Nebraska

CSCE 496(896 Lecture 2: Basic Artificial Networks Stephen Scott Introduction Supervised Learning Basic Units Gradient Descent Nonlinearly Separable Problems Backprop Types of Units Putting Things Together

CSCE 496/896 Lecture 2: Basic Artificial Neural Networks

Stephen Scott

(Adapted from Vinod Variyam, Ethem Alpaydin, Tom Mitchell, Ian Goodfellow, and Aurélien Géron)

sscott@cse.unl.edu

うして キー・モン・モン・ロン

Nebraska Lincoln Supervised Learning

CSCE 496/896 ecture 2: sic Artificial Neural letworks

Introductio

Supervised

Gradient Descent

onlinearl eparable

Backprop

Types of Unit

Putting Thing Together

- Supervised learning is most fundamental, "classic" form of machine learning
- "Supervised" part comes from the part of *labels* for examples (instances)
- Many ways to do supervised learning; we'll focus on artificial neural networks, which are the basis for deep learning

- < = > < @ > < 2 > < 2 > - 2 = - 9 < @

N	Nebraska Lincoln	Introduction ANNs	Nebraska Lincoln	Introduction Properties
S In B G D N S P B T J Р	CSCE 499/896 Lecture 2: asaic Artificial Neural Networks Networks Networks Compension asic Units asic Units asic Units asic Units asic Intil secent Ionlinearly eparable ackprop popes of Units uting Things ogether	Consider humans: • Total number of neurons $\approx 10^{10}$ • Neuron switching time $\approx 10^{-3}$ second (vs. 10^{-10}) • Connections per neuron $\approx 10^4 - 10^5$ • Scene recognition time ≈ 0.1 second • 100 inference steps doesn't seem like enough \Rightarrow massive parallel computation	CSCE 499/896 Lecture 2: Basic Artificial Neural Networks Stephen Scott Introduction Supervised Learning Basic Units Gradient Descent Nonlinearly Separable Problems Backprop Types of Units Putting Things Together	 Properties of artificial neural nets (ANNs): Many "neuron-like" switching units Many weighted interconnections among units Highly parallel, distributed process Emphasis on tuning weights automatically Strong differences between ANNs for ML and ANNs for biological modeling
	3/61	<ロ> (西) (西) (注) (注) (注) (注) (注) (注) (注) (注) (注) (注	4/61	<日 > (日 > (日 > (注 > (注 > (注 >) 注)の(で

Nebiaska When to Consider ANNs

CSCE 496/896 Lecture 2: Basic Artificial Neural Networks Stephen Scott

Introduction Supervised Learning Basic Units Gradient Descent Nonlinearly Separable Problems Backprop Types of Unit

Putting Thing

• Input is high-dimensional discrete- or real-valued (e.g., raw sensor input)

- Output is discrete- or real-valued
- Output is a vector of values
- Possibly noisy data
- Form of target function is unknown
- Human readability of result is unimportant
- Long training times acceptable

• The Beginning: Linear units and the Perceptron

Introduction

Brief History of ANNs

Nebraska

96/89

oductio

Supervised earning

Gradient Descent

onlinearl eparable roblems

Backprop

Types of U

Putting Thing

- algorithm (1940s)
 Spoiler Alert: stagnated because of inability to handle data not *linearly separable*
 - Aware of usefulness of multi-layer networks, but could not train
- **The Comeback:** Training of multi-layer networks with Backpropagation (1980s)
 - Many applications, but in 1990s replaced by large-margin approaches such as support vector machines and boosting

Nebraska

ecture 2 ic Artifi

Neura

Backprop

ypes of Un

utting Thir

roductio

Supervised Learning

Basic Units

eparable roblems

ackprop

Types of Unit

496/89 Neura

Supervised Learning

asic Units

Descent

Backprop

Putting Thing

Introduction Brief History of ANNs (cont'd)

• The Resurgence: Deep architectures (2000s)

- Better hardware¹ and software support allow for deep (> 5-8 layers) networks
- Still use Backpropagation, but
 - Larger datasets, algorithmic improvements (new loss and activation functions), and deeper networks improve performance considerably
- Very impressive applications, e.g., captioning images

• The Inevitable: (TBD) Oops

1011121121

21

¹Thank a gamer today.

