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@ Machine learning can generally be distilled to an
optimization problem
Measuring

Performance @ Choose a classifier (function, hypothesis) from a set of
Regularization functions that minimizes an objective function

el @ Clearly we want part of this function to measure

Generalization

Performance performance on the training set, but this is insufficient

Comparing

Introduction

Learning
Algorithms

Other
Performance
Measures



WCeted Oytline

Lincoln

CSCE
496/896
Lecture 3:
Regularization

Stephen Scott
and Vinod
Variyam

@ Types of machine learning problems
@ Loss functions

Periormance @ Generalization performance vs training set performance

Regularization @ Overfitting
°
°

Introduction
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Comparing
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@ Supervised Learning: Algorithm given labeled training
ST SR data and infers function (hypothesis) from a family of

Variyam functions (e.g., set of all ANNSs) that is able to predict
well on new, unseen examples

Measuring e Classification: Labels come from a finite, discrete set
Performance o Regression: Labels are real-valued

Regularization @ Unsupervised Learning: Algorithm is given data
Estimating without labels and is asked to model its structure

Generalization

Performance e Clustering, density estimation
Comparing

L @ Reinforcement Learning: Algorithm controls an agent
’ that interacts with its environment and learns good

Introduction

Other
Performance actions in various situations

Measures
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Stephen S i i
tephen Scot @ In any learning problem, need to be able to quantify

Variyam performance of algorithm
Introduction @ In supervised learning, we often use loss function (or
Measuring error function) 7 for this task
Performance . i ,
@ Given instance x with true label y, if the learner’s
Regularization prediction on x is y, then
Estimating
G lizati V
Sl J.5)
Comparing . .
Learning is the loss on that instance

Algorithms

Other
Performance
Measures
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Bl Examples of Loss Functions
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Lecture 3: Qo 0-1 Loss: j(y’j]) =1 Ify 7é 5], 0 OtherW|Se

Regularization

Stephen Scott ° Square Loss: j(y) 5)) = (y _5))2

i e Cross-Entropy: J(y,5) = —ylny — (1 — y)In (1 — 7)
(y and y are considered probabilities of a ‘1’ label)

o Generalizes to k classes (i* = correct class):

Introduction

Measuring
Performance

k
Overfitting j(y75}) = — Z Vi In 5/[ = — ln}%*
i=1

Regularization

Estimating
Generalization

Performance (v is one-hot vector; y; is predicted prob. of class i)

Comparing @ Hinge Loss: J(y,y) = max(0,1 —yy)

Learning . . e .
Algorithms (used sometimes for large margin classifiers like SVMs)

Other
Performance

Measures All non—nega’[ive
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@ Given a loss function 7 and a training set X, the total

Introduction loss of the classifier hon X is
Measuring
Performance A~
i errorX(h):Zj(yx,yx) 9
‘ g_ . xeX
Regularization
. where y, is x’s label and y, is h’s prediction

Performance

Comparing
Learning
Algorithms

Other
Performance
Measures
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Stephen_ Scott . .
and Vinod @ More importantly, the learner needs to generalize well:

Variyam

Given a new example drawn iid according to unknown
introduton probability distribution D, we want to minimize 4’s
Poramans expected loss:

Overfitting A~
Regularization errorp (h) = ]EXND [j(y-’ﬁ yx)]
Estimating

EemEl oy @ Is minimizing training loss the same as minimizing
expected loss?

Comparing
Learning
Algorithms

Other
Performance
Measures
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ST @ Sufficiently sophisticated learners (decision trees,
e multi-layer ANNSs) can often achieve arbitrarily small (or
zero) loss on a training set

Measuring @ A hypothesis (e.g., ANN with specific parameters) &
Performance overfits the training data X if there is an alternative

ot hypothesis 4’ such that

Regularization

Introduction

Estimating errory(h) < errorxy(h')

Generalization
Performance

Comparing and
Learning
Algorithms errorp(h) > errorp(h)

Other

Performance
Measures
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Measuring Performance
Overfitting




NeBWERSWV ] OF

Lincoln

CSCE
496/896
Lecture 3:
Regularization

Stephen Scott
and Vinod
Variyam

Introduction

Measuring
Performance
Loss
Overfitting

Regularization

Estimating
Generalization
Performance

Comparing
Learning
Algorithms

Other
Performance
Measures

11/53

Measuring Performance
Overfitting

Poor
representations
of sin(2nx)

