

Nebraska Lincoln	Measuring Performance					
CSCE 496/896 Lecture 3: Regularization		C 49 Leo Regu				
Stephen Scott and Vinod Variyam	 In any learning problem, need to be able to quantify performance of algorithm 	Steph and Va				
Introduction Measuring Performance Loss Overfitting Regularization	 In supervised learning, we often use loss function (or error function) J for this task Given instance x with true label y, if the learner's prediction on x is ŷ, then 	Introd Meas Perfou Overfitt Regu				
Estimating Generalization Performance	$\mathcal{J}(y,\hat{y})$	Estim Gene Perfor				
Comparing Learning Algorithms	is the loss on that instance	Comp Learn Algori				
Other Performance Measures		Other Perfor Meas				

6/53

Nebraska	Examples of Loss Functions
CSCE 496/896 Lecture 3: Regularization Stephen Scott and Vinod Varyam Introduction Measuring Performance Los Destimating Generalization Estimating Generalization Estimating Generalization Estimating Comparing Learning Algorithms Other Performance Measures	 O-1 Loss: J(y, ŷ) = 1 if y ≠ ŷ, 0 otherwise Square Loss: J(y, ŷ) = (y − ŷ)² Cross-Entropy: J(y, ŷ) = −y ln ŷ − (1 − y) ln (1 − ŷ) (y and ŷ are considered probabilities of a '1' label) Generalizes to k classes (i* = correct class): J(y, ŷ) = −∑_{i=1}^k y_i ln ŷ_i = −ln ŷ_{i*} (y is one-hot vector; ŷ_i is predicted prob. of class i) Hinge Loss: J(y, ŷ) = max(0, 1 − y ŷ) (used sometimes for large margin classifiers like SVMs)

Nebraska

egulariza

timating eneraliza

Measuring Performance Training Loss

• Given a loss function \mathcal{J} and a training set \mathcal{X} , the total loss of the classifier *h* on \mathcal{X} is

$$error_{\mathcal{X}}(h) = \sum_{\mathbf{x} \in \mathcal{X}} \mathcal{J}(y_{\mathbf{x}}, \hat{y}_{\mathbf{x}}) ,$$

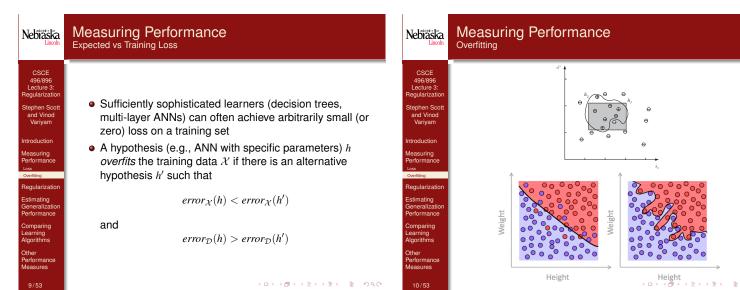
where y_x is x's label and \hat{y}_x is h's prediction

Nebraska Linoh Measuring Performance Expected Loss

• More importantly, the learner needs to **generalize** well: Given a new example drawn iid according to unknown probability distribution \mathcal{D} , we want to minimize *h*'s **expected loss**:

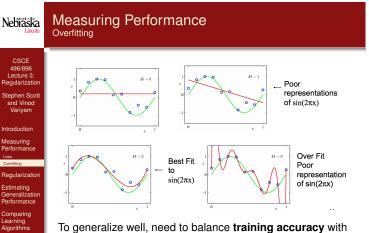
$$error_{\mathcal{D}}(h) = \mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}\left[\mathcal{J}(\boldsymbol{y}_{\boldsymbol{x}}, \hat{\boldsymbol{y}}_{\boldsymbol{x}})\right]$$

 Is minimizing training loss the same as minimizing expected loss?



