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@ Consider learning to choose actions, e.g.,
e Robot learning to dock on battery charger

Introduction e Learning to choose actions to optimize factory output

MDPs e Learning to play Backgammon, chess, Go, etc.

0 Learning @ Note several problem characteristics:

D) LRI e Delayed reward (thus have problem of temporal credit
e assignment)

Atari Example e Opportunity for active exploration (versus exploitation of
Go Example known good actions)

= Learner has some influence over the training data it sees
e Possibility that state only partially observable

Stephen Scott
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@ Learn to play Backgammon
@ Immediate Reward:

@ +100 if win

e —100 if lose

o O for all other states

Introduction
MDPs

Q Learning
TD Learning

DQN
Atari Example @ Trained by playing 1.5 million games against itself

Go Example @ Approximately equal to best human player at that time
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@ Markov decision processes
\iDP @ The agent’s learning task

0 Learning o Q Iearning

TD Learing @ Temporal difference learning
DQN .

At Example @ Deep Q learning

Go Example @ Example: Learning to play Atari

Introduction
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Reward
Introduction

Environment

Q Learning

TD Learning
ple\]
Atari Example ap a; as

N - S _ s o
Go Example 0 ) 1 7 2 >

Goal: Learn to choose actions that maximize

2
PRy Y T where 0 <y <I
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Learning

Stephen Scott @ Finite set of states §
@ Set of actions A
@ At each discrete time r agent observes state s, € S and

Introduction

0 Learning chooses action g, € A
IR @ Then receives immediate reward r,, and state changes
DQN

t0 s1-41

Atari Example
Go Example @ Markov assumption: s,; = d(s;,a;) and
e = r(Sl‘a az)
e l.e, r; and s, depend only on current state and action
e Functions ¢ and r may be nondeterministic
e Functions ¢ and r not necessarily known to agent



et Agent’s Learning Task
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Reinforcement @ Execute actions in environment, observe results, and
L i . . ..
e e Learn action policy 7 : § — A that maximizes

Stephen Scott

E [Vt + V41 +’72rz+2 + - ]

Introduction

from any starting state in §
e Here 0 < v < 1 is the discount factor for future
rewards

@ Note something new:
e Target functionisw: S — A
e But we have no training examples of form (s, a)
e Training examples are of form ((s,a), r)
e l.e., not told what best action is, instead told reward for
executing action « in state s

Q Learning
TD Learning
DQN

Atari Example

Go Example
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Reinforcement @ First consider deterministic worlds

Learning
@ For each possible policy 7 the agent might adopt, we
can define discounted cumulative reward as

Stephen Scott

Introduction

oo
_ 2 E : j
0 Learning Vﬂ-(s) =rn+ Yre+1 + v Fe42 +--= fylrt—i—i P
i=0

TD Learning

DQN . .
where r,, 111, ... are generated by following policy ,

starting at state s
@ Restated, the task is to learn an optimal policy 7*

Atari Example

Go Example

" = argmax V™(s), (Vs)

™
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Introduction

Q Learning

TD Learning

DQN

Atari Example

Go Example

V*(s) values One optimal policy
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What to Learn

CSC
45055 @ We might try to have agent learn the evaluation

Lecture 7:

Reinforcement function V™ (which we write as V*)

Learning
@ It could then do a lookahead search to choose best
action from any state s because

Stephen Scott

Introduction

7" (s) = argmax [r(s,a) +yV*(d(s,a))] ,

Q Learning a
;Z:aammg i.e., choose action that maximized immediate reward —+
P E— discounted reward if optimal strategy followed from
Go Example then on

@ E.g., V*(bot. ctr.) = 0+ ~v100 + 20 + 30 + - - = 90

@ A problem:

e This works well if agent knows 6 : S x A — S, and
r:SxA—-~R

e But when it doesn’, it can’t choose actions this way
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Learning

Stephen Scott Q(S,Cl) = r(s,a) + ’yV*(é(s,a))

Introduction

i.e., O(s,a) = total discounted reward if action a taken in
- state s and optimal choices made from then on

TD Learning @ If agent learns Q, it can choose optimal action even
DaN without knowing ¢

