR R AR R R

LA R AR R RR R R RS
B9 YN NINSNSSSsSse

000009PPLPLOL L0 III
Q000PPPLOHDLOOIIY
Q00PPPPLIDDHLLIIY
QOPDPPPIIRDLLDDIY
COPPRPVWIIRNODDLOD DI

Aside: Visualizing with t-SNE

van der Maaten and Hinton (2008)

@ Visualize high-dimensional data, e.g., embedded
representations
@ Want low-dimensional representation to have similar
neighborhoods as high-dimensional one
@ Map each high-dimensional xy, ..., xy to
low-dimensional yy, . .. ,yy via matching pairwise
distributions based on distance
= Probability p;; pair (x;,x;) chosen similar to probability g;;
pair (y;,y;) chosen
@ Set p; = (pji + pij)/ (2N) where
b o (i x/o)
M Cesexp (<l —xid P/ (207)
and o; chosen to control density of the distribution

@ l.e, pj; is probability of x; choosing x; as its neighbor if
chosen in proportion of Gaussian density centered at x;

@ GANSs are also generative models, like VAEs
@ Models a game between two players
o Generator creates samples intended to come from
training distribution
o Discriminator attempts to discern the “real” (original
training) samples from the “fake” (generated) ones
@ Discriminator trains as a binary classifier, generator
trains to fool the discriminator

Realworld —
g N i
\

= / Fake
O /

SR ‘/

A

Y

Latent random variable
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Variational Autoencoders
2D Cluster Analysis

Aside: Visualizing with t-SNE (2)

van der Maaten and Hinton (2008)

Generative Adversarial Network

How the Game Works

@ Cluster analysis by digit (2D latent space)

@ Also, define ¢ via student’s ¢ distribution:

—1
(1+ llyi —y1%)
1
D ke (1 vk = yell?)

@ Using student’s ¢ instead of Gaussian helps address
crowding problem where distant clusters in x space
squeeze together in y space

@ Now choose y values to match distributions p and ¢ via
Kullback-Leibler divergence:

i
> pilog ”
i#f i

qij =

@ Let D(x) be discriminator parameterized by §()
o Goal: Find 6 minimizing J®) (8, §(%))
@ Let G(z) be generator parameterized by 6(%)
o Goal: Find 6(©) minimizing J(©) (6, 9(4))
@ A Nash equilibrium of this game is (6(?), (%)) such
that each 81, i € {D, G} yields a local minimum of its
corresponding J
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Generative Adversarial Network

Training

@ Each training step:
o Draw a minibatch of x values from dataset
e Draw a minibatch of z values from prior (e.g., A'(0,1))
e Simultaneously update 6(9 to reduce J(©) and 8®) to
reduce J®), via, e.g., Adam
@ For J®), common to use cross-entropy where label is 1
for real and 0 for fake
@ Since generator wants to trick discriminator, can use
JG) — _j(D)
o Others exist that are generally better in practice, e.g.,
based on ML

Generative Adversarial Network
DCGAN Generated Images: Bedrooms

Trained from LSUN dataset, sampled z space

Generative Adversarial Network
DCGAN Generated Images: Latent Space Arithmetic

Performed semantic arithmetic in z space!

(Non-center images have noise added in z space; center is
noise-free)

Generative Adversarial Network
DCGAN: Radford et al. (2015)
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@ “Deep, convolution GAN”

@ Generator uses transposed convolutions (e.g.,
tf.layers.conv2d_transpose) without pooling to
upsample images for input to discriminator

512layers of bz i RGB layers of a
88 images. single 64x64 image.
z Mesarseasssed, nE o smmm— -, Ll

Stephen Scott
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Proect and reshape ks
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G(z)
t-SNE

G2

Aiel Generative Adversarial Network

Bl DCGAN Generated Images: Adele Facial Expressions

CSCE

496/896 Trained from frame grabs of interview, sampled z space
L 5: 4 i P 3 ™
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