・ロト・西ト・ヨト・ヨー もんの

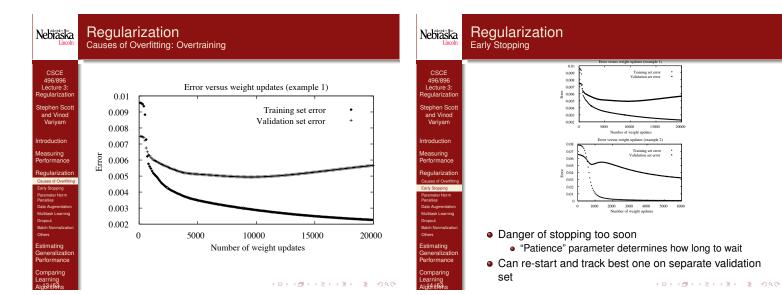
equlariza

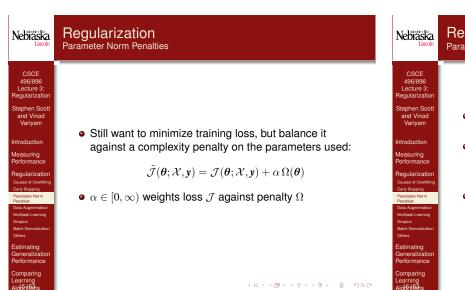


Io generalize well, need to balance training accuracy with simplicity

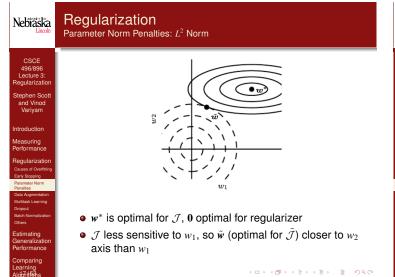
・ロト・1日下・日下・日、日、今へで

Nebraska	Regularization Causes of Overfitting
CSCE 496/896 Lecture 3: Regularization Stephen Scott and Vinod Variyam	 Generally, if the set of functions H the learner has to choose from is complex relative to what is required for correctly predicting the labels of X, there's a larger chance of overfitting due to the large number of "wrong" choices in H
Introduction Measuring Performance Regularization Causes of Coverting Early Stopping Early Stopping Early Stopping Early Stopping Droput Batch Normalization Ones Estimating Generalization	 Could be due to an overly sophisticated set of functions E.g., can fit any set of <i>n</i> real-valued points with an (<i>n</i> - 1)-degree polynomial, but perhaps only degree 2 is needed E.g., using an ANN with 5 hidden layers to solve the logical AND problem Could be due to training an ANN too long Over-training an ANN often leads to weights deviating far from zero Makes the function more non-linear, and more complex
Performance Comparing Learning Aldor thins	Often, a larger data set mitigates the problem





braska Lincoln	Regularization Parameter Norm Penalties: L ² Norm
CSCE 496/896 ecture 3: gularization	
phen Scott nd Vinod Variyam	• $\Omega(\theta) = (1/2) \ \theta\ _2^2$, i.e., sum of squares of network's weights
oduction asuring	• Since $\theta = w$, this becomes
formance gularization ses of Overfitting	$\tilde{\mathcal{J}}(\boldsymbol{w};\boldsymbol{\mathcal{X}},\boldsymbol{y}) = (\alpha/2)\boldsymbol{w}^{\top}\boldsymbol{w} + \mathcal{J}(\boldsymbol{w};\boldsymbol{\mathcal{X}},\boldsymbol{y})$
y Stopping meter Norm alfies a Augmentation itask Learning cout h Normalization	 As weights deviate from zero, activation functions become more nonlinear, which is higher risk of overfitting



Nebraska Lincoln	Regularization Parameter Norm Penalties: L ¹ Norm
CSCE 496/896 Lecture 3: Regularization Stephen Scott and Vinod Variyam Introduction Measuring Performance Regularization Causes of overliting Exty Morenal Data Augmentation Multiask Learning Dispate Multiask Learning Dispate Contemport	 Ω(θ) = θ ₁, i.e., sum of absolute values of network's weights <i>J̃</i>(w; X, y) = α w ₁ + J(w; X, y) As with L² regularization, penalizes large weights Unlike L² regularization, can drive some weights to zero Sparse solution Sometimes used in feature selection (e.g., LASSO algorithm)
Comparing Learning Algorithms	- ロ > (西 > (三 > (三 >)を、 のへの