MDPs

Atari Example

Go Example w(s) = argmax [r(s,a) +~yV*(d(s,a))]
a

= argmax Q(s,a)
a

@ Q is the evaluation function the agent will learn



NeBWERSWV ] OF

Lincoln

CSCE
496/896
Lecture 7:
Reinforcement
Learning

Stephen Scott

Introduction
MDPs

0 Learning
TD Learning
DQN

Atari Example

Go Example

Training Rule to Learn Q

@ Note Q and V* closely related:
V¥(s) = max Q(s,d)
@ Which allows us to write Q recursively as
O(si,ar) = r(si,a) + YV (0(sr,ar)))

= r(s”a[) —I—’)/HZEILX Q(St+1’a/)

@ Let O denote learner’s current approximation to Q;
consider training rule

O(s,a) < r+ymax QO(s',d)
a/

where s’ is the state resulting from applying action a in
state s
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oLecture 7: @ For each s, a initialize table entry Q(s,a) < 0
Learning

@ Observe current state s

@ Do forever:

Introduction @ Select an action a (greedily or probabilistically) and
MDPs execute it

0 Learning @ Receive immediate reward r

TD Learning @ Observe the new state s’

DN o Update the table entry for O(s, a) as follows:

Stephen Scott

Atari Example N N
i
Go Example Q(S’ a) —rt ’YHZE,LX Q(S a4 )

@ s

@ Note that actions not taken and states not seen don’t
get explicit updates (might need to generalize)
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Learning X 5; ol %; R 0(s1, Qignt) 4~ T+ rr:lzllx 0(sy,d")
Stephen Scott ¥ ™ ¥ = 0+ 0.9 max{66, 81, 100}
Introduction = %

Initial state: A Next state: §,
MDPs
QLoaming Can show via induction on n that if rewards non-negative

TD Learning
DQN

Atari Example (Vs,a,n) Qn+1(s,a) > Qn(saa)

and Qs initially 0, then

Go Example

and
(Vs,a,n) 0< Qu(s,a) < O(s,a)
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pall Convergence
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Lecture 7:

ReTéern?Eem e 0 converges to Q: Consider case of deterministic
world where each (s, a) is visited infinitely often

@ Proof: Define a full interval to be an interval during
which each (s, a) is visited. Will show that during each

Stephen Scott

Introduction

mmg full interval the largest error in Q table is reduced by
TD Learning faCtor Of ’Y

DON @ Let Q, be table after n updates, and A,, be the

Atari Example maximum error in Q,; i.e.,

Go Example

An = Hsla;lx ‘Qn(sya) - Q(s,a)]

@ Lets =d(s,a)



\Sea Updating O

pall Convergence

CSCE
Locture 7: @ For any table entry 0, (s, ) updated on iteration n + 1,

Reinforcement . . . - .
Learning error in the revised estimate Q,,+1(s,a) is
Stephen Scott R .
|Qnr1(s,a) = Q(s,a)] = |(r+ymax 0(s',d"))
Introduction a
MDPs —(r+’ymz}xQ(s/,a'))|
a

0 Learning

TD Learning ’7| HZ?IX Qn <SI’ a/) B HilEIiX Q(S/7 al)'

DaN (*) S ’7ma'X|Qn(Slval) - Q(Slva/”
Atari Example
Go Example (**) < ~ymax |Qn< ,a ) - Q(S/lv al>|

S‘” ’

= 94,

(x) works since | max, fi (a) — max, f(a)| < max, |fi(a) —f(a)|
(+x) works since max will not decrease
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s @ Also, Qo(s,a) and Q(s, a) are both bounded Vs, a

MDPs = /Ay bounded

— @ Thus after & full intervals, error < ~%A,

TD Learning . L Lo

BN @ Finally, each (s, a) visited infinitely often = number of
Al Bl intervals infinite, so A, -+ 0asn — oo

Go Example
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CSCE
496/896 @ What if reward and next state are non-deterministic?

Lecture 7:

Renforcement @ We redefine V, Q by taking expected values:

Learning

Stephen Scott

Vi(s) =E[n +9rm + g+ o]

o
—E|>
i=0

Introduction

MDPs

0 Learning
TD Learning
DQN

Atari Example O(s,a) = E [F(S, a) + ny*((S(S,a))]
Go Example = E[r(s,a)] +~vE[V*((s,q))]

= E|[r(s,a) —|—72 (s" | s,a) V*(s)

= r(s,a) +vz (s' | s,a) maXQ(s a)
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@ (O learning generalizes to nondeterministic worlds

Stephen Scott L.
@ Alter training rule to

Introduction

MDPs On(s,a) + (1 — ap)Qn_1(s,a) + a[r + 7 max On_1(s',d)]
Q Learning a

TD Learning

oo where .