. 1 M=9

Best Fit , 1

— to
sin(27mx)

Over Fit

Poor
representation
of sin(2nx)

To generalize well, need to balance training accuracy with

simplicity
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496189 @ Generally, if the set of functions H the learner has to

Lecture 3:

Regularization choose from is complex relative to what is required for

B correctly predicting the labels of X, there’s a larger
Variyam chance of overfitting due to the large number of “wrong”

choices in H

introduction e Could be due to an overly sophisticated set of functions

Measuring . . .

DI ES @ E.g., can fit any set of n real-valued points with an

Y — (n — 1)-degree polynomial, but perhaps only degree 2 is

Gauses of Oveiting needed

oy Sopera @ E.g., using an ANN with 5 hidden layers to solve the

S logical AND problem

o earnng e Could be due to training an ANN too long

cach Normatzeton @ Over-training an ANN often leads to weights deviating

SR far from zero . .

Generalization @ Makes the function more non-linear, and more complex

Performance

@ Often, a larger data set mitigates the problem

Comparing
Learning
Aldatithms
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Regularization 0.01

T T T
~

Stephen Scott .. .

and Vinod 0009 I T?am.mg set error :

Variyam Validation set error +
0.008 b
Introduction 0.007 f‘t’ i
A +

Measuring = s
Performance g 0.006 A
Regularization H 3
Causes of Overfitting 0 005 i 7
Early Stopping
Parameter Norm 0.004 B 4
Penalties
Data Augmentation 0 003 - .
Multitask Learning
Dropout
Batch Normalization 0 002 : : :
Riers 0 5000 10000 15000 20000
Estimating Number of weight updates

Generalization
Performance

Comparing
Learning
Aldtithms
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Error versus weight updates (example

001
CSCE 0009 o Training set error
Validation set error A

496/896 0.008
Lecture 3: 0007
Regularization

Error
s o
28
a3
(ﬁ F

Stephen Scott 0004
and Vinod 0003
Variyam 0.002
o 5000 10000 15000 20000
Number of weight updates
Introduction Error versus weight updates (example 2)
0.08 ~ T T T
: 007 | * Training set error
Measuring 006 Py Validation seterror  +
6 t

Error

Performance %

0.05 .

Regularization = 004 V\\\“

Causes of Overfitting 003

Early Stopping 002
001 '

Penanios . e

Data Augmentation 0 1000 2000 3000 4000 5000 6000
Number of weight updates

Multitask Learning

Dropout

Batch Normalization

oers @ Danger of stopping too soon
Estimating e “Patience” parameter determines how long to wait

Generalization

Performance @ Can re-start and track best one on separate validation

Comparing
Learning Set
Alddtithms
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_ @ Still want to minimize training loss, but balance it
iredueton against a complexity penalty on the parameters used:

Measuring

Performance
Regulal‘izatiqn j(@, X,y) = j(@, X,y) + « Q(B)

Early Stopping
@ « € [0, 00) weights loss 7 against penalty ©

Penalties

Data Augmentation
Muliitask Learning
Dropout

Batch Normalization
Others

Estimating
Generalization
Performance

Comparing
Learning
Alddrithms
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Stephen Scott 2 ’
Qs @ Q(0) = (1/2)]|0|)5, i.e., sum of squares of network’s
weights
inroduction @ Since 6 = w, this becomes

Measuring

Performance - T
Regularization j(wa X)y) = (a/2)w w + j(wv X?.y)
Causes of Overfitting

Early Stopping . . . . .
@ As weights deviate from zero, activation functions

Parameter Norm

become more nonlinear, which is higher risk of

Multitask Learning

Dropout ove rf|tt| ng

Batch Normalization
Others

Estimating
Generalization
Performance

Comparing
Learning
Alddtithms
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3 - ~ \
/7 -+ ~ \
AN

Introduction 7
Measuring
/{ 1 }
\
~

Performance 1

Regularization \
Gauses of Overfiting \ i
Early Stopping ~ P /

Parameter Norm
Penalties

Data Augmentation
Muliitask Learning
Dropout

Batch Normalization ° w* |S Optlmal for j, 0 optlmal fOI’ regu|arlze|’

