
CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

CSCE 496/896 Lecture 2:
Basic Artificial Neural Networks

Stephen Scott

(Adapted from Vinod Variyam, Ethem Alpaydin, Tom Mitchell,
Ian Goodfellow, and Aurélien Géron)

sscott@cse.unl.edu

1 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Introduction
Supervised Learning

Supervised learning is most fundamental, “classic”
form of machine learning
“Supervised” part comes from the part of labels for
examples (instances)
Many ways to do supervised learning; we’ll focus on
artificial neural networks, which are the basis for
deep learning

2 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Introduction
ANNs

Consider humans:

Total number of neurons ⇡ 1010

Neuron switching time ⇡ 10�3 second (vs. 10�10)
Connections per neuron ⇡ 104–105

Scene recognition time ⇡ 0.1 second
100 inference steps doesn’t seem like enough

) massive parallel computation

3 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Introduction
Properties

Properties of artificial neural nets (ANNs):

Many “neuron-like” switching units
Many weighted interconnections among units
Highly parallel, distributed process
Emphasis on tuning weights automatically

Strong differences between ANNs for ML and ANNs for
biological modeling

4 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

When to Consider ANNs

Input is high-dimensional discrete- or real-valued (e.g.,
raw sensor input)
Output is discrete- or real-valued
Output is a vector of values
Possibly noisy data
Form of target function is unknown
Human readability of result is unimportant
Long training times acceptable

5 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Introduction
Brief History of ANNs

The Beginning: Linear units and the Perceptron
algorithm (1940s)

Spoiler Alert: stagnated because of inability to handle
data not linearly separable

Aware of usefulness of multi-layer networks, but could
not train

The Comeback: Training of multi-layer networks with
Backpropagation (1980s)

Many applications, but in 1990s replaced by
large-margin approaches such as support vector
machines and boosting

6 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Introduction
Brief History of ANNs (cont’d)

The Resurgence: Deep architectures (2000s)
Better hardware1 and software support allow for deep
(> 5–8 layers) networks
Still use Backpropagation, but

Larger datasets, algorithmic improvements (new loss
and activation functions), and deeper networks improve
performance considerably

Very impressive applications, e.g., captioning images

The Inevitable: (TBD)
Oops

1Thank a gamer today.7 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Outline

Supervised learning
Basic ANN units

Linear unit
Linear threshold units
Perceptron training rule

Gradient Descent
Nonlinearly separable problems and multilayer
networks
Backpropagation
Types of activation functions
Putting everything together

8 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Learning from Examples

Let C be the target function (or target concept) to be
learned

Think of C as a function that takes as input an example
(or instance) and outputs a label

Goal: Given training set X = {(xt, y

t

)}N

t=1 where
y

t

= C(x

t

), output hypothesis h 2 H that approximates
C in its classifications of new instances
Each instance x represented as a vector of attributes
or features

E.g., let each x = (x1, x2) be a vector describing
attributes of a car; x1 = price and x2 = engine power
In this example, label is binary (positive/negative,
yes/no, 1/0, +1/�1) indicating whether instance x is a
“family car”

9 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Learning from Examples (cont’d)

x 2 : E
ng

in
e

po
w

er

x 1 : Price
x 1

t

x 2
t

10 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Thinking about C

Can think of target concept C as a function
In example, C is an axis-parallel box, equivalent to
upper and lower bounds on each attribute
Might decide to set H (set of candidate hypotheses) to
the same family that C comes from
Not required to do so

Can also think of target concept C as a set of positive
instances

In example, C the continuous set of all positive points in
the plane

Use whichever is convenient at the time

11 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Thinking about C (cont’d)

x 2 : E
ng

in
e

po
w

er

x 1 : Price
p 1 p 2

e 1

e 2
C

12 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Hypotheses and Error

A learning algorithm uses training set X and finds a
hypothesis h 2 H that approximates C

In example, H can be set of all axis-parallel boxes
If C guaranteed to come from H, then we know that a
perfect hypothesis exists

In this case, we choose h from the version space =
subset of H consistent with X
What learning algorithm can you think of to learn C?