Nebraska Outline

Supervis: _earning

asic Units

iradient escent

Backprop

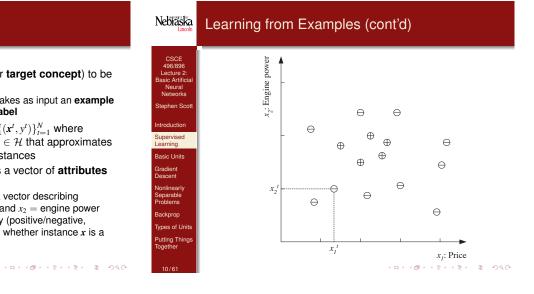
Types of Unit

- Supervised learning
- Basic ANN units
 - Linear unit
 - Linear threshold units
 - Perceptron training rule
- Gradient Descent
- Nonlinearly separable problems and multilayer networks
- Backpropagation
- Types of activation functions
- Putting everything together

Nebraska	Learning from
----------	---------------

Examples

- Let C be the target function (or target concept) to be learned
 - Think of C as a function that takes as input an example (or instance) and outputs a label
- Goal: Given training set $\mathcal{X} = \{(\mathbf{x}^t, y^t)\}_{t=1}^N$ where $y^t = C(\mathbf{x}^t)$, output **hypothesis** $h \in \mathcal{H}$ that approximates C in its classifications of new instances
- Each instance x represented as a vector of attributes or features
 - E.g., let each $x = (x_1, x_2)$ be a vector describing
 - attributes of a car; x_1 = price and x_2 = engine power
 - In this example, label is binary (positive/negative, yes/no, 1/0, +1/-1) indicating whether instance x is a family car"



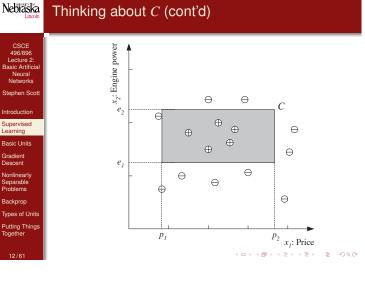
Nebraska Thinking about C

• Can think of target concept C as a function

- In example, C is an axis-parallel box, equivalent to upper and lower bounds on each attribute
- Might decide to set \mathcal{H} (set of candidate hypotheses) to the same family that C comes from
- Not required to do so
- Can also think of target concept C as a set of positive instances
 - In example, C the continuous set of all positive points in the plane
- Use whichever is convenient at the time

iradient lescent

Backprop



Nebraska Hypotheses and Error

496/896 Lecture 2 Basic Artific Neural

Stephen Sci Introduction Supervised Learning Basic Units Gradient Descent

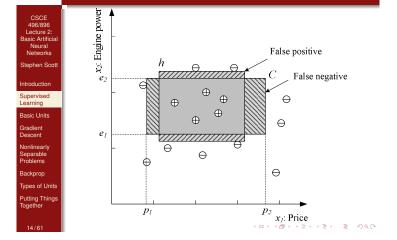
Backpron

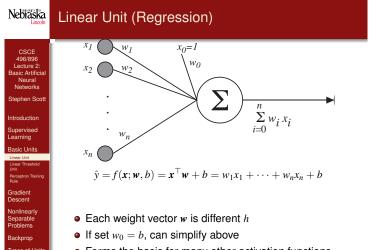
ypes of Ur

utting Thi

- A learning algorithm uses training set \mathcal{X} and finds a hypothesis $h \in \mathcal{H}$ that approximates C
- In example, \mathcal{H} can be set of all axis-parallel boxes
- If C guaranteed to come from \mathcal{H} , then we know that a
 - perfect hypothesis exists
 In this case, we choose *h* from the version space =
 - What learning algorithm can you think of to learn C?
 - Con think of two twose of owner (or loss) of I
- Can think of two types of error (or loss) of h
 Empirical error is fraction of X that h gets wrong
 - Generalization error is probability that a new,
 - randomly selected, instance is misclassified by *h*Depends on the probability distribution over instances
 - Can further classify error as false positive and false negative

