
CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

CSCE 496/896 Lecture 7:
Reinforcement Learning

Stephen Scott

(Adapted from Paul Quint)

sscott@cse.unl.edu

1 / 53

mailto:sscott@cse.unl.edu

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

Introduction

Consider learning to choose actions, e.g.,
Robot learning to dock on battery charger
Learning to choose actions to optimize factory output
Learning to play Backgammon, chess, Go, etc.

Note several problem characteristics:
Delayed reward (thus have problem of temporal credit
assignment)
Opportunity for active exploration (versus exploitation of
known good actions)
⇒ Learner has some influence over the training data it sees

Possibility that state only partially observable

2 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

Example: TD-Gammon (Tesauro, 1995)

Learn to play Backgammon
Immediate Reward:

+100 if win
−100 if lose
0 for all other states

Trained by playing 1.5 million games against itself
Approximately equal to best human player at that time

3 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

Outline

Markov decision processes
The agent’s learning task
Q learning
Temporal difference learning
Deep Q learning
Example: Learning to play Atari

4 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

Reinforcement Learning Problem

Agent

Environment

State Reward Action

r + γγ r + r + ... , where γ <10 2
2

1

Goal: Learn to choose actions that maximize

0s 1s 2s0a 1a 2a

0r 1r 2r
...

 <0

5 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

Markov Decision Processes

Assume

Finite set of states S

Set of actions A

At each discrete time t agent observes state st ∈ S and
chooses action at ∈ A

Then receives immediate reward rt, and state changes
to st+1

Markov assumption: st+1 = δ(st, at) and
rt = r(st, at)

I.e., rt and st+1 depend only on current state and action
Functions δ and r may be nondeterministic
Functions δ and r not necessarily known to agent

6 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

Agent’s Learning Task

Execute actions in environment, observe results, and
Learn action policy π : S→ A that maximizes

E
[
rt + γrt+1 + γ2rt+2 + · · ·

]
from any starting state in S
Here 0 ≤ γ < 1 is the discount factor for future
rewards

Note something new:
Target function is π : S→ A
But we have no training examples of form 〈s, a〉
Training examples are of form 〈〈s, a〉, r〉
I.e., not told what best action is, instead told reward for
executing action a in state s

7 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

Value Function

First consider deterministic worlds
For each possible policy π the agent might adopt, we
can define discounted cumulative reward as

Vπ(s) ≡ rt + γrt+1 + γ2rt+2 + · · · =
∞∑

i=0

γirt+i ,

where rt, rt+1, . . . are generated by following policy π,
starting at state s

Restated, the task is to learn an optimal policy π∗

π∗ ≡ argmax
π

Vπ(s), (∀s)

8 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

Value Function

G
100

100

0

0

0

0
0

0

0

0
0

0

0

r(s, a) values Q(s, a) values

G100

10090

90

81

0

V∗(s) values

G

One optimal policy

9 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

What to Learn

We might try to have agent learn the evaluation
function Vπ

∗
(which we write as V∗)

It could then do a lookahead search to choose best
action from any state s because

π∗(s) = argmax
a

[r(s, a) + γV∗(δ(s, a))] ,

i.e., choose action that maximized immediate reward +
discounted reward if optimal strategy followed from
then on
E.g., V∗(bot. ctr.) = 0 + γ100 + γ20 + γ30 + · · · = 90
A problem:

This works well if agent knows δ : S× A→ S, and
r : S× A→ R
But when it doesn’t, it can’t choose actions this way

10 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

Q Function

Define new function very similar to V∗:

Q(s, a) ≡ r(s, a) + γV∗(δ(s, a))

i.e., Q(s, a) = total discounted reward if action a taken in
state s and optimal choices made from then on
If agent learns Q, it can choose optimal action even
without knowing δ

π∗(s) = argmax
a

[r(s, a) + γV∗(δ(s, a))]

= argmax
a

Q(s, a)

Q is the evaluation function the agent will learn

11 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

Training Rule to Learn Q

Note Q and V∗ closely related:

V∗(s) = max
a′

Q(s, a′)

Which allows us to write Q recursively as

Q(st, at) = r(st, at) + γV∗(δ(st, at)))

= r(st, at) + γmax
a′

Q(st+1, a′)