Atari Example Qp

T 1+ visits, (s, a)

Go Example

@ Can still prove convergence of O to Q, with this and
other forms of «,, (Watkins and Dayan, 1992)
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Reinforcement @ Q learning: reduce error between successive Q
earning estimates

@ Q estimate using one-step time difference:

Stephen Scott

Introduction

. B ~
MDPs Q( )(St,at) =+ ymax Q(si+1,4)
0 Learning ‘
earning @ Why not two steps?

Atari Example Q(2) (s[, at) =r 4+ Y41 + ’yz mgbx Q(St+2’ a)

Go Example

@ Orn?

QW (si,a0) = r+y v+ 4" Vrigy 9" max Q(sien, @)
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@ Blend all of these (0

Stephen Scott

Introduction QA (s,a) = (1-=2X) [Q“)(Sn a;) + AQ(Z) (s, ar) + AQQ@) (s,ar) + -+ ]
MDPs ~ A

0 Learning = n+v [(1 =) max O(si+1,a) + A Q (5t+1>ar+1)]
TD Learning

o @ TD(\) algorithm uses above training rule

e Sometimes converges faster than Q learning

e Converges for learning V* for any 0 < X\ < 1 (Dayan,
1992)

e Tesauro’s TD-Gammon uses this algorithm

Atari Example

Go Example
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Introduction @ Convergence proofs assume that Q(s, a) represented
MDPs exactly

Ollearing e E.g., as an array
TD Learning .

@ How well does this scale to real problems?
Aari Example @ What can we do about it?

Go Example
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R et @ We already have machinery to approximate functions
based on labeled samples
@ Search for a deep Q network (DQN) to implement
function Qg approximating Q

Stephen Scott

Introduction

MDPs

e @ Each training instance is (s, a) with label
TD Learning )’(57 a) =r + ’7 Inaxa/ QG (S,, Cl/)
e l.e., take action « in state s, get reward r and observe
Atari Example new state s’
Go Example e Then use Qg to compute label y(s, a) and update as
usual

@ Convergence proofs break, but get scalability to large
state space
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DQN Example: Playing Atari (Mnih et al., 2015)

CSCE
Lecre 7 @ Applied same architecture and hyperparameters to 49

Reinfi .
il Atari 2600 games

Stephen Scott e System learned effective policy for each, very different,
game

lotecucicy e No game-specific modifications

MDPs . g . .

R @ State description consists of raw input from emulator

TD Learning @ Frames rescaled to 84 x 84, single channel

DON @ Each state is sequence of four most recent frames

Atari Example

@ Rather than take s and a as inputs, network takes s and
gives prediction of Q(s, a) for all a as outputs

@ Clipped positive rewards to +1 and negative to —1

@ Evaluated each policy’s performance against
professional human tester

Go Example



ea DQN Example: Playing Atari (Mnih et al., 2015)

Bl Architecture

Convolution Ccnvg\uticn Fully ccvmnected Fully csnnecled

CSCE
496/896
Lecture 7: |
Reinforcement | [» ‘:‘ g

Learning

Stephen Scott ;“‘ l:tl:‘ ’
Introduction 1 ‘
MDPs - DD Q E| A\

\ '] \

Q Learning

TD Learning

DQN e D

Atari Example

Go Example

@ Input: 84 x 84 x 4, 3 convolutional layers, two dense
@ Conv: 3220 x 20,649 x9,647 x7

@ 512 units in dense layers

@ 18 outputs: Output i is estimate of O(s;ya;)



ea DQN Example: Playing Atari (Mnih et al., 2015)

Lincoln Traini ng

CSCE
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Lecture 7:

Reilorcemert @ Reward signal at time ¢: +1 if score increased, —1 if
¢ decreased, 0 otherwise

@ Action in game selected via e-greedy policy: With
probability e choose action u.a.r., with probability (1 — ¢)

o Loaring choose argmax, Qg(s, a)

TD Learning @ Chosen action a; run in emulator, which returns reward

DON r; and next frame for state s,

@ Update:

Stephen Scott

Introduction

MDPs

Atari Example

Go Example

01 =60+ |+ ynza}x Qe, (St+15 a') — Qp, (51, ar) VQ@,(S” a)

@ Trained with RMSProp, mini-batch size of 32



ea DQN Example: Playing Atari (Mnih et al., 2015)

Bl Modifications

SSCE Deep RL systems can be unstable or divergent, so Mnih:

Lecture 7:

R et @ Used experience replay: Rather than train on
consecutive tuples, tuple (s;, a;, 1, s.+1) from game play

added to replay memory

liccicioy e Replay memory sampled u.a.r. for training mini-batches

MDPs e Independent instances in mini-batches reduces

0 Learning correlations in training data

TD Learning e Trained off-policy (policy trained is not the one

DQN choosing actions in game)

HEN S @ Used separate target network 6 to generate labels:

Stephen Scott

Go Example

9t+l =60, +a|r+ ’YU?;X Qé,(sr-&-l s a/) - QG,(sta at) VQe, (sta at)

Copied 6 into 6 every C updates
© Clipped error term [r, + - - — Qg,(s1,a,)] to [—1,1]



ea DQN Example: Playing Atari (Mnih et al., 2015)

Lincoln Pseudocode

Algorithm 1: deep Q-learning with experience replay.
4(3? /ggEG Initialize replay memory D to capacity N
Lecture 7: Initialize action-value function Q with random weights 0
Reg‘;ﬁﬁ%em Initialize target action-value function Q) with weights 6~ = 0
For episode = 1, M do
Initialize sequence s, = {x; } and preprocessed sequence ¢, =¢(s;)
For t=1,T do
With probability ¢ select a random action a,
otherwise select a, = argmax, Q(§(s;),a; 0)
0 Learning Execute action a, in emulator and observe reward r, and image x; 4
TD Learning Set s¢11=S$t,41,%:+1 and preprocess ¢t+1 =¢(st41)
DAN Store transition (¢,az,rt,9;4,) in D
Sample random minibatch of transitions (de,uj,rj,de +1) from D

Stephen Scott

Introduction

MDPs

Atari Example
7 if episode terminates at step j+1

Sety;= { rj+7y maxy Q(¢j+1,a’; 9_) otherwise

Perform a gradient descent step on (y] - Q(¢j,aj; 0) ) ’ with respect to the
network parameters 6
Every C steps reset Q=0
End For
End For

Go Example
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1 million samples

During Training

Stephen Scott

DQN Example: Playing Atari (Mnih et al., 2015)

=minl-batch size Add new data sample to database
X [@nanrupin] @ anrag | [ty |
Introduction \ 5 (g1, aer, ra i)
\
Do mini-batch gradient
MDPs descent on parameter 6
. for one step
0 Learning Osyan) & an
1 -
‘ Y
TD Learning -
)& ai a; = argmax,Q(s, @)
S | Undertraining | Olsict2) & a with probability 1-
i) o
A Input game ourale v random action a;
Atari Example s passie? : with probability £
Go Example image at time ¢ : x, Ossam) &
prem?;ezs;?sfi quence Play the game for one step




A DON Example: Playing Atari (Mnih et al., 2015)
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After Training

Stephen Scott

Os.a) & a
™

b
=
Vls.a) & a:

Introduction

MDPs Trained
~ . Convolutional * _
Q Learning Neural Network [ a’ = argmax,Q(s,a)
Input game Parameter 8 :
TD Learning image
Os.am) & @ ?\/

DQN

Atari Example

Go Example
Play the game for one step



ea DQN Example: Playing Atari (Mnih et al., 2015)

Lincoln Results

CSCE
496/896

Lecture 7: @ Trained on each game for 50 million frames, no transfer

Reinforcement

Learning |earning
Stephen Scot @ Testing: Averaged final score over 30 sessions/game
Introduction @ Measured performance of DQN RL and linear learner
MDPs RL (with custom features) vs. human player:
0 Learning 100(RL—random)/(human—random)
D Lesive e l.e.,, human=100%, random=0%

o @ DQN outperformed linear learner on all but 6 games,

outperformed human on 22, and comparable to human
on7

Atari Example

Go Example

@ Shortcoming: Performance poor (near random) when
long-term planning required, e.g., Montezuma’s
revenge
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Introduction
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Introduction
MDPs