Others

Estimating @ 7 less sensitive to wy, so w (optimal for 7) closer to w,
Generalization

Performance axis than w1

Comparing
Learning
Aldofithms
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Introduction

Measuring
Performance

Regularization
Causes of Overfitting
Early Stopping

Parameter Norm
Penalties

Data Augmentation
Muliitask Learning
Dropout

Batch Normalization
Others

Estimating
Generalization
Performance

Comparing
Learning
Alddtithms

@ (0) = ||0]],, i.e., sum of absolute values of network’s

Regularization

Parameter Norm Penalties: L' Norm

weights

Jw; X,y) = alw|i + T (w; X,y)

@ As with L? regularization, penalizes large weights
Unlike L? regularization, can drive some weights to zero

@ Sparse solution
e Sometimes used in feature selection (e.g., LASSO

algorithm)
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el es e If H powerful and X small, then learner can choose

Regularization

Stephen Scott some h € H that fits idiosyncrasies or noise in data

aryam @ Deep ANNs would like to have at least thousands or

tens of thousands of data points

Measuring @ In classification of high-dimensional data (e.g., image
FENENTES classification), want learned classifier to tolerate
Regularization transformations and noise

Causes of Overfitling

e . = Can artificially enlarge data set by duplicating existing
il instances and applying transformations
Data Augmentation

Multask Loarning @ Translating, rotating, scaling
Dropout @ Don’t change the class, e.g., “b” vs “d” or “6” vs “9”

Batch Normalization

others @ Don’t let duplicates lie in both training and testing

Estimating sets
Generalization

Performance = Can also apply noise injection to input or hidden layers

Introduction

Comparing
Learning
Alddtithms
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Early Stopping

Parameter Norm
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Muliitask Learning
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Bl Multitask Learning

CSCE )
496/896 @ If multiple tasks share

Lecture 3:

Regularization generic parametel’s,
Stephen Scott initi i
e initially process inputs

Variyam via shared nodes, then
do final processing via
task-specific nodes

. @ Backpropagation works
Regularization . .
Gausos of Overting as before with multiple

Early Stopping

output nodes 1 (shared

Penalties

Data Augmentation @ Serves as a regularizer

Multitask Learning

since parameter tuning

Batch Normalization

oters of shared nodes is based

Estimating

Generalization on backpropagated error
Performance from multiple tasks

Introduction

Measuring
Performance

DO4C

Comparing
Learning
Aldbrithms
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Bl Dropout

CSCE H .
490895 @ Imagine if, for a network,

Lect 3:
R we could a\{erage over all O1lololo
networks with each @ o‘@ o’e ()
Stephen Scott 0’0@ e)o) oo
and Vinog subset of nodes deleted
ariyam O ©O) @ O)
@ Analogous to bagging, * & 18 ®
Introduction a °
ossur where we average over ©© CIC/INC
leasuring
Performance ANNS trained on random Q o° o° °° ©
R | . t Base network
S samples of X © ®
ey Stooons @ In each training iteration, (OR RONNORNO;
sample a random bit - O©
k — VeC’[OI’ M, Wh|Ch Ensomble of subnetworks
o determines which nodes @ When training done,
Estimating are used (e.g., re-scale weights by
Generalization .
Performance P(,u, = 1) = 0.8 for input P(,ul = 1)

ESQZE.?Z"Q unit, 0.5 for hidden unit)
Brhs
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Measuring
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Regularization
Causes of Overfitting
Early Stopping

Parameter Norm
Penalties
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Muliitask Learning
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Performance
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Regularization

Batch Normalization (loffe and Szegedy 2015)

@ Addresses internal
covariate shift, where
changing parameters of
layer i changes
distribution of inputs to
layer i+ 1

@ Related to
z-normalization, where
one subtracts sample
mean and scales with
standard deviation

@ ~, 8 learnable parameters

Input: Values of  over a mini-batch: B = {1 m};
Parameters to be learned: v, 8
Output: {y; = BN, s(z;)}

Lo
—=Y =z
B m;z

[
0% ™ > (@i — us)?
=1

// mini-batch mean

// mini-batch variance

Zi — UB

Ti // normalize
V4 crg +e€
yi < 7% + B = BN, g(z:) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation z over a mini-batch.

