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@ In any learning problem, need to be able to quantify
performance of algorithm

@ In supervised learning, we often use loss function (or
error function) J for this task

@ Given instance x with true label y, if the learner’s
prediction on x is y, then
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@ Machine learning can generally be distilled to an
optimization problem

@ Choose a classifier (function, hypothesis) from a set of
functions that minimizes an objective function

@ Clearly we want part of this function to measure
performance on the training set, but this is insufficient
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e @ Supervised Learning: Algorithm given labeled training

data and infers function (hypothesis) from a family of
functions (e.g., set of all ANNs) that is able to predict
well on new, unseen examples
e Classification: Labels come from a finite, discrete set
o Regression: Labels are real-valued

@ Unsupervised Learning: Algorithm is given data

without labels and is asked to model its structure

o Clustering, density estimation
@ Reinforcement Learning: Algorithm controls an agent
that interacts with its environment and learns good
actions in various situations
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@ 0-1 Loss: J(y,y) = 1ify # 9, 0 otherwise
@ Square Loss: J(v,9) = (y — 3)°

@ Cross-Entropy: J(y,9) = —ylny— (1 —y)In(1l —3)
(y and y are considered probabilities of a ‘1’ label)
o Generalizes to k classes (i* = correct class):
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k
J.9) ==Y yilnyi=—Inj:
i=1

Estimating _
s (v is one-hot vector; y; is predicted prob. of class i)
@ Hinge Loss: J(y,y) = max(0,1 —yy)

(used sometimes for large margin classifiers like SVMs)
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@ Given a loss function 7 and a training set X, the total
loss of the classifier h on X is

errory(h) = Z T (Vxs 9x) 5

xeX
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@ Sufficiently sophisticated learners (decision trees,
multi-layer ANNs) can often achieve arbitrarily small (or
zero) loss on a training set

@ A hypothesis (e.g., ANN with specific parameters) &
overfits the training data X’ if there is an alternative
hypothesis 4’ such that
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@ More importantly, the learner needs to generalize well:
Given a new example drawn iid according to unknown
probability distribution D, we want to minimize 4’s
expected loss:
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@ Is minimizing training loss the same as minimizing
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@ Generally, if the set of functions # the learner has to
choose from is complex relative to what is required for
correctly predicting the labels of X, there’s a larger
chance of overfitting due to the large number of “wrong”
choices in H

e Could be due to an overly sophisticated set of functions
@ E.g., can fit any set of n real-valued points with an
(n — 1)-degree polynomial, but perhaps only degree 2 is
needed
@ E.g., using an ANN with 5 hidden layers to solve the
logical AND problem
o Could be due to training an ANN too long
@ Over-training an ANN often leads to weights deviating
far from zero
@ Makes the function more non-linear, and more complex

@ Often, a larger data set mitigates the problem
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@ Can re-start and track best one on separate validation
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@ Q(0) = (1/2)||6]3, i.e., sum of squares of network’s
weights

@ Since 0 = w, this becomes

@ Still want to minimize training loss, but balance it
against a complexity penalty on the parameters used:
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Regul rization \_7(07 X,y) = J(G, X,y) + aQ(G)

C erfitting

Measuring
Performance

Tw; X,y) = (a/2)w'w + T (w; X, y)
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@ As weights deviate from zero, activation functions
become more nonlinear, which is higher risk of
overfitting

@ «a € [0,00) weights loss J against penalty
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@ Q(6) = 0|, i.e., sum of absolute values of network’s
weights
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and Vinod — and Vinod
-
Variyam e X

Variyam

EE A AN
Introducti 7/ T~ \ INncanen ~
o) N T X,3) = alwly + T (w; X.3)
g / N\ \ \ Measuring
Performance + T + Performance X X ) . X
Regularization N > . / /I Regularization @ As with L? regularization, penalizes large weights
T, @ Unlike L? regularization, can drive some weights to zero
w1

e Sparse solution
. . . . o Sometimes used in feature selection (e.g., LASSO
@ w* is optimal for 7, 0 optimal for regularizer algorithm)

Estimating @ 7 less sensitive to wy, so w (optimal for .7) closer to w;
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o If H# powerful and X small, then learner can choose
Stephen Scott some h € H that fits idiosyncrasies or noise in data
and Vinod