< ロ > ・ (部 > ・ 注 > ・ 注) ・ (注) ・ (ご) へ()

Regularization Data Augmentation

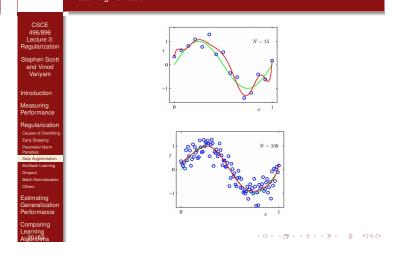
Nebraska

• If \mathcal{H} powerful and \mathcal{X} small, then learner can choose some $h \in \mathcal{H}$ that fits idiosyncrasies or noise in data

- Deep ANNs would like to have at least thousands or tens of thousands of data points
- In classification of high-dimensional data (e.g., image classification), want learned classifier to tolerate transformations and noise
 - $\Rightarrow~$ Can artificially enlarge data set by duplicating existing instances and applying transformations
 - Translating, rotating, scaling
 - Don't change the class, e.g., "b" vs "d" or "6" vs "9"
 - Don't let duplicates lie in both training and testing sets

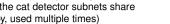
⇒ Can also apply noise injection to input or hidden layers

Regularization Nebraska Data Augmentation



Regularization Multitask Learning Regularization Nebraska Nebraska Dropout Imagine if, for a network, • If multiple tasks share we could average over all generic parameters, networks with each initially process inputs subset of nodes deleted via shared nodes, then Analogous to bagging, do final processing via where we average over task-specific nodes $h^{(1)}$ $h^{(3)}$ $h^{(2)}$ ANNs trained on random 0 Backpropagation works samples of \mathcal{X} as before with multiple In each training iteration, Ø Q Ø output nodes sample a random bit Serves as a regularizer vector μ , which since parameter tuning determines which nodes • When training done, of shared nodes is based are used (e.g., re-scale weights by on backpropagated error $\mathsf{P}(\mu_i = 1) = 0.8$ for input $P(\mu_i = 1)$ from multiple tasks unit, 0.5 for hidden unit)

Nebrasta	Regularization	Nebraska	Regularization
	Batch Normalization (loffe and Szegedy 2015)	Lincoln	Other Approaches
CSCE 496/896 Lecture 3: Regularization Stephen Scott and Vinoy Variyam Introduction Measuring Performance Regularization Cause of Overfitting Early Stopping Perameter Norm Penales Data Augmentation Mattask Learning Dopole Batch Normatization Orders Estimating Generalization Performance Comparing Learning AugShtems	 Addresses internal covariate shift, where changing parameters of layer <i>i</i> changes distribution of inputs to layer <i>i</i> + 1 Related to <i>z</i>-normalization, where one subtracts sample mean and scales with standard deviation <i>γ</i>, <i>β</i> learnable parameters Allows use of higher learning rates, possibly speeding convergence. In some cases, reduces/eliminates need for dropout 	CSCE 496/896 Lecture 3: Regularization Stephen Scott and Vinou Variyam Introduction Measuring Performance Regularization Causes of Overtiting Early Stopping Parameter Norm Penales Data Argeneration Muttask Learning Oropou Batch Normalization Comea Generatization Performance Comparing Learning Algentifisms	<list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item>



Regularization Other Approaches (cont'd)

Sparse Representations: Instead of penalizing large weights, penalize large outputs of hidden nodes:

$$\mathcal{J}(\boldsymbol{\theta}; \mathcal{X}, \boldsymbol{y}) = \mathcal{J}(\boldsymbol{\theta}; \mathcal{X}, \boldsymbol{y}) + \alpha \,\Omega(\boldsymbol{h}) ,$$

() > ()