Q Learning
TD Learning
DQN

Atari Example

Go Example
AlphaGo
AlphaGo Zero
AlphaZero

Go Example

@ One of the most complex board games humans have

@ Checkers has about 10'® distinct states, Backgammon:
10%°, Chess: 10%’, Go: 10'7°
e Number of atoms in the universe around 103!
e Another issue: Difficult to quantify goodness of a board
configuration

@ AlphaGo: Used RL and human knowledge to defeat
professional player

@ AlphaGo Zero: Improved on AlphaGo without human
knowledge

@ AlphaZero: Generalized to chess and shogi with
general RL




ey AlphaGo (Silver et al., 2016)

Lincoln Overview

CSCE
doe/6se @ Input: 19 x 19 x 48 image stack representing player’s

Reinforcement and opponent’s board positions, number of opponent’s
earning
A stones that could be captured there, etc.
@ Training

Introduction . . g . .
b e Supervised learning (classification) of policy networks

° p-~ and p, based on expert moves for states
Q Learning . .

e Transfer learning from p, to policy network p,,

TD Learning

o Reinforcement learning to refine p, via policy
gradient and self-play
o Regression to learn value network vg
Go Example .
ApraGo @ Live play

AlphaGo Zero

Aphazero @ Uses these networks in Monte Carlo tree search to
choose actions during games

DQN

Atari Example

@ 99.8% winning rate vs other Go programs and defeated
human Go champion 5-0
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Introduction
MDPs

Q Learning
TD Learning
DQN

Atari Example

Go Example
AlphaGo
AlphaGo Zero
AlphaZero

AlphaGo (Silver et al., 2016)

Overview

Pojp

Policy network

(@ls)

Value network

v, )
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Introduction
MDPs

Q Learning
TD Learning
DQN

Atari Example

Go Example
AlphaGo
AlphaGo Zero
AlphaZero

AlphaGo (Silver et al., 2016)

Supervised Learning

Rollout policy

SL policy network
@ Supervised learning

of policies pr and p, P, P,
@ Board positions from

KGS Go Server, labels

are experts’ moves m

@ Supervised learning of
policies p, and

@ p. is full network
(accuracy 57%,
3ms/move), pr is
simpler (accuracy 24%
2u8/move)

Human expert positions
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Introduction
MDPs

Q Learning
TD Learning
DQN

Atari Example

Go Example
AlphaGo
AlphaGo Zero
AlphaZero

AlphaGo (Silver et al., 2016)

Transfer Learning

Rollout policy SL policy network RL policy network

Py P, P,

Policy gradient

LG 1%
%\Qf

Human expert positions

Transfer learning of p, to p, (same arch., copy parameters)

Value network

Yo

Self-play positions
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Introduction
MDPs

Q Learning
TD Learning
DQN

Atari Example

Go Example
AlphaGo
AlphaGo Zero
AlphaZero

AlphaGo (Silver et al., 2016)

Reinforcement Learning

@ Trained p, via play against p; (randomly selected
earlier version of p,)

@ For state s;, terminal reward z;, = +1 if game ultimately
won from s; and —1 otherwise

@ Note p, does not compute value of actions like
QO-learning does

e It directly implements a policy that outputs a, given s,
e Use policy gradient method to train:

@ |f agent chooses action «, in state s, and ultimately wins
90% of the time, what should happen to p,(a; | s:)?
@ How can we make that happen?
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Introduction
MDPs

Q Learning
TD Learning
DQN

Atari Example

Go Example
AlphaGo
AlphaGo Zero
AlphaZero

AlphaGo (Silver et al., 2016)

Policy Gradient

@ REINFORCE: REward Increment = Nonnegative Factor
times Offset Reinforcement times Characteristic
Eligibility

@ Perform gradient ascent to increase probability of

actions that on average lead to greater rewards:

dlogpylals
Apj = ar — bs)a’;H
)j

)

« is learning rate, r is reward, a is action taken in state
s, and by is reinforcement baseline (independent of a)

@ b keeps expected update same but reduces variance
@ E.g., if all actions from s good, b, helps differentiate
@ Common choice: b; = ¥(s) = estimated value of s
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Introduction
MDPs

Q Learning
TD Learning
DQN

Atari Example

Go Example

AlphaGo
AlphaGo Zero
AlphaZero

AlphaGo (Silver et al., 2016)