Variyam @ Deep ANNs would like to have at least thousands or
' tens of thousands of data points
Introduction . . i i . .
- e In cla_s.smqanon of high-dimensional data (e.g., image
Performance classification), want learned classifier to tolerate
transformations and noise
= Can artificially enlarge data set by duplicating existing
instances and applying transformations
@ Translating, rotating, scaling
@ Don't change the class, e.g., “b” vs “d” or “6” vs “9”
o Don’t let duplicates lie in both training and testing
Estimating sets

Generalization . . . . .
R = Can also apply noise injection to input or hidden layers
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@ Imagine if, for a network,

o @ If multiple tasks share D Id I
ecture 3: ecture 3:
Regularization generic parameters, Regularization we couk av.er:age rc:ver 2 @ow a{e o}e 00
Stephen Scot initially process inputs Stephen Scot networks with eac o R il ofo
and Vinod . and Vinod subset of nodes deleted
Variyam via shared nodes, then Variyam O

@ Analogous to bagging, 3
where we average over o"c
ANNS trained on random (- ()
samples of X

\ ' do final processing via
ntroduction .
A task-specific nodes Q
Performance .
@ Backpropagation works

R [ \{ . .
S as before with multiple
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Olp.er®

output nodes ehared @ In each training iteration, G;D ©
i ®
@ Serves as a regularizer sarr:ple a I’ahr?drc:m bit
R since parameter tuning vector p, whic

determines which nodes
are used (e.g.,

P(u; = 1) = 0.8 for input
unit, 0.5 for hidden unit)

@ When training done,
re-scale weights by
Pl =1)

Others

of shared nodes is based
on backpropagated error
from multiple tasks
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e Regularization \BeNe) Regularization
BRIl Batch Normalization (loffe and Szegedy 2015) Bl Other Approaches
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i covariate shift, where - O N .
Requiarization changing parameters of | Femec o iamind Regurizaton o Parameter Tying: If two learners are learning the
S S | - ch Output: {y; = BN, 5(z)} T same task but different scenarios (distributions, etc.),
and Vinod ayer : changes P o and Vinod can tie their parameters together
Variyam P . . s — >z // mini-batch mean Variyam
d'St”p“t'on of inputs to = o If wi are weights for task A and w(® are weights for
Introduction layer i +1 oh oo (@i —pe)'  //mini-batch variance Introduction task B, then can use regularization term
Moasuing © Relatedto Bzt normaie EE fEl(w(*‘; W) = H}v("; - vg(‘; 5 o
. z-normalization, where | ;. aip=N ) #scalcandsnin . ° £.. A1S supervised and 5 Is unsupervised
. @ Parameter Sharing: When detecting objects in an

Dropout

Batch Normalization
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kit

one subtracts sample

‘Algorithm 1: Batch Normalizing Transform, applicd to

activation z over a mini-batch.

mean and scales with
standard deviation
@ v, 3 learnable parameters

@ Allows use of higher learning rates, possibly speeding
convergence

@ In some cases, reduces/eliminates need for dropout
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Others
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image, the same recognizer should apply invariant to
translation
e Train a single detector (subnetwork) for an object (e.g.,
cat) by training full network on multiple images with
translated cats, where the cat detector subnets share
parameters (single copy, used multiple times)
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@ Before setting up an experiment, need to understand
exactly what the goal is
o Estimate the generalization performance of a
hypothesis
e Tuning a learning algorithm’s parameters
o Comparing two learning algorithms on a specific task
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@ Sparse Representations: Instead of penalizing large
weights, penalize large outputs of hidden nodes:

Introduction Introduction

Perirmance Perirmance o Etc.
Regularization JO;X,y)=T(0; X,y) +aQ(h) , Regularization @ Will never be able to answer the question with 100%
5 Estimating Certainty

Generalization
Performance
Setting Goals
Gonfid

where h is the vector of hidden unit outputs

o Due to variances in training set selection, test set
selection, etc.