@ Allows use of higher learning rates, possibly speeding

convergence

@ In some cases, reduces/eliminates need for dropout
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Roe o e Parameter Tying: If two learners are learning the

Shenisa same task but different scenarios (distributions, etc.),
and Vinod can tie their parameters together

o If w® are weights for task A and w®) are weights for
Introduction task B, then can use regularization term
Measuring Q(w(A)’w(B)) = ||w(A) — w(B)H%
Performance . . . .
Requarzaton e E.g., Ais supervised and B is unsupervised
ST @ Parameter Sharing: When detecting objects in an
image, the same recognizer should apply invariant to
translation
SR e Train a single detector (subnetwork) for an object (e.g.,
s cat) by training full network on multiple images with
Estimating translated cats, where the cat detector subnets share
Ceneralization parameters (single copy, used multiple times)

Comparing
Learning
Alcstithms
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@ Sparse Representations: Instead of penalizing large
weights, penalize large outputs of hidden nodes:

Introduction

Measuring
Performance

Regularization j(e, X:y) = j(ea va) + O[Q(h) ?

Causes of Overfitling
Early Stopping

where h is the vector of hidden unit outputs

Penalties
Data Augmentation
Muliitask Learning
Dropout

Batch Normalization
Others

Estimating
Generalization
Performance

Comparing
Learning
AlcStithms
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Introduction
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Performance

Regularization

Estimating
Generalization
Performance
Setting Goals

Confidence Intervals

Comparing
Learning
Algorithms

Other
Performance
Measures
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Estimating Generalization Performance
Setting Goals

@ Before setting up an experiment, need to understand
exactly what the goal is

e Estimate the generalization performance of a
hypothesis

e Tuning a learning algorithm’s parameters

e Comparing two learning algorithms on a specific task

e Etc.

@ Will never be able to answer the question with 100%
certainty

e Due to variances in training set selection, test set
selection, etc.

e Will choose an estimator for the quantity in question,
determine the probability distribution of the estimator,
and bound the probability that the estimator is way off

e Estimator needs to work regardless of distribution of
training/testing data




ey Estimating Generalization Performance

B Setting Goals

CSCE
496/896 . s T T
Lecture 3: @ Need to note that, in addition to statistical variations,

eauanzaton what we determine is limited to the application that we
S ard Vinod are studying

At e E.g., if ANN; better than ANN, on speech recognition,
iieRlEET that means nothing about video analysis
ez @ In planning experiments, need to ensure that training
Re °:”’a”°e data not used for evaluation
egularization
Esjmaﬁng e l.e,, don’t test on the training set!
Generalization o Will bias the performance estimator
o e If using data augmentation, don’t let duplicates lie in
eI both training and testing sets
S e Also holds for validation set used for early stopping,
Algorithis tuning parameters, etc.
Other @ Validation set serves as part of training set, but not used
Rerionmanes for model building

Measures

27/53
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Confidence Intervals

oScE Let errorp(h) be 0-1 loss of hypothesis  on instances drawn

Lecture 3: according to distribution D. If

Regularization

R @ Test set V contains N examples, drawn independently
varyam of h and each other

Introduction N> 30

Measuring
Performance

Then with approximately 95% probability, errorp(h) lies in

Regularization

Estimating
eneralization h 1 _ h
sen‘ormlanée errorv (h) :l: 1.96\/err0rv( )( errorV( ))
Setting Goals N
e E.g. hypothesis i misclassifies 12 of the 40 examples in test
Algorithms set V:
Pero errory(h) = 12 =0.30
Performance Vv 20 .

Measures

Then with approx. 95% confidence, errorp(h) € [0.158,0.442]

28/53
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Confidence Intervals (cont’'d)

SSCE Let errorp(h) be 0-1 loss of i on instances drawn according

Lecture 3: to diStribUtion D. If

Regularization

S ard Vinod e Test set V contains N examples, drawn independently
Variyam of h and each other
Introduction e N >30

Measuring
Performance

Then with approximately c% probability, errorp(h) lies in

Regularization

Estimating
Generalization

Performance errory (h) + Ze \/

Setting Goals

errory(h)(1 — errory(h))
N

Confidence Intervals

Comparing

Kl N%: | 50% 68% 80% 90% 95% 98% 99%

Algorithms

Other z: | 067 1.00 128 1.64 196 233 2.58

Performance
Measures

Why?