Can think of two types of error (or loss) of h

Empirical error is fraction of X that h gets wrong
Generalization error is probability that a new,
randomly selected, instance is misclassified by h

Depends on the probability distribution over instances
Can further classify error as false positive and false
negative

13 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Hypotheses and Error (cont’d)

14 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units
Linear Unit

Linear Threshold
Unit

Perceptron Training
Rule

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Linear Unit (Regression)

w1

w2

wn

w0

x1

x2

xn

x0=1

.

.

.
�

� wi xi
n

i=0 1 if > 0

-1 otherwise{o = � wi xi
n

i=0

ˆy = f (x;w, b) = x

>
w + b = w1x1 + · · ·+ w

n

x

n

+ b

Each weight vector w is different h

If set w0 = b, can simplify above
Forms the basis for many other activation functions

15 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units
Linear Unit

Linear Threshold
Unit

Perceptron Training
Rule

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Linear Threshold Unit (Binary Classification)

w1

w2

wn

w0

x1

x2

xn

x0=1

.

.

.
�

� wi xi
n

i=0 1 if > 0

-1 otherwise{o = � wi xi
n

i=0

y = o(x;w, b) =

⇢
+1 if f (x;w, b) > 0
�1 otherwise

(sometimes use 0 instead of �1)

16 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units
Linear Unit

Linear Threshold
Unit

Perceptron Training
Rule

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Linear Threshold Unit
Decision Surface

x1

x2
+

+

-
-

+
-

x1

x2

(a) (b)

-

+ -

+

Represents some useful functions

What parameters (w, b) represent
g(x1, x2;w, b) = AND(x1, x2)?

But some functions not representable

I.e., those not linearly separable
Therefore, we’ll want networks of units

17 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units
Linear Unit

Linear Threshold
Unit

Perceptron Training
Rule

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Linear Threshold Unit
Non-Numeric Inputs

What if attributes are not numeric?
Encode them numerically
E.g., if an attribute Color has values Red, Green, and
Blue, can encode as one-hot vectors [1, 0, 0], [0, 1, 0],
[0, 0, 1]
Generally better than using a single integer, e.g., Red is
1, Green is 2, and Blue is 3, since there is no implicit
ordering of the values of the attribute

18 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units
Linear Unit

Linear Threshold
Unit

Perceptron Training
Rule

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Perceptron Training Rule (Learning Algorithm)

w

0
j

 w

j

+ ⌘ (yt � ˆy

t

) x

t

j

where

x

t

j

is jth attribute of training instance t

y

t is label of training instance t

ˆy

t is Perceptron output on training instance t

⌘ > 0 is small constant (e.g., 0.1) called learning rate

I.e., if (y� ˆy) > 0 then increase w

j

w.r.t. x

j

, else decrease

Can prove rule will converge if training data is linearly
separable and ⌘ sufficiently small

19 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Where Does the Training Rule Come From?
Linear Regression

Recall initial linear unit (no threshold)
If only one feature, then this is a regression problem
Find a straight line that best fits the training data

For simplicity, let it pass through the origin
Slope specified by parameter w1

x

t

y

t

1 2.8
2 4.65
3 7.9
4 10.1
5 12.1

20 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Where Does the Training Rule Come From?
Linear Regression

If we use hypothesis w1 = 1,
then square loss is

J(1) =
mX

t=1

�
ˆy

t � y

t

�2

=

mX

t=1

�
1x

t � y

t

�2
= (1� 2.8)2

+ (2� 4.65)2
+ (3� 7.9)2

+(4� 10.1)2
+ (5� 12.1)2

= 121.8925

If we use w2 = 2, then we get J(2) = 13.4925
Can plot J(w1) versus w1

Goal is to find w1 to minimize J(w1)

21 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Where Does the Training Rule Come From?
Linear Regression

Can write J(w1) in general:

J(w1) =

mX

t=1

�
ˆy

t � y

t

�2
=

mX

t=1

�
w1x

t � y

t

�2

= (1w1 � 2.8)2
+ (2w1 � 4.65)2

+ (3w1 � 7.9)2

+(4w1 � 10.1)2
+ (5w1 � 12.1)2

= 55w

2
1 � 273.4w1 + 340.293

22 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Where Does the Training Rule Come From?
Convex Quadratic Optimization

J(w1) = 55w

2
1 � 273.4w1 + 340.293

Minimum is at w1 ⇡ 2.485, with loss ⇡ 0.53
What’s special about that point?