o Will choose an estimator for the quantity in question,
determine the probability distribution of the estimator,
and bound the probability that the estimator is way off

o Estimator needs to work regardless of distribution of
training/testing data
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Let errorp(h) be 0-1 loss of hypothesis /1 on instances drawn
according to distribution D. If

what we determine is limited to the application that we
SlophanSeat are studying Stephen Scoft @ Test set V contains N examples, drawn independently
VAL o E.g., if ANN, better than ANN, on speech recognition, V7D of 1 and each other
e that means nothing about video analysis e e N>130
Measuring @ In planning experiments, need to ensure that training Measuring B

Performance Performance

data not used for evaluation

o l.e., don’t test on the training set!
Estimating

Generalization o Will bias the performance estimator
Performance

Then with approximately 95% probability, errorp(h) lies in

Regularization Regularization

Estimating
Generalization
Performance

errory(h)(1 — errory(h))

errory(h) £ 1 .96\/

o If using data augmentation, don’t let duplicates lie in suto s N
= both training and testing sets Co i s . ) . )
Gomparing @ Also holds for validation set used for early stopping, S E.g. hypothesis i misclassifies 12 of the 40 examples in test
Algorithms tuning parameters, etc. Aigorthms set V:
oth @ Validation set serves as part of training set, but not used ot 12
Pé:firrmance for model building P g Pé:firrmance errory (h) = E =0.30

Measures Measures

Then with approx. 95% confidence, errorp(h) € [0.158, 0.442]
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gee= Let errorp(h) be 0-1 loss of h on instances drawn according
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LD, to distribution D. If

Regularization

Repeatedly run the experiment, each with different
randomly drawn V (each of size N)

S o o Test set V contains N examples, drawn independently

of h and each other

Stephen Scott

lophen So Probability of observing r misclassified examples:

Variyam Variyam Binomial distribution for n =40,p =03

0.14 T —

Introduction e N >30 Introduction 0.12f
Measuring - Measuring 0.1
Performance . . - . . Performance = 008}

0, =
Requiaization Then with approximately c% probability, errorp(h) lies in Requiarization S|
Estimating Estimating 0.04F
Generalization errory h)(1 — errory h Generalization 002+
F::'formarr‘wce errory (h) + Ze \/ ( )( N ( )) Pe::‘fir:'n:nce 0 N A . . . .
Conidence itevas Conidence itervas 0 5 10 15 20 25 30 35 40
Comparing Comparing P( ) o N (h)r (1 (h))Nir
[ay N%: | 50% 68% 80% 90% 95% 98% 99% [ay r)=\, | errorp errorp
Other z: | 0.67 1.00 128 1.64 1.96 233 2.58 oher

Performance
Measures

Performance
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l.e., let errorp(h) be probability of heads in biased coin, then
Why? P(r) = prob. of getting r heads out of N flips
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Binomial Probability Distribution Approximate Binomial Dist. with Normal
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errory(h) = r/N is binomially distributed, with

L49?c“892 N N N' N L49?c“892
ecture 3: re1 —r . re1 —r ecture 3: . .
Regularization (}") P (1 p) = 7’.'(1\] — r)' P (1 p) Regularization @ mean /’Lermrv(h) — errorp(h) (|.e., unbiased eSt.)
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@ standard deviation o, (i)

_ \/errorp(h)(l — errorp(h))
N

(increasing N decreases variance)

Introduction Introduction

eseu @ Expected, or mean value of X, E[X] (= # heads on N Terrory ()
leasuring

Performance flips = # mistakes on N test exs), is

Regularization N

[Zsilweig E[X] Z iP(i) = Np = N - errorp(h)

Generalization
Performance i=0
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Regularization

Estimating
Generalization
Performance
Setting Goals
Confidence Intervals

Want to compute confidence interval = interval centered at
errorp(h) containing ¢% of the weight under the distribution

Conticence Itervls @ Variance of X is
Comparing

Learning Var(X) = E[(X — E[X])z] = Np(l —P)

Algorithms
Other @ Standard deviation of X, oy, is

Performance
Measures

Approximate binomial by normal (Gaussian) dist:
© MEAN Lieryor, (1) = errorp(h)

@ standard deviation o, )

errory(h)(1 — errory(h))
Terrory (h) =~
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Learning
Algorithms
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ox = /E[(X — E[X])’] = Np(1 —p)