Let Q̂ denote learner’s current approximation to Q;
consider training rule

Q̂(s, a)← r + γmax
a′

Q̂(s′, a′) ,

where s′ is the state resulting from applying action a in
state s

12 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

Q Learning for Deterministic Worlds

For each s, a initialize table entry Q̂(s, a)← 0

Observe current state s
Do forever:

Select an action a (greedily or probabilistically) and
execute it
Receive immediate reward r
Observe the new state s′

Update the table entry for Q̂(s, a) as follows:

Q̂(s, a)← r + γmax
a′

Q̂(s′, a′)

s← s′

Note that actions not taken and states not seen don’t
get explicit updates (might need to generalize)

13 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

Updating Q̂

100

81

R
66

72

Initial state: s1

10090

81

R
66

Next state: s2

aright

Q̂(s1, aright) ← r + γmax
a′

Q̂(s2, a′)

= 0 + 0.9 max{66, 81, 100}
= 90

Can show via induction on n that if rewards non-negative
and Q̂s initially 0, then

(∀s, a, n) Q̂n+1(s, a) ≥ Q̂n(s, a)

and
(∀s, a, n) 0 ≤ Q̂n(s, a) ≤ Q(s, a)

14 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

Updating Q̂
Convergence

Q̂ converges to Q: Consider case of deterministic
world where each 〈s, a〉 is visited infinitely often
Proof: Define a full interval to be an interval during
which each 〈s, a〉 is visited. Will show that during each
full interval the largest error in Q̂ table is reduced by
factor of γ
Let Q̂n be table after n updates, and ∆n be the
maximum error in Q̂n; i.e.,

∆n = max
s,a
|Q̂n(s, a)− Q(s, a)|

Let s′ = δ(s, a)

15 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

Updating Q̂
Convergence

For any table entry Q̂n(s, a) updated on iteration n + 1,
error in the revised estimate Q̂n+1(s, a) is

|Q̂n+1(s, a)− Q(s, a)| = |(r + γmax
a′

Q̂n(s′, a′))

−(r + γmax
a′

Q(s′, a′))|

= γ|max
a′

Q̂n(s′, a′)−max
a′

Q(s′, a′)|

(∗) ≤ γmax
a′
|Q̂n(s′, a′)− Q(s′, a′)|

(∗∗) ≤ γmax
s′′,a′
|Q̂n(s′′, a′)− Q(s′′, a′)|

= γ∆n

(∗) works since |maxa f1(a)−maxa f2(a)| ≤ maxa |f1(a)− f2(a)|
(∗∗) works since max will not decrease

16 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

Updating Q̂
Convergence

Also, Q̂0(s, a) and Q(s, a) are both bounded ∀ s, a
⇒ ∆0 bounded

Thus after k full intervals, error ≤ γk∆0

Finally, each 〈s, a〉 visited infinitely often⇒ number of
intervals infinite, so ∆n → 0 as n→∞

17 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

Nondeterministic Case

What if reward and next state are non-deterministic?
We redefine V,Q by taking expected values:

Vπ(s) ≡ E
[
rt + γrt+1 + γ2rt+2 + · · ·

]
= E

[∞∑
i=0

γirt+i

]

Q(s, a) ≡ E [r(s, a) + γV∗(δ(s, a))]

= E [r(s, a)] + γE [V∗(δ(s, a))]

= E [r(s, a)] + γ
∑

s′
P(s′ | s, a) V∗(s′)

= E [r(s, a)] + γ
∑

s′
P(s′ | s, a) max

a′
Q(s′, a′)

18 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

Nondeterministic Case

Q learning generalizes to nondeterministic worlds
Alter training rule to

Q̂n(s, a)← (1− αn)Q̂n−1(s, a) + αn[r + γmax
a′

Q̂n−1(s′, a′)]

where
αn =

1
1 + visitsn(s, a)

Can still prove convergence of Q̂ to Q, with this and
other forms of αn (Watkins and Dayan, 1992)

19 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

Temporal Difference Learning

Q learning: reduce error between successive Q
estimates
Q estimate using one-step time difference:

Q(1)(st, at) ≡ rt + γmax
a

Q̂(st+1, a)

Why not two steps?