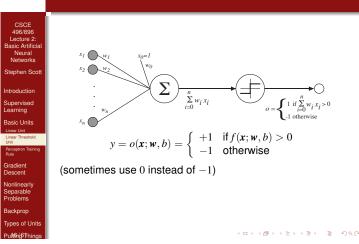
Nebraska Hypotheses and Error (cont'd)

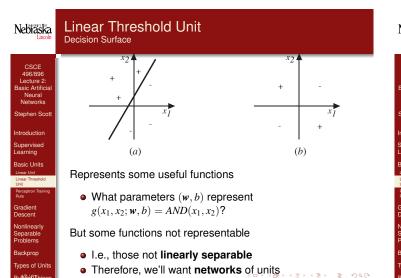




• Forms the basis for many other activation functions

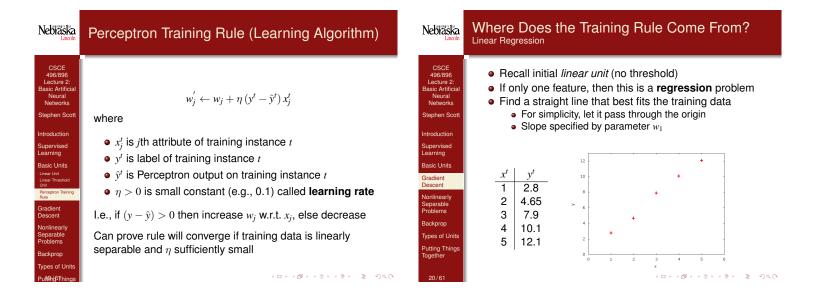
Linear Threshold Unit (Binary Classification)

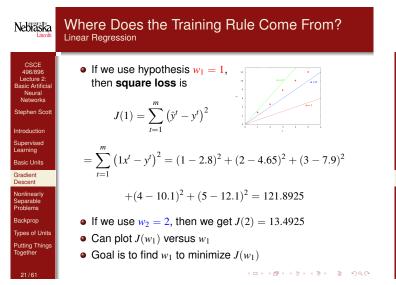


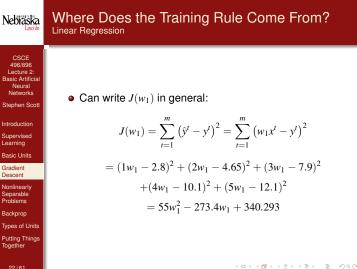


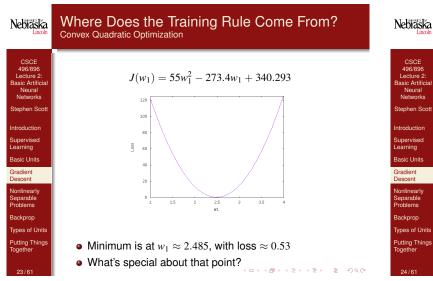
Nebraska	Linear Threshold Unit
Lincoln	Non-Numeric Inputs
CSCE 496(896) Lecture 2: Basic Artificial Neural Networks Stephen Scott Introduction Supervised Learning Basic Units Lear Intervised Cardient Processori Turning Rue Gradient Nonlinearly Sonarable	 What if attributes are not numeric? Encode them numerically E.g., if an attribute <i>Color</i> has values <i>Red</i>, <i>Green</i>, and <i>Blue</i>, can encode as one-hot vectors [1,0,0], [0,1,0], [0,0,1] Generally better than using a single integer, e.g., <i>Red</i> is 1, <i>Green</i> is 2, and <i>Blue</i> is 3, since there is no implicit ordering of the values of the attribute