Policy Gradient

@ AlphaGo uses REINFORCE with baseline b, = vg(s),
r = z;, and sums over all game stepsr=1,...,T

@ Average updates over gamesi=1,...,n

ZZ 2 —ve(si))V IngP(at ‘ Sz)

i=1 =1
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Introduction
MDPs

Q Learning
TD Learning
DQN

Atari Example

Go Example
AlphaGo
AlphaGo Zero
AlphaZero

AlphaGo (Silver et al., 2016)

Value Learning

@ vg(s) approximates v’»(s) = value of s under policy p,

@ Regression problem on state-outcome pairs (s, z)
@ Train with MSE

@ Analogous to experience replay, mitigated overfitting by
drawing each instance from a unique self-play game:
@ Choose time step U uniformly from {1,...,450}
@ Play movest=1,...,U from p,
© Choose move ay uniformly
©Q Playmovest=U+1,...,T fromp,
© Instance (sy.1,zu41) added to train set
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Live Play

Now, we're ready for live play

@ Rather than exclusively using p, or vy to determine
actions, will instead base action choice on a rollout
algorithm

@ Use the functions learned to simulate game play from
state s forward in time (“rolling it out”) and computing
statistics about the outcome

@ Repeat as much as time limit allows, then choose most
favorable action

= Monte Carlo Tree Search (MCTS)



ey AlphaGo (Silver et al., 2016)

BN Monte Carlo Tree Search

CSCE . .
496/896 @ Given current state s, MCTS runs four operations:

Lecture 7:

Reinforcement (a) Selection: Given a tree rooted at s, follow tree policy
Learning to traverse and select a leaf node

(b) Expansion: Expand selected leaf by adding children

Stephen Scott

irodustion (c) Evaluation (simulation): Perform rollout to end of
game

MoPs u t d up this part

Q Learning ° S€ pr 10 Spee P P i

D Learni (d) Backup: Use rollout results to update action values of
earning

DaN tree _ o

Atari Example @ Each tree edge ((s, a) pair) has statistics:

Go Example o Prior probability P(s,a)

e e Action values W,(s,a) and W, (s, a)

AlphaZero

e Value counts N, (s,a) and N,(s,a)
e Mean action value O(s, a)

@ After many parallel simulations, choose action
maximizing N, (s, a)



ey AlphaGo (Silver et al., 2016)

Bl  Monte Carlo Tree Search: Selection

cSCE a Selection @ Before reaching leaf state,
496/896 . .
Lecture 7: Hj; Choose aCt|0n
Reinforcement
Learning Q + uP) mah Q+uP) -
N a; = argmax (Q(s.,@) + u(ss, @)
Introduction Q +u(P) Aax Q-+ ulP) Where
MDPs ﬁﬁ*ﬁ S N (s,b)
> _ b r ,
0 Learning u(s,a) - CP(S7 Cl) 1+Nr(s7g)
TD Learning . .
bon @ l.e., if (s;,a;) has been evaluated a lot relative to other
S actions from s;, N,(s;,a;) is large and 4, is evaluated
Go Example malnly by Q
@ Otherwise, exploration is encouraged

AlphaZero

@ To avoid all searches choosing same actions: When
(s1,a;) chosen, update stats as if n,; games lost

Ny (s, a) = Ni(s1,a;) + nyp
Wr(sl‘a al‘) = Wr(sl‘a al‘) — Ay
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Monte Carlo Tree Search: Expansion

@ If N,(s,a) > ny,, expand next
state §' in tree
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Monte Carlo Tree Search: Evaluation

Evaluation

@ Expand from leaf s, until game
ends

@ Ateachtime: > L, each
player chooses a; ~ pr

@ At game’s end, compute
zz = +1 forall ¢



ey AlphaGo (Silver et al., 2016)

Bl Monte Carlo Tree Search: Backup

Backup
Jrere gre At end of simulated game, update

Lecture 7:

Reinforcement Q N statistics for all StepS t<L
Learnin [
’ * /:ﬁ @ Undo virtual loss and update z:

Stephen Scott
o), (1t

Introduction m :}i‘“ Nr(sh at) = Nr(S[, a,) — Ny + 1

MDPs i

0 Learning r ‘ﬁ r ﬂ r itf Wr(sta at) = Wr(S;, a,) + ny + z;

TD Learning ‘

DaN @ After leaf evaluation done:

Atari Example

Go Example NV(SI, at) = NV(S;, a,) +1
AlphaGo
AlphaGo Zero

AlphaZero WV (sl7 al‘) = WV (S[7 at) + Ve (SL)
© Take weighted average for final action value:

o) = (1= () +4 (o))




ey AlphaGo Zero (Silver et al., 2017)

Lincoln Overview

CSCE
496/896 @ The “Zero” refers to zero human knowledge

Lecture 7:

Reinforcement @ No supervised training from KGS Go data
Learning . . .
e Trained only via RL in self-play

e Trained a single network (p,v) = f for both policy and
Introduction value

MDPs @ Integrated MCTS into training as well as live play
0 Learning e Folded lookahead search into training loop
TD Learning e Did not rollout to end of game
DON @ Input: 19 x 19 x 17 image stack:

e Eight of 17 binary planes indicate locations of player’s
Go Example stones the past 8 time steps
T e Eight of 17 binary planes indicate locations of
fpnazere opponent’s stones the past 8 time steps

e Final plane indicates color to play
@ Discovered new Go knowledge during self-play,

including previously unknown tactics

Stephen Scott

Atari Example



2y AlphaGo Zero (Silver et al., 2017)

Lincoln Self-PI ay

CSCE
496/896

Lecture 7: Self-play
Reinforcement

3
: a, ~m a, ~ 7 a~7m
Learnin 1 1 2 2 ——f ?—— t t
L ﬁ H ﬁ * *ooo * %
Stephen Scott T

Introduction /\ /\

MDPs /\l/\ /\l/\ /\l/\
AN AN Fawa A NaN Va)

FAAN Fa AN WA FaWANI2 A raway

Q Learning

TD Learning

S Ty ) 73 z
Atari Example

S0 BEHE @ Play games against self, choosing actions a, ~ 7, via
AlphaGo

AlphaGo Zero M CTS

AlphaZero

@ Outcome of game recorded as z = +1
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Training

@ Training is a form of policy iteration: Alternating
between

e Policy evaluation: Estimating value v of policy p
e Policy improvement: Improving policy wrt v

@ Use MCTS to map NN policy p to search policy =
@ Self-play outcomes inform updates to v
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Training

Neural network training
S4

"o

Pg Vs
Y u

Ty Ty Ty

@ State s;’s targets are distribution &, and reward z;
@ Update network using loss function
sq loss CE regularizer
(z —v(s:))” —m, logp, +c||O]]
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MCTS

b Expand and evaluate € Backup d  Play
4 Repeat )
ot y A o ﬁ
oo s ﬁ\ e -
Q+U fhan, 0+ U VH ;/&\lp /H :;jﬁn /\/\/\1/\/ A
Boope gl B :

@ MCTS similar to that of AlphaGo, but drop N, and W,
since no rollout: [N(s,a), W(s,a), Q(s,a), P(s,a)]
(a) Select: same as before, but u(s,a) uses N instead of N,

(b) Expand + evaluate: fy compute value v(s) (modulo
symmetry) for backup instead of rollout to game end

(c) Backup: same as before, but no N, or W,

(d) Play policy: m(a | s0) = N(so,a)"/™/ 32, N(s0,b)"/"
(7 controls exploration)



Weect=d AlphaZero (Silver et al., 2017b)

CSCE
ot @ AlphaGo Zero’s approach applied to chess and shogi

Reinforcement

Learning @ Same use of (p,v) = fp(;) and MCTS

e @ Go-specific parts removed + other generalizations

Introduction @ No game-specific hyperparameter tuning

MDPs e Similar framework as Atari

Q Learning

7D Learning Game ‘White Black ‘ Win Draw Loss
AlphaZero Stockfish 25 0

DAN Chess Stockfish ~ AlphaZero ‘ 47 0

Atari Example Shosi AlphaZero  Elmo 43 2 5

Go Example o8t Elmo AlphaZero 47 0 3

Aptac 7o G AlphaZero  AGO3-day |31 - 19

Apnazero © AGO 3-day  AlphaZero | 29 - 21

Table 1: Tournament evaluation of AlphaZero in chess, shogi, and Go, as games won, drawn
or lost from AlphaZero’s perspective, in 100 game matches against Stockfish, Elmo, and the
previously published AlphaGo Zero after 3 days of training. Each program was given 1 minute
of thinking time per move.
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