Q(2)(st, at) ≡ rt + γrt+1 + γ2 max
a

Q̂(st+2, a)

Or n?

Q(n)(st, at) ≡ rt + γ rt+1 + · · ·+ γ(n−1)rt+n−1 + γn max
a

Q̂(st+n, a)

20 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

Temporal Difference Learning

Blend all of these (0 ≤ λ ≤ 1):

Qλ(st, at) ≡ (1− λ)
[
Q(1)(st, at) + λQ(2)(st, at) + λ2Q(3)(st, at) + · · ·

]
= rt + γ

[
(1− λ)max

a
Q̂(st+1, a) + λ Qλ(st+1, at+1)

]
TD(λ) algorithm uses above training rule

Sometimes converges faster than Q learning
Converges for learning V∗ for any 0 ≤ λ ≤ 1 (Dayan,
1992)
Tesauro’s TD-Gammon uses this algorithm

21 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

Representing Q̂

Convergence proofs assume that Q̂(s, a) represented
exactly

E.g., as an array

How well does this scale to real problems?
What can we do about it?

22 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

Deep Q Learning

We already have machinery to approximate functions
based on labeled samples
Search for a deep Q network (DQN) to implement
function Qθ approximating Q
Each training instance is 〈s, a〉 with label
y(s, a) = r + γmaxa′ Qθ(s′, a′)

I.e., take action a in state s, get reward r and observe
new state s′

Then use Qθ to compute label y(s, a) and update as
usual

Convergence proofs break, but get scalability to large
state space

23 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

DQN Example: Playing Atari (Mnih et al., 2015)

Applied same architecture and hyperparameters to 49
Atari 2600 games

System learned effective policy for each, very different,
game
No game-specific modifications

State description consists of raw input from emulator
Frames rescaled to 84× 84, single channel
Each state is sequence of four most recent frames
Rather than take s and a as inputs, network takes s and
gives prediction of Q(s, a) for all a as outputs
Clipped positive rewards to +1 and negative to −1

Evaluated each policy’s performance against
professional human tester

24 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

DQN Example: Playing Atari (Mnih et al., 2015)
Architecture

Input: 84× 84× 4, 3 convolutional layers, two dense
Conv: 32 20× 20, 64 9× 9, 64 7× 7
512 units in dense layers
18 outputs: Output i is estimate of Q(s, ai)25 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

DQN Example: Playing Atari (Mnih et al., 2015)
Training

Reward signal at time t: +1 if score increased, −1 if
decreased, 0 otherwise
Action in game selected via ε-greedy policy: With
probability ε choose action u.a.r., with probability (1− ε)
choose argmaxa Qθ(s, a)

Chosen action at run in emulator, which returns reward
rt and next frame for state st+1

Update:

θt+1 = θt +α

[
rt + γmax

a′
Qθt (st+1, a′)− Qθt (st, at)

]
∇Qθt (st, at)

Trained with RMSProp, mini-batch size of 32

26 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

DQN Example: Playing Atari (Mnih et al., 2015)
Modifications

Deep RL systems can be unstable or divergent, so Mnih:

1 Used experience replay: Rather than train on
consecutive tuples, tuple (st, at, rt, st+1) from game play
added to replay memory

Replay memory sampled u.a.r. for training mini-batches
Independent instances in mini-batches reduces
correlations in training data
Trained off-policy (policy trained is not the one
choosing actions in game)

2 Used separate target network θ̃ to generate labels:

θt+1 = θt +α

[
rt + γmax

a′
Qθ̃t

(st+1, a′)− Qθt (st, at)

]
∇Qθt (st, at)

Copied θ into θ̃ every C updates
3 Clipped error term [rt + · · · − Qθt(st, at)] to [−1, 1]

27 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

DQN Example: Playing Atari (Mnih et al., 2015)
Pseudocode

28 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

DQN Example: Playing Atari (Mnih et al., 2015)

29 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

DQN Example: Playing Atari (Mnih et al., 2015)

30 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

DQN Example: Playing Atari (Mnih et al., 2015)
Results

Trained on each game for 50 million frames, no transfer
learning
Testing: Averaged final score over 30 sessions/game
Measured performance of DQN RL and linear learner
RL (with custom features) vs. human player:
100(RL−random)/(human−random)