vpes of L

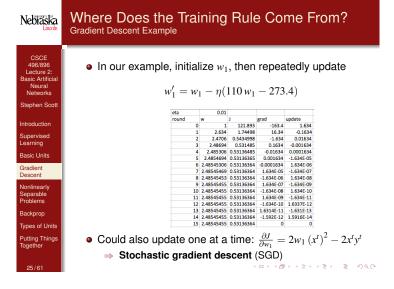


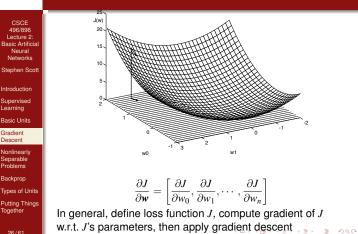


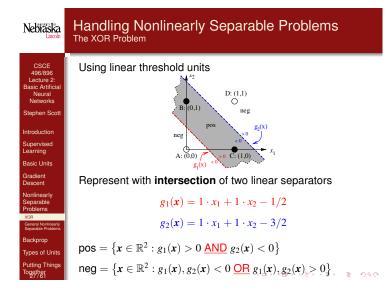




Nebraska Lincoln	Where Does the Training Rule Come From? Gradient Descent
CSCE 496/896 Lecture 2: Basic Artificial Neural Networks Stephen Scott	• Recall that a function has a (local) minimum or maximum where the derivative is 0 $\frac{d}{dw_1}J(w_1) = 110w_1 - 273.4$
Introduction Supervised Learning Basic Units Gradient Descent	 Setting this = 0 and solving for w₁ yields w₁ ≈ 2.485 Motivates the use of gradient descent to solve in high-dimensional spaces with nonconvex functions:
Nonlinearly Separable Problems	$\mathbf{w}' = \mathbf{w} - \eta abla J(\mathbf{w})$
Backprop	• η is learning rate to moderate updates
Types of Units Putting Things Together	• Gradient is a vector of partial derivatives: $\begin{bmatrix} \frac{\partial J}{\partial w_i} \end{bmatrix}_{i=1}^{n}$ • $\frac{\partial J}{\partial w_i}$ is how much a change in w_i changes J
24/61	







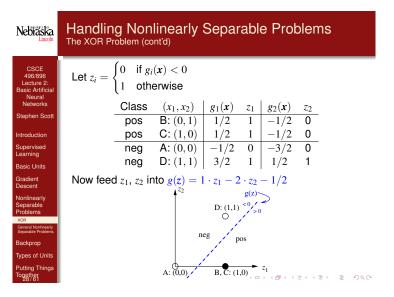
96/89

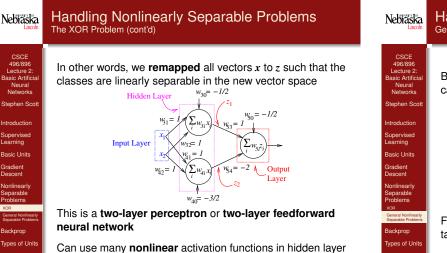
sic Artif

Neura

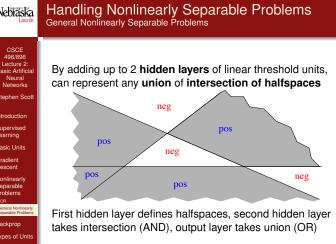
itting Thi

gether





ogether



Nebraska **Training Multiple Layers**

asic Units

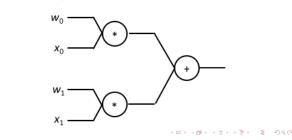
- In a multi-layer network, have to tune parameters in all layers
- In order to train, need to know the gradient of the loss function w.r.t. each parameter
- The Backpropagation algorithm first feeds forward the network's inputs to its outputs, then propagates back error via repeated application of chain rule for derivatives