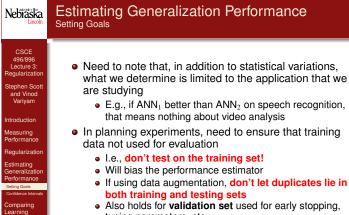
where *h* is the vector of hidden unit outputs

Estimating Generalization Performance Nebraska Setting Goals

qularizat

- Before setting up an experiment, need to understand exactly what the goal is
 - Estimate the generalization performance of a hypothesis
 - Tuning a learning algorithm's parameters
 - Comparing two learning algorithms on a specific task Etc.
 - Will never be able to answer the question with 100% certaintv
 - Due to variances in training set selection, test set selection, etc.
 - Will choose an estimator for the quantity in question, determine the probability distribution of the estimator, and bound the probability that the estimator is way off
 - Estimator needs to work regardless of distribution of training/testing data

(ロ)、(型)、(E)、(E)、(E)、(D)(0)



• E.g., if ANN₁ better than ANN₂ on speech recognition,

- - If using data augmentation, don't let duplicates lie in
 - Also holds for validation set used for early stopping, tuning parameters, etc.
 - Validation set serves as part of training set, but not used for model building

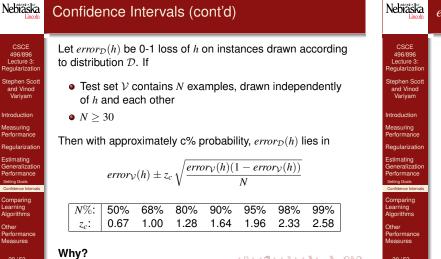
(ロト・1回ト・ミト・ミト ヨーのへの)

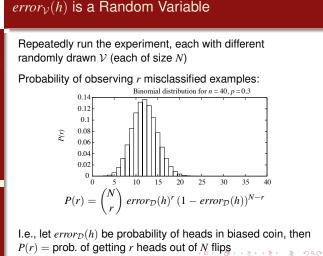
Nebraska **Confidence Intervals** Let $error_{\mathcal{D}}(h)$ be 0-1 loss of hypothesis h on instances drawn according to distribution \mathcal{D} . If Test set V contains N examples, drawn independently of h and each other • N > 30Then with approximately 95% probability, $error_{\mathcal{D}}(h)$ lies in $error_{\mathcal{V}}(h) \pm 1.96 \sqrt{\frac{error_{\mathcal{V}}(h)(1 - error_{\mathcal{V}}(h))}{error_{\mathcal{V}}(h)}}$ nating

E.g. hypothesis h misclassifies 12 of the 40 examples in test set \mathcal{V} :

$$error_{\mathcal{V}}(h) = \frac{12}{40} = 0.30$$

Then with approx. 95% confidence, $error_{\mathcal{D}}(h) \in [0.158, 0.442]_{\circ}$





Nebraska Binomial Probability Distribution

$$P(r) = \binom{N}{r} p^r (1-p)^{N-r} = \frac{N!}{r!(N-r)!} p^r (1-p)^{N-r}$$

Probability P(r) of r heads in N coin flips, if p = Pr(heads)

 Expected, or mean value of X, E[X] (= # heads on N flips = # mistakes on N test exs), is

$$\mathbb{E}[X] \equiv \sum_{i=0}^{N} iP(i) = Np = N \cdot error_{\mathcal{D}}(h)$$

• Variance of X is

equlariza

$$Var(X) \equiv \mathbb{E}[(X - \mathbb{E}[X])^2] = Np(1 - p)$$

• Standard deviation of
$$X$$
, σ_X , is

$$\sigma_X \equiv \sqrt{\mathbb{E}[(X - \mathbb{E}[X])^2]} = \sqrt{Np(1-p)}$$

Nebraska Approximate Binomial Dist. with Normal

 $error_{\mathcal{V}}(h) = r/N$ is binomially distributed, with

CSCE 496/896 Lecture 3

ulariza

nulariza

$$\sigma_{error_{\mathcal{V}}(h)} = \sqrt{\frac{error_{\mathcal{D}}(h)(1 - error_{\mathcal{D}}(h))}{N}}$$