29/53



Nebiaska errory(h) is a Random Variable

Lincoln

P Repeatedly run the experiment, each with different

Lecture 3: randomly drawn V' (each of size N)

Regularization

uhdedll  Probability of observing r misclassified examples:

Variyam 014 Binomial distribution for n =40,p =0.3
Introduction 0.12F ]
Measuring 0.1r b
Performance S 0.08}+ ]
Regularization & 0.06 b
Estimating 0.04+ i
Generalization
Performance 0.02 1
Setting Goals 0 L L L L L L
Confidence Intervals 0 5 10 15 20 25 30 35 40
Comparing N _
Learning P(r) = errorp(h)" (1 — errorp(h))N ="
Algorithms r
Other
Performance 0 . . .
Measures l.e., let errorp(h) be probability of heads in biased coin, then

P(r) = prob. of getting r heads out of N flips

30/53
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Lecture 3: N r N— N' N—
egularization 1-— = ————=p 1- :
Regul 1t (I" p( P) r'(N—r)'p( p)

Stephen Scott
and Vinod

Variyam Probability P(r) of r heads in N coin flips, if p = Pr(heads)

L:”““?“"” @ Expected, or mean value of X, E[X] (= # heads on N
easuring

Performance flips = # mistakes on N test exs), is

Regularization N

Estimating — . N _ .

Generalization E[X] - lP(l) - Np =N EI’TOI"’D(h)
Performance i=0

Setting Goals

Confidence Intervals ° Variance Of X is
Comparing
Learning Var(X) = E[(X — E[X])Z] == Np(l - p)

Algorithms
Other @ Standard deviation of X, oy, is

Performance
Measures

ox = /E[(X — E[X])?] = /Np(1 —p)

31/53
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Introduction

Measuring
Performance

Regularization

Estimating

Generalization

Performance
Setting Goals.
Confidence Intervals

Comparing
Learning
Algorithms

Other
Performance
Measures
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errory(h) = r/N is binomially distributed, with

Approximate Binomial Dist. with Normal

@ Mean fiyyor,n) = errorp(h) (i.e., unbiased est.)
@ standard deviation o, 1)

errorp(h)(1 — errorp(h))
Oerrory (h) = N

(increasing N decreases variance)

Want to compute confidence interval = interval centered at
errorp(h) containing ¢% of the weight under the distribution

Approximate binomial by normal (Gaussian) dist:
@ Mean fieyon,(ny = errorp(h)

@ standard deviation o,

errory(h)(1 — errory(h))
Oerrory (h) ~ N
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Normal distribution with mean 0, standard deviation 1
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Lecture 3: 035 1
Regularization 03 F 4
025 - |
Stephen Scott oa | |

and Vinod y

Variyam 0.15 - R
0.1 |

Introduction 0'0(5) ‘ ‘ ‘ ‘
3 2 1 0 1 2 3

Measuring
Performance

Regularization 1 X — M
Estimating p(x) = —F— eXp | —x%
Generalization V2ro2 2 o
Performance

Setting Goals
Confidence Intervals

@ The probability that X will fall into the interval (a,b) is

Comparing . b
Aigorthms given by [ p(x) dx

S @ Expected, or mean value of X, E[X], is E[X] = u
Performance @ Variance is Var(X) = o2, standard deviation is ox = o

Measures

33/53
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Introduction

Measuring
Performance

0

Regularization

SO 80% of area (probability) lies in 1 + 1.28c
Performance

% of area (probability) lies in £+ z. o

Confidence Intervals

Comparing

Learning
Algorithms

50% 68% 80% 90% 95% 98% 99%
0.67 1.00 128 164 196 233 2.58

c%:

2!