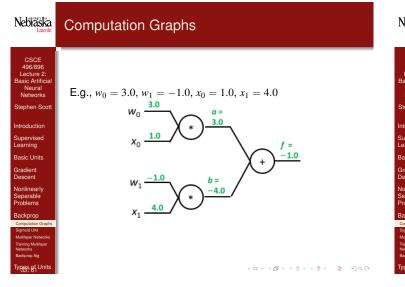
• Can be decomposed in a simple, modular way

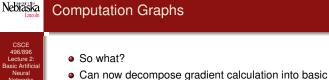
Nebraska **Computation Graphs**

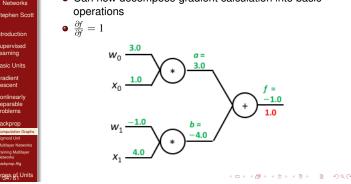
asic Units

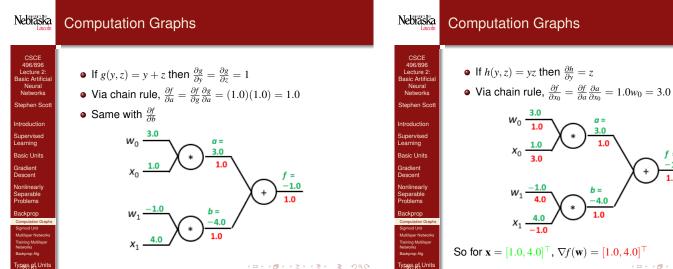
- Given a complicated function $f(\cdot)$, want to know its partial derivatives w.r.t. its parameters
- Will represent f in a modular fashion via a computation graph (like what we do in TensorFlow)
- E.g., let $f(\mathbf{w}, \mathbf{x}) = w_0 x_0 + w_1 x_1$











-1.0

1.0

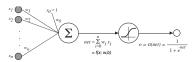
Nebiaska

96/89

arning

The Sigmoid Unit

- How does this help us with multi-layer ANNs?
- First, let's replace the threshold function with a continuous approximation

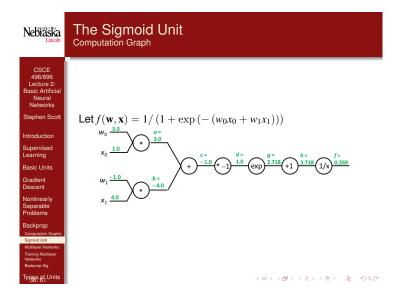


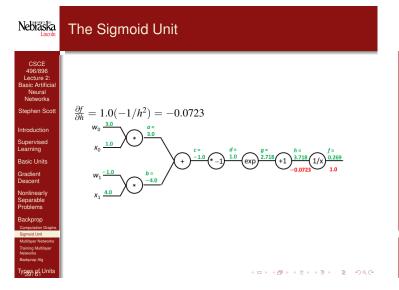
 $\sigma(\mathit{net})$ is the logistic function

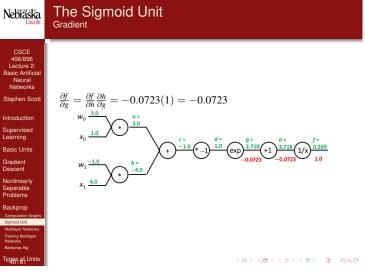
$$\sigma(net) = \frac{1}{1 + e^{-net}}$$