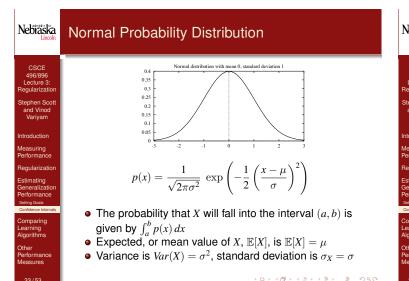
(increasing N decreases variance)

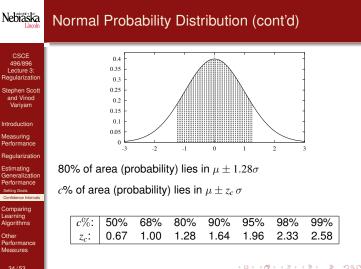
Want to compute confidence interval = interval centered at $error_{\mathcal{D}}(h)$ containing *c*% of the weight under the distribution

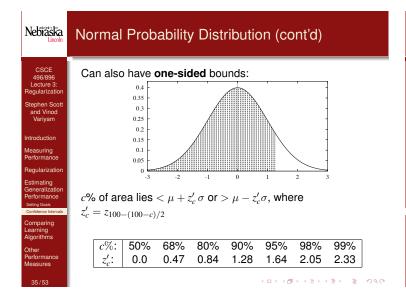
Approximate binomial by **normal** (Gaussian) dist:

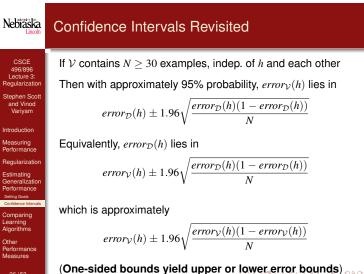
- mean $\mu_{error_{\mathcal{V}}(h)} = error_{\mathcal{D}}(h)$ • standard deviation $\sigma_{error_{\mathcal{V}}(h)}$
- Standard deviation ^oerror

$$\sigma_{error_{\mathcal{V}}(h)} \approx \sqrt{\frac{error_{\mathcal{V}}(h)(1 - error_{\mathcal{V}}(h))}{N}} + \frac{1}{N} + \frac{1}$$









Nebraska Central Limit Theorem

96/89

eqularizat

Nebraska

egulariza

timating eneralization rformance

omparing

egularizat

How can we justify approximation?

Consider set of iid random variables Y_1, \ldots, Y_N , all from **arbitrary** probability distribution with mean μ and finite variance σ^2 . Define sample mean $\overline{Y} \equiv (1/N) \sum_{i=1}^{n} Y_i$

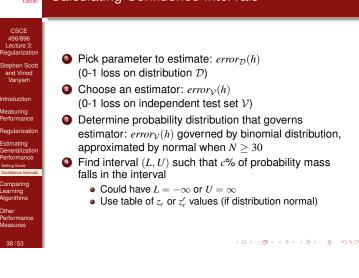
 \bar{Y} is itself a random variable, i.e., result of an experiment (e.g., $error_S(h) = r/N$)

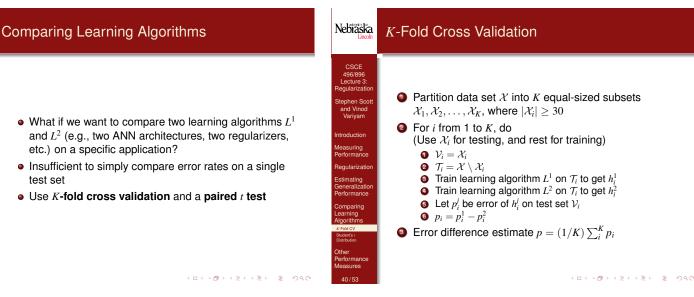
Central Limit Theorem: As $N \to \infty$, the distribution governing \bar{Y} approaches normal distribution with mean μ and variance σ^2/N