Other
Performance
Measures
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Weect=d Normal Probability Distribution (cont'd)

Lincoln

496/89 Can also have one-sided bounds:
ReLgeuCItaurEa::i.on 04 -
Stephen_ Scott 0032 L | )

and Vinod :

Variyam 025

02 r
Introduction 015 |
Measuring 0.1 |
Performance 005 -
Regularization 0 HH
-3 0 1 2 3

Estimating

Generalization

ST % of area lies < p + 7.0 or > p — 7.0, where

Setting Goals

!/ __
Confidence Intervals ZC = ZIOO— ( 100—(,)/2

Comparing
Learning
Algorithms

oer <%: | 50% 68% 80% 90% 95% 98% 99%
Performance Z: ] 00 047 084 128 1.64 205 2.33

Measures

35/53
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Confidence Intervals Revisited

SSCE If V contains N > 30 examples, indep. of 4 and each other
Lecture 3:

Ll Then with approximately 95% probability, errory (k) lies in

Stephen Scott
and Vinod

VP errorp(h) £ 1.96\/
Introduction

S Equivalently, errorp(h) lies in

Performance

errorp(h)(1 — errorp(h))
N

peoliandatel errorp(h)(1 — errorp(h))
Estimating errory(h) £1.96
Generalization N
Performance

Setting Goals.

Confidence Intervals

which is approximately

Comparing
Learning
Algorithms

Other errory(h) £ 1.96\/ ¥

Performance
Measures

errory(h)(1 — errory(h))

56/53 (One-sided bounds yield upper or lower error bounds)
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Central Limit Theorem

How can we justify approximation?

Consider set of iid random variables Y1, ..., Yy, all from
arbitrary probability distribution with mean p and finite
variance o2. Define sample mean Y = (1/N) Y%, ¥;

Y is itself a random variable, i.e., result of an experiment
(e.g., errors(h) = r/N)

Central Limit Theorem: As N — oo, the distribution
governing Y approaches normal distribution with mean
and variance o*/N

Thus the distribution of errorg(h) is approximately normal for
large N, and its expected value is errorp(h)

(Rule of thumb: N > 30 when estimator’s distribution is
binomial; might need to be larger for other distributions)
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CSCE
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Lecture 3:
Regularization

Stenhen Seot @ Pick parameter to estimate: errorp(h)

Gl (0-1 loss on distribution D)
_ @ Choose an estimator: errory (h)
L:”“”f“"” (0-1 loss on independent test set V)
easuring
FENENTES © Determine probability distribution that governs
regularzation estimator: errory,(h) governed by binomial distribution,
L approximated by normal when N > 30

Ferformance © Find interval (L, U) such that ¢% of probability mass

Setting Goals

Contozicelisrels falls in the interval

Comparing

Learning @ Couldhave L = —ocoor U = oo

G e Use table of z. or z/ values (if distribution normal)

Other
Performance

Measures

38/53



Weeet=l Comparing Learning Algorithms
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CSCE
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Lecture 3:
Regularization

Stephen Scott
and Vinod
Variyam

@ What if we want to compare two learning algorithms L!
Introduction and L? (e.g., two ANN architectures, two regularizers,
Measuind etc.) on a specific application?

Performance
Regularization @ Insufficient to simply compare error rates on a single
Estimating test set

Generalization

Performance @ Use K-fold cross validation and a paired 7 test
Comparing
Learning
Algorithms
K-Fold CV

Student's 1
Distribution

Other
Performance
Measures
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\ever=¥ 1 Fold Cross Validation

Lincoln

CSCE
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Lecture 3:
Regularization

MWW @ Partition data set X' into K equal-sized subsets
and Vinod XhXZa"'?XK’ Where ")(l| Z 30

Variyam
@ Forifrom1toK, do

— (Use A; for testing, and rest for training)
Performance o Vi — /Yz
Regularization Q7T =X \ X;
Esimating @ Train learning algorithm L' on T; to get h!
Porformance @ Train learning algorithm L2 on 7; to get h?
o — O Let p] be error of /} on test set V)

Learning a2
Algorithms e Di = Di Pi

e @ Error difference estimate p = (1/K) ¥ p;

Distribution

Introduction

Other
Performance
Measures
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Weeet=d 1 _Fold Cross Validation (contd)

Lincoln

CSCE . .
496/396 @ Now estimate confidence that true expected error

Lecture 3:

Regularization difference < 0
Stephen Scot = Confidence that L! is better than L? on learning task