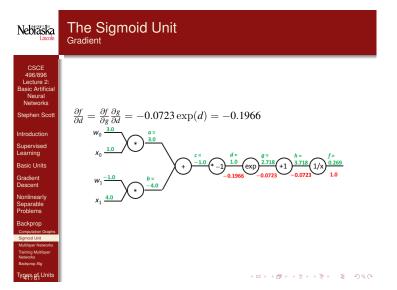
101 101 101 101 101 101 101 101

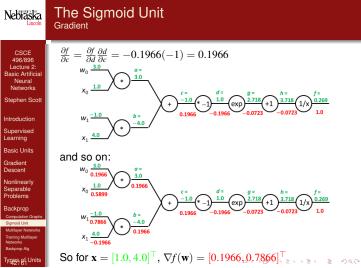
(a type of **sigmoid** function) **Squashes** *net* into [0, 1] range





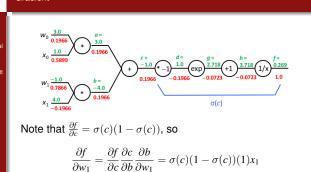




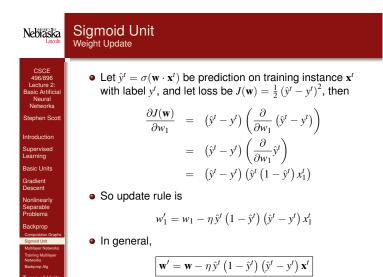


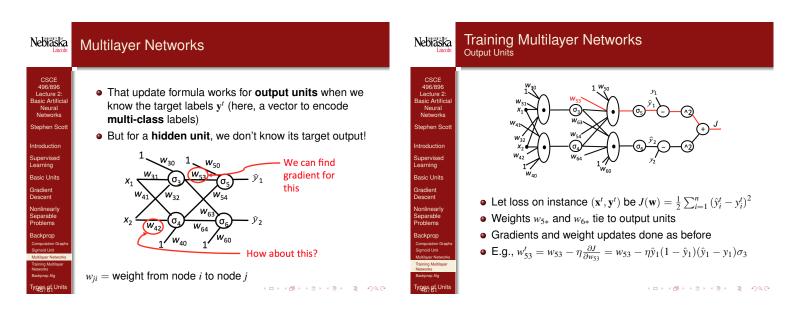
Nebraska Lincon The Sigmoid Unit Gradient

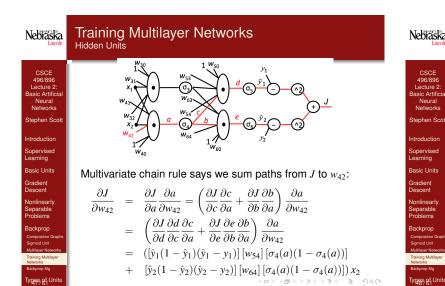
upervise earning



This is **modular**, so once we have a formula for the gradient for this unit, we can apply it anywhere in a larger graph







Nebraska	Training Multilayer Networks
CSCE 496/896 Lecture 2: Basic Artificial Neural Networks Stephen Scott Introduction Supervised Learning	 Analytical solution is messy, but we don't need the formula; only need to compute gradient The modular form of a computation graph means that once we've computed ^{JI}/_{∂d} and ^{JI}/_{∂e}, we can plug those values in and compute gradients for earlier layers Doesn't matter if layer is output, or farther back; can run indefinitely backward
Basic Units	 Backpropagation of error from outputs to inputs
Gradient Descent	• Define error term of hidden node <i>h</i> as
Nonlinearly Separable Problems Backprop	$\delta_h \leftarrow \hat{y}_h \left(1 - \hat{y}_h\right) \sum_{k \in down(h)} w_{k,h} \delta_k \;\;,$
Computation Graphs Sigmoid Unit Multilayer Networks Training Multilayer Networks Backprop. Alg	where \hat{y}_k is output of node k and $down(h)$ is set of nodes immediately downstream of h