23 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Where Does the Training Rule Come From?
Gradient Descent

Recall that a function has a (local) minimum or
maximum where the derivative is 0

d

dw1
J(w1) = 110w1 � 273.4

Setting this = 0 and solving for w1 yields w1 ⇡ 2.485
Motivates the use of gradient descent to solve in
high-dimensional spaces with nonconvex functions:

w

0
= w� ⌘rJ(w)

⌘ is learning rate to moderate updates

Gradient is a vector of partial derivatives:
h

@J

@w

i

i
n

i=1
@J

@w

i

is how much a change in w

i

changes J

24 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Where Does the Training Rule Come From?
Gradient Descent Example

In our example, initialize w1, then repeatedly update

w

0
1 = w1 � ⌘(110 w1 � 273.4)

Could also update one at a time: @J

@w1
= 2w1 (x

t

)

2 � 2x

t

y

t

) Stochastic gradient descent (SGD)
25 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Where Does the Training Rule Come From?
Gradient Descent

-1

0

1

2

-2
-1

0
1

2
3

0

5

10

15

20

25

w0 w1

E[
w
]

J(w)

@J

@w

=

@J

@w0
,
@J

@w1
, · · · , @J

@w

n

�

In general, define loss function J, compute gradient of J

w.r.t. J’s parameters, then apply gradient descent
26 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems
XOR

General Nonlinearly
Separable Problems

Backprop

Types of Units

Putting Things
Together

Handling Nonlinearly Separable Problems
The XOR Problem

Using linear threshold units

x

x

1

2

g (x)1

g (x)2
> 0

< 0

> 0
< 0

A: (0,0)

D: (1,1)

B: (0,1)

C: (1,0)

neg

pos
neg

Represent with intersection of two linear separators

g1(x) = 1 · x1 + 1 · x2 � 1/2

g2(x) = 1 · x1 + 1 · x2 � 3/2

pos =

�
x 2 R2

: g1(x) > 0 AND g2(x) < 0

neg =

�
x 2 R2

: g1(x), g2(x) < 0 OR g1(x), g2(x) > 0

27 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems
XOR

General Nonlinearly
Separable Problems

Backprop

Types of Units

Putting Things
Together

Handling Nonlinearly Separable Problems
The XOR Problem (cont’d)

Let z

i

=

(
0 if g

i

(x) < 0
1 otherwise

Class (x1, x2) g1(x) z1 g2(x) z2
pos B: (0, 1) 1/2 1 �1/2 0
pos C: (1, 0) 1/2 1 �1/2 0
neg A: (0, 0) �1/2 0 �3/2 0
neg D: (1, 1) 3/2 1 1/2 1

Now feed z1, z2 into g(z) = 1 · z1 � 2 · z2 � 1/2

1

2

A: (0,0)

D: (1,1)

B, C: (1,0)

> 0

< 0

pos
neg

g(z)
z

z

28 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems
XOR

General Nonlinearly
Separable Problems

Backprop

Types of Units

Putting Things
Together

Handling Nonlinearly Separable Problems
The XOR Problem (cont’d)

In other words, we remapped all vectors x to z such that the
classes are linearly separable in the new vector space

Σ
i

Σ
i i

x

Σ
i

w = 1

w = 1

w = 1

w = 1

w = −1/2

w = −3/2

w

w xi

i
w

w = 1

w = −2

w = −1/2

1

2

x1

2x

Hidden Layer

Input Layer

Output
Layer

31

32

41

30

40

53

54

50

3i

42 4i

5i

z

z

z

This is a two-layer perceptron or two-layer feedforward
neural network

Can use many nonlinear activation functions in hidden layer
29 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems
XOR

General Nonlinearly
Separable Problems

Backprop

Types of Units

Putting Things
Together

Handling Nonlinearly Separable Problems
General Nonlinearly Separable Problems

By adding up to 2 hidden layers of linear threshold units,
can represent any union of intersection of halfspaces

pos

pos
pos

neg

neg

neg

pos

First hidden layer defines halfspaces, second hidden layer
takes intersection (AND), output layer takes union (OR)