Thus the distribution of $error_{S}(h)$ is approximately normal for large *N*, and its expected value is $error_{D}(h)$

(**Rule of thumb:** $N \ge 30$ when estimator's distribution is binomial; might need to be larger for other distributions)

Nebraska Calculating Confidence Intervals





K-Fold Cross Validation (cont'd)

- $\bullet\,$ Now estimate confidence that true expected error difference <0
- \Rightarrow Confidence that L^1 is better than L^2 on learning task
- Use one-sided test, with confidence derived from student's *t* distribution with *K* - 1 degrees of freedom
- With approximately *c*% probability, true difference of expected error between *L*¹ and *L*² is at most

 $p + t_{c,K-1} s_p$

where

$$s_p \equiv \sqrt{\frac{1}{K(K-1)} \sum_{i=1}^{K} (p_i - p)^2}$$

Nebraska Lincoln	Stuc	lent's	t Dist	tributi	on (C)ne-S	ided [·]	Test)	
CSCE	df	0.600	0.700	0.800	0.900	0.950	0.975	0.990	0.995
496/896	1	0.325	0.727	1.376	3.078	6.314	12.706	31.821	63.657
Lecture 3:	2	0.289	0.617	1.061	1.886	2.920	4.303	6.965	9.925
Regularization	3	0.277	0.584	0.978	1.638	2.353	3.182	4.541	5.841
Stephen Scott	4	0.271	0.569	0.941	1.533	2.132	2.776	3.747	4.604
and Vinod	5	0.267	0.559	0.920	1.476	2.015	2.571	3.365	4.032
Variyam	6	0.265	0.553	0.906	1.440	1.943	2.447	3.143	3.707
	7	0.263	0.549	0.896	1.415	1.895	2.365	2.998	3.499
	8	0.262	0.546	0.889	1.397	1.860	2.306	2.896	3.355
ntroduction	9	0.261	0.543	0.883	1.383	1.833	2.262	2.821	3.250
Neasuring	10	0.260	0.542	0.879	1.372	1.812	2.228	2.764	3.169
Performance	11	0.260	0.540	0.876	1.363	1.796	2.201	2.718	3.106
	12	0.259	0.539	0.873	1.356	1.782	2.179	2.681	3.055
Regularization	13	0.259	0.538	0.870	1.350	1.771	2.160	2.650	3.012
Estimating Generalization Performance Comparing Learning Algorithms X-sacov Estimation Larning Learning L									
Distribution Other Performance	-	- t _{c,K-1} -sided		ays no	othing	about	L ² ovei	r L^1	

Nebraska Caveat

eqularizat

• Say you want to show that learning algorithm L^1 performs better than algorithms L^2, L^3, L^4, L^5

- If you use K-fold CV to show superior performance of L^1 over each of L^2, \ldots, L^5 at 95% confidence, there's a 5% chance each one is wrong
- \Rightarrow There's an over 18.5% chance that at least one is wrong
- \Rightarrow Our overall confidence is only just over 81%
- Need to account for this, or use more appropriate test

Nebraska More Specific Performance Measures

egularizati

baring

erformance

- So far, we've looked at a single error rate to compare hypotheses/learning algorithms/etc.
- This may not tell the whole story:
 - 1000 test examples: 20 positive, 980 negative
 - h¹ gets 2/20 pos correct, 965/980 neg correct, for accuracy of (2+965)/(20+980) = 0.967
 - Pretty impressive, except that always predicting negative yields accuracy = 0.980
 - Would we rather have h^2 , which gets 19/20 pos correct and 930/980 neg, for accuracy = 0.949?

(ロ)、(型)、(E)、(E)、(E)、(D)(0)

• Depends on how important the positives are, i.e., frequency in practice and/or cost (e.g., cancer diagnosis)

Nebraska

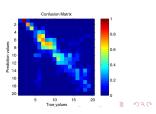
Confusion Matrices

Break down error into type: true positive, etc.