N
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Normal Probability Distribution Normal Probability Distribution (cont’d)

CSCE o4 Normal distribution with mean 0, standard deviation 1 CSCE
496/896 N 496/896
Lecture 3: 035 Lecture 3: 035 - q
Regularization 03 Regularization 03 | 4
025
Stephen Scott 02 Stephen Scott 025 - 1
and Vinod - and Vinod 02 b i
Variyam 015 Variyam '
0.1 0.15 - 1
Introduction 00 Introduction 0.1 ]
0 ) 005 | 1
Measuring 3 2 - 0 ! 2 3 Measuring o
Performance Performance 0 -
-3 -2 0 1 2 3

Regularization

) 1 1 (x — /1)2
imatin X) = €X] 5
ése(neraathzganon b \% 27T0'2 P 2 o

Performance

Regularization

Estimating
Generalization
Performance
Setting Goals
Confidence Intervals

80% of area (probability) lies in u & 1.280

¢% of area (probability) lies in u +z. o

@ The probability that X will fall into the interval (a,b) is

Comparing . b Comparing
i g“’e” by f, p(x) dx e of , i c%: | 50% 68% 80% 90% 95% 98% 99%
oner ® Expected, or mean value of X, E[x], is E[X] = oner % | 067 100 128 164 196 233 258
Performance @ Variance is Var(X) = o2, standard deviation is oy = ¢ Performance

Measures Measures
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If V contains N > 30 examples, indep. of 4 and each other
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0.35
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Then with approximately 95% probability, errory(h) lies in
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Introduction 0.15
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errorp(h)(1 — errorp(h))
N

errorp(h) £ 1 .96\/

Introduction

Measuring 0.1
Performance 005

Regularization 0

Measuring
Performance

Equivalently, errorp(h) lies in

Regularization

errorp(h)(1 — errorp(h))
N

0

Estimating Estimating
Generalization
Performance
Setting Goals
Confidence Intervals

errory(h) £ 1 .96\/

Generalization

G % of area lies < p + 7.0 or > pu — 7.0, where
cowensd 7= 2100 (100 )2

which is approximately

Comparing
Learning
Algorithms

ot %: | 50% 68% 80% 90% 95% 98% 99%
00 047 084 128 164 205 233

/.
Measures Ze-

Comparing
Learning
Algorithms

errory(h)(1 — errory(h))
N

errory(h) £ 1.96\/
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Performance
Measures

(One-sided bounds yield upper or lower error bounds)

35/53 36/53




WEvet-l Central Limit Theorem Nefiagka

Lincoln

Calculating Confidence Intervals

Pt How can we justify approximation?

Lecture 3:

Sl Consider set of iid random variables Yy, ..., Yy, all from
paiaksll  arbitrary probability distribution with mean p and finite
V7D variance o2. Define sample mean Y = (1/N) Y1, V;

Introduction
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@ Pick parameter to estimate: errorp(h)
(0-1 loss on distribution D)

@ Choose an estimator: errory (h)
(0-1 loss on independent test set V)

© Determine probability distribution that governs
estimator: errory(h) governed by binomial distribution,
approximated by normal when N > 30

@ Find interval (L, U) such that ¢% of probability mass
falls in the interval
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Introduction

Y is itself a random variable, i.e., result of an experiment
Measuring
Performance (eg, err()rs(h) = r/N)

Regularization

Measuring
Performance

Regularization

S Central Limit Theorem: As N — oo, the distribution
Generalizalion governing Y approaches normal distribution with mean p
and variance o%/N

Estimating
Generalization
Performance

Comparing
Learning
Algorithms

Compad Thus the distribution of errors(h) is approximately normal for

Leam_\ng . g
HlaTE large N, and its expected value is errorp(h)
Other

Rl (Rule of thumb: N > 30 when estimator’s distribution is
binomial; might need to be larger for other distributions)

e Could have L = —cc or U =
o Use table of z. or Z. values (if distribution normal)

Other
Performance
Measures
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@ Partition data set X into K equal-sized subsets
X, X, Xk, where ‘.)(1| > 30