30 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Putting Things
Together

Training Multiple Layers

In a multi-layer network, have to tune parameters in all
layers
In order to train, need to know the gradient of the loss
function w.r.t. each parameter
The Backpropagation algorithm first feeds forward
the network’s inputs to its outputs, then propagates
back error via repeated application of chain rule for
derivatives
Can be decomposed in a simple, modular way

31 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Putting Things
Together

Computation Graphs

Given a complicated function f (·), want to know its
partial derivatives w.r.t. its parameters
Will represent f in a modular fashion via a
computation graph (like what we do in TensorFlow)
E.g., let f (w, x) = w0x0 + w1x1

32 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Putting Things
Together

Computation Graphs

E.g., w0 = 3.0, w1 = �1.0, x0 = 1.0, x1 = 4.0

33 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Putting Things
Together

Computation Graphs

So what?
Can now decompose gradient calculation into basic
operations
@f

@f

= 1

34 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Putting Things
Together

Computation Graphs

If g(y, z) = y + z then @g

@y

=

@g

@z

= 1

Via chain rule, @f

@a

=

@f

@g

@g

@a

= (1.0)(1.0) = 1.0

Same with @f

@b

35 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Putting Things
Together

Computation Graphs

If h(y, z) = yz then @h

@y

= z

Via chain rule, @f

@x0
=

@f

@a

@a

@x0
= 1.0w0 = 3.0

So for x = [1.0, 4.0]>, rf (w) = [1.0, 4.0]>

36 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Putting Things
Together

The Sigmoid Unit
Basics

How does this help us with multi-layer ANNs?
First, let’s replace the threshold function with a
continuous approximation

w1

w2

wn

w0

x1

x2

xn

x0 = 1

.

.

.
�

net = � wi xii=0

n
1

1 + e-neto = �(net) =
= f(x; w,b)

�(net) is the logistic function

�(net) =

1
1 + e

�net

(a type of sigmoid function)

Squashes net into [0, 1] range
37 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Putting Things
Together

The Sigmoid Unit
Computation Graph

Let f (w, x) = 1/ (1 + exp (� (w0x0 + w1x1)))

38 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Putting Things
Together

The Sigmoid Unit

@f

@h

= 1.0(�1/h

2
) = �0.0723

39 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Putting Things
Together

The Sigmoid Unit
Gradient

@f

@g

=

@f

@h

@h

@g

= �0.0723(1) = �0.0723

40 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Putting Things
Together

The Sigmoid Unit
Gradient

@f

@d

=

@f

@g

@g

@d

= �0.0723 exp(d) = �0.1966

41 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Putting Things
Together

The Sigmoid Unit
Gradient

@f

@c

=

@f

@d

@d

@c

= �0.1966(�1) = 0.1966

and so on:

So for x = [1.0, 4.0]>, rf (w) = [0.1966, 0.7866]>
42 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Putting Things
Together

The Sigmoid Unit
Gradient

Note that @f

@c

= �(c)(1� �(c)), so

@f

@w1
=

@f

@c

@c

@b

@b

@w1
= �(c)(1� �(c))(1)x1

This is modular, so once we have a formula for the gradient
for this unit, we can apply it anywhere in a larger graph

43 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Putting Things
Together

Sigmoid Unit
Weight Update

Let ˆyt

= �(w · x

t

) be prediction on training instance x

t

with label y

t, and let loss be J(w) =

1
2 (ˆy

t � y

t

)

2, then

@J(w)

@w1
=

�
ˆy

t � y

t

�✓ @

@w1

�
ˆy

t � y

t

�◆

=

�
ˆy

t � y

t

�✓ @

@w1
ˆy

t

◆

=

�
ˆy

t � y

t

� �
ˆy

t

�
1� ˆy

t

�
x

t

1
�

So update rule is

w

0
1 = w1 � ⌘ ˆyt

�
1� ˆy

t

� �
ˆy

t � y

t

�
x

t

1

In general,

w

0
= w� ⌘ ˆyt

�
1� ˆy

t

� �
ˆy

t � y

t

�
x

t

44 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Putting Things
Together

Multilayer Networks

That update formula works for output units when we
know the target labels y

t (here, a vector to encode
multi-class labels)
But for a hidden unit, we don’t know its target output!