At @ Use one-sided test, with confidence derived from
IEEE student’s ¢ distribution with K — 1 degrees of
Measuring freedom

Performance
Regularization @ With approximately ¢% probability, true difference of
Estimating expected error between L' and L? is at most

Generalization
Performance

Comparing pPtilck—15p
Learning

Algorithms

K-Fold GV Whel’e

Student's 1
Distribution K

Other s
Performance P
Measures

Il
Ja
N P
|
<
|
S
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Wevet= Student's ¢ Distribution (One-Sided Test)

Lincoln

CSCE df 0,600 0700 0,800 0900 0950 0975 0,990 0,995
496/896 1 0.325 077 1.376 3.078 B.31% 12.706_| 31,821 63.657
Lecture 3: 2 0.289 0.617 1.061 1.886 2.5920 4303 6,965 9,925
Regularization 3 0.277 0.584 0.978 1638 2.353 3.182 4,541 5841
] 0.271 0.560 0,541 1.533 7132 2.776 3747 4604

s 5 | 0267 | 0555 | 0920 | 1ds6 | 2015 | 2571 | 3365 | 403
Vet [ 0,265 0.555 0.006 1.440 1943 2,447 3143 3.707

7 0.263 0.549 0.896 1415 895 2,365 2.998 3.499

; 8 0.262 0.546 0.859 397 860 2,306 2.8%6 3.355
Introduction g 0,261 0.543 0.883 383 833 2,262 2,521 3.250
Measuring 10 0, 260 0,542 0,379 372 812 2228 2764 3. 169
Performance 11 0.260 0.540 0.876 1.363 1.796 2.201 2.718 3.106
12 0.259 0.539 0.873 1.356 1.782 2.179 2.681 3.055

Regularization 13 0,250 0,538 0.870 1.350 Li71 2,160 2,650 3.012

Estimating

Sl |f p + 1.1 5, < 0 our assertion that L! has less error than

Performance

Gomparing L? is supported with confidence ¢

Learning

A So if K-fold CV used, compute p, look up #. x— and check if
Distouton p < —tek—15p

Other . .

Taec M  One-sided test; says nothing about 7.? over L!

Measures
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CSCE
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Lecture 3:
Regularization

n i H 1
Stephen Scaft @ Say you want to show that learning algorithm L

Variyam performs better than algorithms L%, L3, L*, L’
Introduction @ If you use K-fold CV to show superior performance of
easuring L' over each of L2, ..., > at 95% confidence, there’s a
errormance .
Foaularizat 5% chance each one is wrong
egularization
Estimating = There’s an over 18.5% chance that at least one is
Generalization
Performance wrong
i = Our overall confidence is only just over 81%
floorme @ Need to account for this, or use more appropriate test

Student’s 1
Distribution

Other
Performance
Measures
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Weeet=l \ore Specific Performance Measures

Lincoln

CSCE
496/896
Lecture 3:

geutanzaicy @ So far, we've looked at a single error rate to compare

ST SR hypotheses/learning algorithms/etc.

varyam @ This may not tell the whole story:
Introduction e 1000 test examples: 20 positive, 980 negative
Measuring e h! gets 2/20 pos correct, 965/980 neg correct, for
Performance accuracy of (2 + 965)/(20 + 980) = 0.967
Regularization e Pretty impressive, except that always predicting
ST negative yields accuracy = 0.980
Performance e Would we rather have 42, which gets 19/20 pos correct
Eé’;?ﬁianrgmg and 930/980 neg, for accuracy = 0.949?
Algorithms e Depends on how important the positives are, i.e.,
Other frequency in practice and/or cost (e.g., cancer
s diagnosis)

Confusion Matrices
ROC Curves

Precision-Recall
Curves

44/53
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Stephen Scott
and Vinod
Variyam

Introduction

Measuring
Performance

Regularization

Estimating
Generalization
Performance

Comparing
Learning
Algorithms

Other
Performance

Measures
Confusion Matrices
ROC Curves

Precision-Recall
Curves
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Confusion Matrices

Break down error into type: true positive, etc.