Note that this formula is specific to sigmoid units

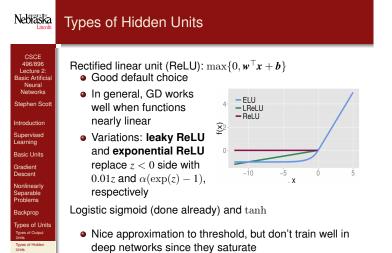
Nebraska	Training Multilayer Networks	Nebraska Lincoln	Backpropagation Algorithm Sigmoid Activation Units and Square Loss
CSCE 496/896 Lecture 2: Basic Artificial Neural Networks Stephen Scott Introduction Supervised Learning Basic Units Gradient Descent Nonlinearly Separable Problems Backprop Computation Graphie Backprop Computation Graphie Separable Problems Backprop Computation Graphie Separable Types of Units	<list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item>	CSCE 496/896 Lecture 2: Basic Artificial Neural Networks Stephen Scott Introduction Supervised Learning Basic Units Gradient Descent Nonlinearly Separable Problems Backprop Computation Carptic Backprop Computation Carptic Backprop Carptic	Initialize weights Until termination condition satisfied do • For each training example $(\mathbf{x}^t, \mathbf{y}^t)$ do • Input \mathbf{x}^t to the network and compute the outputs $\hat{\mathbf{y}}^t$ • For each output unit k $\delta_k^t \leftarrow \hat{\mathbf{y}}_k^t (1 - \hat{\mathbf{y}}_k^t) (\mathbf{y}_k^t - \hat{\mathbf{y}}_k^t)$ • For each hidden unit h $\delta_h^t \leftarrow \hat{\mathbf{y}}_h^t (1 - \hat{\mathbf{y}}_h^t) \sum_{k \in down(h)} w_{k,h}^t \delta_k^t$ • Update each network weight $w_{j,i}^t$ $w_{j,i}^t \leftarrow w_{j,i}^t + \Delta w_{j,i}^t$ where $\Delta w_{j,i}^t = \eta \delta_j^t \mathbf{x}_{j,i}^t$ and $\mathbf{x}_{j,i}^t$ is signal sent from node i to node j

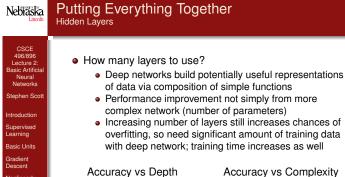
Nebraska Lincoln	Backpropagation Algorithm	Nebraska	Types of Output Units
CSCE 496/896 Lecture 2: Basic Artificial Networks Stephen Scott Introduction Supervised Learning Basic Units Gradient Descent Nonlinearly Separable Problems Backprop Compation Comples Signed Units Training Multisper Networks	 Formula for δ assumes sigmoid activation function Straightforward to change to new activation function via computation graph Initialization used to be via random numbers near zero, e.g., from N(0, 1) More refined methods available (later) Algorithm as presented updates weights after each instance Can also accumulate Δw^t_{j,i} across multiple training instances in the same mini-batch and do a single update per mini-batch Stochastic gradient descent (SGD) Extreme case: Entire training set is a single batch (batch gradient descent) 	CSCE 496/896 Lecture 2: Basic Artificial Networks Stephen Scott Introduction Supervised Learning Basic Units Gradient Descent Nonlinearly Separable Problems Backprop Types of Units Types of Units Types of Units Types of Units	 Given hidden layer outputs h Linear unit: ŷ = w^Th + b Minimizing square loss with this output unit maximizes log likelihood when labels from normal distribution I.e., find a set of parameters θ that is most likely to generate the labels of the training data Works well with GD training Sigmoid: ŷ = σ(w^Th + b) Approximates non-differentiable threshold function More common in older, shallower networks Can be used to predict probabilities Softmax unit: Start with z = W^Th + b Predict probability of label i to be softmax(z)_i = exp(z_i)/(∑_j exp(z_j)) Continuous, differentiable approximation to argmax
Types, of Units	<ロ> (日)	Putting Things	

ackoron

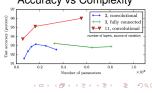
Putting Things

101100 E 10110100 - E 10000





95.0 94.5 94.0 93.5



ション・ロン・ロン・ロン・ロン・ロン

Nebraska

496/89

ecture 2 sic Artifi

Neural Network

Supervised earning

ackprop

Putting Thing

Putting Everything Together Universal Approximation Theorem

- Any boolean function can be represented with two layers
- Any bounded, continuous function can be represented with arbitrarily small error with two layers
- Any function can be represented with arbitrarily small error with three layers