w

ji

= weight from node i to node j

45 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Putting Things
Together

Training Multilayer Networks
Output Units

Let loss on instance (x

t, y

t

) be J(w) =

1
2
P

n

i=1 (ˆy
t

i

� y

t

i

)

2

Weights w5⇤ and w6⇤ tie to output units
Gradients and weight updates done as before
E.g., w

0
53 = w53 � ⌘ @J

@w53
= w53 � ⌘ˆy1(1� ˆy1)(ˆy1 � y1)�3

46 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Putting Things
Together

Training Multilayer Networks
Hidden Units

Multivariate chain rule says we sum paths from J to w42:

@J

@w42
=

@J

@a

@a

@w42
=

✓
@J

@c

@c

@a

+

@J

@b

@b

@a

◆
@a

@w42

=

✓
@J

@d

@d

@c

@c

@a

+

@J

@e

@e

@b

@b

@a

◆
@a

@w42

= ([ˆy1(1� ˆy1)(ˆy1 � y1)] [w54] [�4(a)(1� �4(a))]

+ [ˆy2(1� ˆy2)(ˆy2 � y2)] [w64] [�4(a)(1� �4(a))]) x2
47 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Putting Things
Together

Training Multilayer Networks
Hidden Units

Analytical solution is messy, but we don’t need the
formula; only need to compute gradient
The modular form of a computation graph means that
once we’ve computed @J

@d

and @J

@e

, we can plug those
values in and compute gradients for earlier layers

Doesn’t matter if layer is output, or farther back; can run
indefinitely backward

Backpropagation of error from outputs to inputs
Define error term of hidden node h as

�
h

 ˆy

h

(1� ˆy

h

)

X

k2down(h)

w

k,h �k

,

where ˆy

k

is output of node k and down(h) is set of nodes
immediately downstream of h

Note that this formula is specific to sigmoid units
48 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Putting Things
Together

Training Multilayer Networks
Hidden Units

We are propagating back error terms � from output
layer toward input layers, scaling with the weights
Scaling with the weights characterizes how much of the
error term each hidden unit is “responsible for”
Process:

1 Submit inputs x

2 Feed forward signal to outputs
3 Comptue network loss
4 Propagate error back to compute loss gradient w.r.t.

each weight
5 Update weights

49 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Putting Things
Together

Backpropagation Algorithm
Sigmoid Activation Units and Square Loss

Initialize weights

Until termination condition satisfied do

For each training example (x

t, y

t

) do
1 Input x

t to the network and compute the outputs ŷ

t

2 For each output unit k

�t

k

 ˆy

t

k

(1� ˆy

t

k

) (y

t

k

� ˆy

t

k

)

3 For each hidden unit h

�t

h

 ˆy

t

h

(1� ˆy

t

h

)

X

k2down(h)

w

t

k,h �
t

k

4 Update each network weight w

t

j,i

w

t

j,i w

t

j,i +�w

t

j,i

where �w

t

j,i = ⌘ �t

j

x

t

j,i and x

t

j,i is signal sent from node i

to node j

50 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Putting Things
Together

Backpropagation Algorithm
Notes

Formula for � assumes sigmoid activation function
Straightforward to change to new activation function via
computation graph

Initialization used to be via random numbers near zero,
e.g., from N (0, 1)

More refined methods available (later)
Algorithm as presented updates weights after each
instance

Can also accumulate �w

t

j,i across multiple training
instances in the same mini-batch and do a single
update per mini-batch
) Stochastic gradient descent (SGD)

Extreme case: Entire training set is a single batch
(batch gradient descent)

51 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units
Types of Output
Units

Types of Hidden
Units

Putting Things
Together

Types of Output Units

Given hidden layer outputs h

Linear unit: ˆy = w

>
h + b

Minimizing square loss with this output unit maximizes
log likelihood when labels from normal distribution

I.e., find a set of parameters ✓ that is most likely to
generate the labels of the training data

Works well with GD training
Sigmoid: ˆy = �(w>

h + b)