Predicted Class

True Class Positive \ Negative | Total
Positive tp : true positive | fn : false negative
Negative fp : false positive | m : true negative

Total ! !

p

n

@ Generalizes to multiple

classes

@ Allows one to quickly
assess which classes

Prediction values

are missed the most, and
into what other class

Confusion Matrix

1
0.8
0.6
0.4
0.2
[
5 10 15 20

True values

N0 o w®o &N

N oo o
S ®» o
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Introduction

Measuring
Performance

Regularization
Estimating

Generalization
Performance

Comparing
Learning
Algorithms

Other
Performance

Measures
Confusion Matrices
ROC Curves

Precision-Recall
Curves
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ROC Curves

@ Consider classification via ANN -+ linear threshold unit
@ Normally threshold f(x;w,b) at 0, but what if we
changed it?

@ Keeping w fixed while changing threshold = fixing
hyperplane’s slope whil\e moving along its normal vector

®-. S predall +
N . PY [ ] S

-0 \\

o
@) [ ]
b ~0

. O~
pred all - ‘Q

@ Get a set of classifiers, one per labeling of test set

@ Similar situation with any classifier with confidence
value, e.g., probability-based



e ROC Curves

B Plotting 7 versus fp

CSCE
496/896
Lecture 3:

Regularization @ Consider the “always —” hyp. What is fp? What is p?
e What about the “always +” hyp?

and Vinod

e @ In between the extremes, we plot TP versus FP by
Introduction sorting the test examples by the confidence values
Periomance
Regularization Ex | Confidence | label || Ex | Confidence | label
Genoraliaion X1 169.752 + X6 —12.640 -
Performance X2 1 09200 + X7 _29 124 _
ot x3 | 19.210 — || x| -83222 | -
Algoriams x4 1.905 + || x | —91.554 +
e Xs —2.75 + | x| —128212 | —
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Performance
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Other
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ROC Curves

Plotting #p versus fp (contd)




e ROC Curves

Bl Convex Hull

CSCE
496/896
Lecture 3:
Regularization

Stephen Scott oo
and Vinod
Variyam @naive Bayes
[ J

Introduction

Measuring
Performance

Regularization

Estimating
Generalization

Generalizalic @ The convex hull of the ROC curve yields a collection of
Sa—— classifiers, each optimal under different conditions

Learning

i e If FP cost = FN cost, then draw a line with slope |N|/|P|
other at (0, 1) and drag it towards convex hull until you touch
Performance it; that’s your operating point

Measures

———— e Can use as a classifier any part of the hull since can
pwm—— randomly select between two classifiers
Curves
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Performance

Comparing
Learning
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Other
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Confusion Matrices
ROC Curves

Precision-Recall
Curves
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ROC Curves

Convex Hull

@naive Bayes

@ Can also compare curves against “single-point”
classifiers when no curves

e In plot, ID3 better than our SVM iff negatives scarce; nB
never better
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ROC Curves

Miscellany

@ What is the worst possible ROC curve?

@ One metric for measuring a curve’s goodness: area
under curve (AUC):

Zx+€P ZX,EN I(h(x-‘r) > h(x—))
|[PIIN|

i.e., rank all examples by confidence in “+” prediction,
count the number of times a positively-labeled example
(from P) is ranked above a negatively-labeled one (from
N), then normalize
e What is the best value?
e Distribution approximately normal if |P|, |[N| > 10, so can
find confidence intervals

e Catching on as a better scalar measure of performance
than error rate

@ Possible (though tricky) with multi-class problems



hLctey Precision-Recall Curves

Lincoln

CSCE
496/896

et & Consider information retrieval task, e.g., web search

Regularization

Stephen Scott
and Vinod
Variyam

Introduction

Measuring
Performance

Regularization
Estimating

Generalization
Performance

Comparing

Learning .
Algorithms ( Alldocumenis v relevant X notrelevant ) retrieved

Other precision = 1p/p’ = fraction of retrieved that are positive

Performance
ol recall = 1p/p = fraction of positives retrieved
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ROC Curves
Precision-Recall

@ As with ROC, vary

Precision-Recall Curves (cont'd)

threshold to trade *
precision and recall
@ Can compare curves
based on containment
@ More suitable than ROC
for large numbers of e g e
negatives

@ Use Fz-measure to combine at a specific point, where
5 weights precision vs recall:

precision - recall
(B? - precision) + recall

Fg=(1+p%)
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