@ Forifrom1to K, do
(Use A; for testing, and rest for training)
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@ What if we want to compare two learning algorithms L!
Introduction and L? (e.g., two ANN architectures, two regularizers,

Introduction

i etc.) on a specific application? Measuring 0 V-4

Regularization @ Insufficient to simply compare error rates on a single Regularization Q@ Ti=X\4X
@ Train learning algorithm L! on 7T; to get A}
O Train learning algorithm L? on 7; to get i?
@ Let ] be error of /£, on test set V;
@ pi=pl -}

© Error difference estimate p = (1/K) Efp,-

Estimating
Generalization
Performance

Estimating test set

Generalization

Performance @ Use K-fold cross validation and a paired 7 test
Comparing

Learning

Algorithms

Comparing
Learning
Algorithms

n

Other
Performance
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K-Fold Cross Validation (cont'd) Student’s ¢ Distribution (One-Sided Test)

CSCE . ) CSCE df __ 0.600 0700 0.800 _ 0.900 _ 0.950 _ 0.975 _ 0.990 _ 0.995
iy @ Now estimate confidence that true expected error (ERED 1 0325 ] 0727 | 137 078 | 6314 | 12706 | 31821 | 63.657

b . . 2 0.289 0.617 1.06 .886 .920 4.303 6.965 9.925
Regularization difference < 0 Regularization 3 0.277 | 0584 | _0.97 638 | 2353 | 3.8 | 4541 | 584l
) . , 3 0271 | 0565 | 0.4 553 152 776 747 | a.604

SlophanSeat = Confidence that L! is better than L? on learning task Stepren Scot 5 0.267 | 055 | 0.9 %6 | 2015 | 2571 | 3365 | 4032
Variyam . . . . Variyam [ 0.26! 0.553 £ 440 943 447 143 07
@ Use one-sided test, with confidence derived from - o263 L 0 1 oo EE o Wk 2

Introduction student’s 1 distribution with K — 1 degrees of Introduction 3 0.261 | _0.54 0.583 383 533 262 521 250
a ; 10 0.260 0.54 0.87 372 812 228 764 .169
Ly freedom ARERLI 11 0.260 | 0540 | 0.87 363 796 201 718 106
. . o . . 12 [T0259 | 0539 7 356 762 179 681 055

Regularization @ With approximately ¢% probability, true difference of Regularization T3 L0259 | 0538 | 0870 350 71 160 | 2650 012

Estimating expected error between L' and L? is at most

Estimating
Generalization
Performance

Generalization
Performance

Comparing p+ [L‘,Kfl Sp

If p+ 1. xk—1 5, < 0 our assertion that L! has less error than
L? is supported with confidence ¢

Comparing
Learning
Algorithms
K-Fold V.
Students ¢

Learning
Algorithms

‘oo where So if K-fold CV used, compute p, look up 7. x—1 and check if

p<- tc,K—l Sp

E‘ n K Distribution
1 2
Oth = R Othy . B
Ptz =\ KK 1) §  (pi—p) Wl One-sided test; says nothing about L? over L!
Measures i=1 Measures
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Variyam

@ Say you want to show that learning algorithm L!
performs better than algorithms L2, L3, L4, L°

If you use K-fold CV to show superior performance of
L' over each of L2, ..., L’ at 95% confidence, there’s a
- 5% chance each one is wrong

Estimating = There’s an over 18.5% chance that at least one is
Generalization
wrong

Performance
Our overall confidence is only just over 81%
@ Need to account for this, or use more appropriate test

Introduction ]

Measuring
Performance

Comparing
Learning =
Algorithms

Students ¢
Distribution
Other
Performance
Measures
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Break down error into type: true positive, etc.

Stephen Scott

and Vinod Pl’edicied C|ass

vaam True Class Positive \ Negative | Total
sl Positive tp : true positive | fu : false negative | p
ARERL Negative fp : false positive | m : true negative n
Regularization TOtal p/ }’l/ N

Estimating
Generalization
Performance

Confusion Matrix

1
08
06
04
02
o
s 0 15 2

True values

@ Generalizes to multiple
classes

@ Allows one to quickly
assess which classes
are missed the most, and
into what other class

Comparing
Learning
Algorithms

Other
Performance
Measures
Confusion Matrices

Prediction values

ROC Curves

Plotting #p versus fp
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@ Consider the “always —” hyp. What is fp? What is ip?
What about the “always +” hyp?