Approximates non-differentiable threshold function
More common in older, shallower networks
Can be used to predict probabilities

Softmax unit: Start with z = W

>
h + b

Predict probability of label i to be
softmax(z)

i

= exp(z

i

)/
⇣P

j

exp(z

j

)

⌘

Continuous, differentiable approximation to argmax
52 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units
Types of Output
Units

Types of Hidden
Units

Putting Things
Together

Types of Hidden Units

Rectified linear unit (ReLU): max{0,w

>
x + b}

Good default choice
In general, GD works
well when functions
nearly linear
Variations: leaky ReLU
and exponential ReLU
replace z < 0 side with
0.01z and ↵(exp(z)� 1),
respectively

Logistic sigmoid (done already) and tanh

Nice approximation to threshold, but don’t train well in
deep networks since they saturate

53 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Putting Everything Together
Hidden Layers

How many layers to use?
Deep networks build potentially useful representations
of data via composition of simple functions
Performance improvement not simply from more
complex network (number of parameters)
Increasing number of layers still increases chances of
overfitting, so need significant amount of training data
with deep network; training time increases as well

Accuracy vs Depth Accuracy vs Complexity

54 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Putting Everything Together
Universal Approximation Theorem

Any boolean function can be represented with two
layers
Any bounded, continuous function can be represented
with arbitrarily small error with two layers
Any function can be represented with arbitrarily small
error with three layers

Only an EXISTENCE PROOF

Could need exponentially many nodes in a layer
May not be able to find the right weights
Highlights risk of overfitting and need for regularization

55 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Putting Everything Together
Initialization

Previously, initialized weights to random numbers near
0 (from N (0, 1))

Sigmoid nearly linear there, so GD expected to work
better
But in deep networks, this increases variance per layer,
resulting in vanishing gradients and poor optimization

Glorot initialization controls variance per layer: If layer
has n

in

inputs and n

out

outputs, initialize via uniform
over [�r, r] or N (0,�)

r = a

q
6

n

in

+n

out

and � = a

q
2

n

in

+n

out

Activation a

Logistic 1
tanh 4
ReLU

p
2

56 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Putting Everything Together
Optimizers

Variations on gradient descent optimization:

Momentum optimization
AdaGrad
RMSProp
Adam

57 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Putting Everything Together
Momentum Optimization

Use a momentum term � to keep updates moving in
same direction as previous trials
Replace original GD update w

0
= w� ⌘rJ(w) with

w

0
= w�m ,

where
m = �m + ⌘rJ(w)

Using sigmoid activation and square loss, replace
�w

t

ji

= ⌘ �t

j

x

t

ji

with

�w

t

ji

= ⌘ �t

j

x

t

ji

+ ��w

t�1
ji

Can help move through small local minima to better
ones & move along flat surfaces

58 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Putting Everything Together
AdaGrad

Standard GD can too quickly descend steepest slope,
then slowly crawl through a valley
AdaGrad adapts learning rate by scaling it down in
steepest dimensions:
w

0
= w� ⌘rJ(w)↵ps + ✏, where

s = s +rJ(w)⌦rJ(w) ,
⌦ and ↵ are element-wise multiplication and division
and ✏ = 10�10 prevents division by 0

s accumulates
squares of gradient,
and learning rate for
each dimension
scaled down

59 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Putting Everything Together
RMSProp

AdaGrad tends to stop too early for neural networks
due to over-aggressive downscaling
RMSProp exponentially decays old gradients to
address this

w

0
= w� ⌘rJ(w)↵ps + ✏ ,

where

s = �s + (1� �)rJ(w)⌦rJ(w)

60 / 61

CSCE
496/896

Lecture 2:
Basic Artificial

Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Putting Everything Together
Adam

Adam (adaptive moment estimation) combines Momentum
optimization and RMSProp

1
m = �1m + (1� �1)rJ(w)

2
s = �2s + (1� �2)rJ(w)⌦rJ(w)

3
m = m/(1� �t

1)

4
s = s/(1� �t

2)

5
w

0
= w� ⌘m↵ps + ✏

Iteration counter t used in 3 and 4 to prevent m and s

from vanishing
Can set �1 = 0.9, �2 = 0.999, ✏ = 10�8

61 / 61