Only an EXISTENCE PROOF

- · Could need exponentially many nodes in a layer
- May not be able to find the right weights
- Highlights risk of overfitting and need for regularization

Putting Everything Together Nebraska Initialization

٠

496/89 Lecture 2 asic Artific Neural

Supervised _earning

iradient Iescent

onlinearly eparable

Backpron

Types of Units

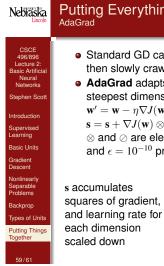
Putting Things Together

- Previously, initialized weights to random numbers near 0 (from N(0, 1))
 - Sigmoid nearly linear there, so GD expected to work better
 - But in deep networks, this increases variance per layer, resulting in vanishing gradients and poor optimization
- Glorot initialization controls variance per layer: If layer has n_{in} inputs and n_{out} outputs, initialize via uniform over [-r, r] or $\mathcal{N}(0, \sigma)$

$$r = a\sqrt{\frac{6}{n_{in}+n_{out}}}$$
 and $\sigma = a\sqrt{\frac{2}{n_{in}+n_{out}}}$

0.00 E (E) (E) (E) (E) (E)





Putting Everything Together

- Standard GD can too quickly descend steepest slope, then slowly crawl through a valley
- AdaGrad adapts learning rate by scaling it down in steepest dimensions:

and $\epsilon = 10^{-10}$ prevents division by 0

AdaGrad

(steep dimension)

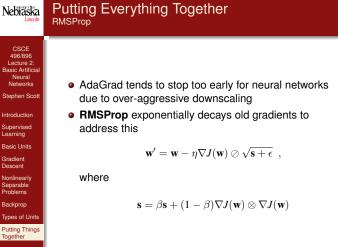
(flatter dimensio θ,

 $\mathbf{w}' = \mathbf{w} - \eta \nabla J(\mathbf{w}) \oslash \sqrt{\mathbf{s} + \epsilon}$, where

 $\mathbf{s} = \mathbf{s} + \nabla J(\mathbf{w}) \otimes \nabla J(\mathbf{w})$,

 \otimes and \otimes are element-wise multiplication and division

Cost



Nebraska Putting Everything Together

CSCE 496/896 Lecture 2: Basic Artificial Networks Stephen Scott Introduction Supervised Learning Basic Units Gradient Descent Nonlinearly Separable Problems Backprop Types of Units Putting Things Together

Adam (adaptive moment estimation) combines Momentum optimization and RMSProp

 $\mathbf{w} = \beta_1 \mathbf{m} + (1 - \beta_1) \nabla J(\mathbf{w})$ $\mathbf{s} = \beta_2 \mathbf{s} + (1 - \beta_2) \nabla J(\mathbf{w}) \otimes \nabla J(\mathbf{w})$ $\mathbf{m} = \mathbf{m}/(1 - \beta_1^t)$ $\mathbf{s} = \mathbf{s}/(1 - \beta_2^t)$ $\mathbf{w}' = \mathbf{w} - \eta \mathbf{m} \otimes \sqrt{\mathbf{s} + \epsilon}$

- Iteration counter *t* used in 3 and 4 to prevent \mathbf{m} and \mathbf{s} from vanishing
- Can set $\beta_1 = 0.9, \, \beta_2 = 0.999, \, \epsilon = 10^{-8}$