	Predicted Class				
True Class	Positive	Negative	Total		
Positive	tp : true positive	fn : false negative	р		
Negative	<i>fp</i> : false positive	tn : true negative	п		
Total	p'	n'	Ν		

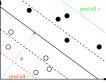
- Generalizes to multiple classes
- Allows one to quickly assess which classes are missed the most, and into what other class

What about the "always +" hyp?



Nebraska **ROC Curves**

- Consider classification via ANN + linear threshold unit
 - Normally threshold f(x; w, b) at 0, but what if we changed it?
 - Keeping w fixed while changing threshold = fixing hyperplane's slope while moving along its normal vector



Get a set of classifiers, one per labeling of test set

 Similar situation with any classifier with confidence value, e.g., probability-based

ROC Curves Nebraska Plotting tp versus fp

• Consider the "always –" hyp. What is *fp*? What is *tp*?

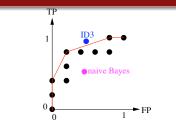
Ex	Confidence	label	Ex	Confidence	label
<i>x</i> ₁	169.752	+	<i>x</i> ₆	-12.640	-
<i>x</i> ₂	109.200	+	<i>x</i> ₇	-29.124	-
<i>x</i> ₃	19.210	-	x ₈	-83.222	-
x_4	1.905	+	<i>x</i> 9	-91.554	+
<i>x</i> ₅	-2.75	+	<i>x</i> ₁₀	-128.212	-

In between the extremes, we plot TP versus FP by

sorting the test examples by the confidence values

ROC Curves Nebraska Plotting tp versus fp (cont'd) TP x10 1 x5 x1 0 · FP 1 0

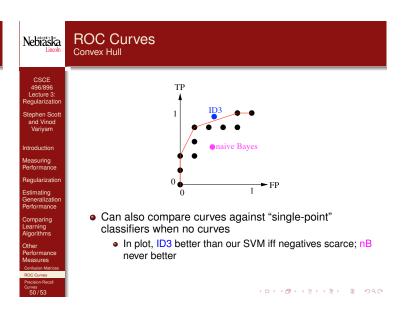
Nebřaška Linom ROC Curves Convex Hull



- The **convex hull** of the ROC curve yields a collection of classifiers, each optimal under different conditions
 - If FP cost = FN cost, then draw a line with slope |N|/|P| at (0, 1) and drag it towards convex hull until you touch it; that's your operating point

æ

• Can use as a classifier any part of the hull since can randomly select between two classifiers



Nebraska Lincol ROC Curves Miscellany

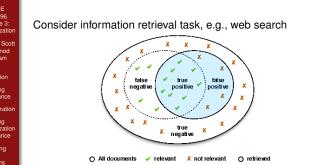
- What is the worst possible ROC curve?
- One metric for measuring a curve's goodness: **area under curve** (AUC):

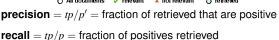
$$\frac{\sum_{x_+\in P}\sum_{x_-\in N}I(h(x_+)>h(x_-))}{|P|\,|N|}$$

i.e., rank all examples by confidence in "+" prediction, count the number of times a positively-labeled example (from P) is ranked above a negatively-labeled one (from N), then normalize

- What is the best value?
- Distribution approximately normal if $|{\cal P}|, |{\cal N}|>$ 10, so can find confidence intervals
- Catching on as a better scalar measure of performance than error rate
- Possible (though tricky) with multi-class problems

Nebiaska Lixon Precision-Recall Curves





・ロト・日本・モー・モー やんぐ

Nebraska Precision-Recall Curves (cont'd)

- As with ROC, vary threshold to trade precision and recall
- Can compare curves based on containment
- More suitable than ROC for large numbers of negatives
- Use F_{β} -measure to combine at a specific point, where β weights precision vs recall:

 $F_{\beta} \equiv (1 + \beta^2) \frac{precision \cdot recall}{(\beta^2 \cdot precision) + recall}$

0.4 0.5 0.6 0.7 0.8

roduction easuring rformance

eneralization erformance omparing earning Igorithms ther erformance