Stephen Scott
and Vinod

D @ In between the extremes, we plot TP versus FP by
Introduction sorting the test examples by the confidence values
Perirmance
Regularization Ex | Confidence | label || Ex | Confidence | label
st ig X1 169.752 + X6 —12.640 -
Performance X 109.200 + X7 —29.124 —
Eggsﬁgng X3 19.210 — X8 —83.222 —
Algorithms X4 1.905 + Xo —91.554 +
ot - xs ~2.75 + | x| —128212 | —

Measures
Gonfusion Matrices
ROC Curves
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More Specific Performance Measures
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@ So far, we've looked at a single error rate to compare
hypotheses/learning algorithms/etc.
@ This may not tell the whole story:
o 1000 test examples: 20 positive, 980 negative
e h' gets 2/20 pos correct, 965/980 neg correct, for
accuracy of (2 4+ 965)/(20 + 980) = 0.967
o Pretty impressive, except that always predicting
negative yields accuracy = 0.980
e Would we rather have 1?, which gets 19/20 pos correct
and 930/980 neg, for accuracy = 0.949?
o Depends on how important the positives are, i.e.,
frequency in practice and/or cost (e.g., cancer
diagnosis)

Stephen Scott
and Vinod
Variyam
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Performance
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ROC Curves
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@ Consider classification via ANN + linear threshold unit

@ Normally threshold f(x;w, b) at 0, but what if we
changed it?

@ Keeping w fixed while changing threshold = fixing
hyperplane’s slope while moving along its normal vector

Stephen Scott
and Vinod
Variyam

Introduction

Measuring
Performance

Regularization

Estimating
Generalization
Performance

Comparing
Learning
Algorithms

o

pred all 5\(\)

Other
Performance
Measures

Confusion Matrices.

@ Get a set of classifiers, one per labeling of test set

@ Similar situation with any classifier with confidence
value, e.g., probability-based

ROC Curves

Plotting #p versus fp (cont'd)
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Precision-Recall
Curves

ROC Curves

Convex Hull

@ The convex hull of the ROC curve yields a collection of
classifiers, each optimal under different conditions
e If FP cost = FN cost, then draw a line with slope |N|/|P|
at (0, 1) and drag it towards convex hull until you touch
it; that's your operating point
e Can use as a classifier any part of the hull since can
randomly select between two classifiers

ROC Curves

Miscellany

@ What is the worst possible ROC curve?
@ One metric for measuring a curve’s goodness: area
under curve (AUC):

Deiep e en I(h(xy) > hix-))
|P|IN]

i.e., rank all examples by confidence in “+” prediction,
count the number of times a positively-labeled example
(from P) is ranked above a negatively-labeled one (from
N), then normalize
o What is the best value?
o Distribution approximately normal if |P|,|N| > 10, so can
find confidence intervals
e Catching on as a better scalar measure of performance
than error rate

@ Possible (though tricky) with multi-class problems

Precision-Recall Curves (cont'd)

@ As with ROC, vary
threshold to trade
precision and recall

@ Can compare curves
based on containment

@ More suitable than ROC ;
for large numbers of N
negatives

@ Use Fg-measure to combine at a specific point, where
B weights precision vs recall:

precision - recall

Fs=(1+ 8
p=01+5) (B2 - precision) + recall

ROC Curves

Convex Hull
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@ Can also compare curves against “single-point”
classifiers when no curves

Comparing
Learning
Algorithms

o In plot, ID3 better than our SVM iff negatives scarce; nB
never better
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Consider information retrieval task, e.g., web search

Stephen Scott
and Vinod
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Introduction

frue .' fase
v positive v : positive

Measuring
Performance

Regularization

Estimating
Generalization
Performance

Comparing
Learning

Algorithms QO Alldocuments v relevant £ not relevant Q retrieved

precision = 1p/p’ = fraction of retrieved that are positive

Other

Performance

Measures
Gonf

ROC

recall = ip/p = fraction of positives retrieved

n Matrices

Precision-Recall
Curves