I.e., human=100%, random=0%

DQN outperformed linear learner on all but 6 games,
outperformed human on 22, and comparable to human
on 7
Shortcoming: Performance poor (near random) when
long-term planning required, e.g., Montezuma’s
revenge

31 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example

DQN Example: Playing Atari (Mnih et al., 2015)
Results

32 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example
AlphaGo

AlphaGo Zero

AlphaZero

Go Example

One of the most complex board games humans have
Checkers has about 1018 distinct states, Backgammon:
1020, Chess: 1047, Go: 10170

Number of atoms in the universe around 1081

Another issue: Difficult to quantify goodness of a board
configuration

AlphaGo: Used RL and human knowledge to defeat
professional player
AlphaGo Zero: Improved on AlphaGo without human
knowledge
AlphaZero: Generalized to chess and shogi with
general RL

33 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example
AlphaGo

AlphaGo Zero

AlphaZero

AlphaGo (Silver et al., 2016)
Overview

Input: 19× 19× 48 image stack representing player’s
and opponent’s board positions, number of opponent’s
stones that could be captured there, etc.
Training

Supervised learning (classification) of policy networks
pπ and pσ based on expert moves for states
Transfer learning from pσ to policy network pρ
Reinforcement learning to refine pρ via policy
gradient and self-play
Regression to learn value network vθ

Live play
Uses these networks in Monte Carlo tree search to
choose actions during games

99.8% winning rate vs other Go programs and defeated
human Go champion 5-0

34 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example
AlphaGo

AlphaGo Zero

AlphaZero

AlphaGo (Silver et al., 2016)
Overview

35 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example
AlphaGo

AlphaGo Zero

AlphaZero

AlphaGo (Silver et al., 2016)
Supervised Learning

Supervised learning
of policies pπ and pσ
Board positions from
KGS Go Server, labels
are experts’ moves
Supervised learning of
policies pπ and
pσ is full network
(accuracy 57%,
3ms/move), pπ is
simpler (accuracy 24%
2µs/move)

36 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example
AlphaGo

AlphaGo Zero

AlphaZero

AlphaGo (Silver et al., 2016)
Transfer Learning

Transfer learning of pσ to pρ (same arch., copy parameters)

37 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example
AlphaGo

AlphaGo Zero

AlphaZero

AlphaGo (Silver et al., 2016)
Reinforcement Learning

Trained pρ via play against pρ̃ (randomly selected
earlier version of pρ)
For state st, terminal reward zt = +1 if game ultimately
won from st and −1 otherwise
Note pρ does not compute value of actions like
Q-learning does

It directly implements a policy that outputs at given st
Use policy gradient method to train:

If agent chooses action at in state st and ultimately wins
90% of the time, what should happen to pρ(at | st)?
How can we make that happen?

38 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example
AlphaGo

AlphaGo Zero

AlphaZero

AlphaGo (Silver et al., 2016)
Policy Gradient

REINFORCE: REward Increment = Nonnegative Factor
times Offset Reinforcement times Characteristic
Eligibility
Perform gradient ascent to increase probability of
actions that on average lead to greater rewards:

∆ρj = α(r − bs)
∂ log pρ(a | s)

∂ρj
,

α is learning rate, r is reward, a is action taken in state
s, and bs is reinforcement baseline (independent of a)
b keeps expected update same but reduces variance
E.g., if all actions from s good, bs helps differentiate
Common choice: bs = v̂(s) = estimated value of s

39 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example
AlphaGo

AlphaGo Zero

AlphaZero

AlphaGo (Silver et al., 2016)
Policy Gradient

AlphaGo uses REINFORCE with baseline bs = vθ(s),
r = zt, and sums over all game steps t = 1, . . . ,T

Average updates over games i = 1, . . . , n

∆ρ =
α

n

n∑
i=1

T i∑
t=1

(zi
t − vθ(si

t))∇ρ log pρ(ai
t | si

t)

40 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example
AlphaGo

AlphaGo Zero

AlphaZero

AlphaGo (Silver et al., 2016)
Value Learning

vθ(s) approximates vpρ(s) = value of s under policy pρ
Regression problem on state-outcome pairs (s, z)

Train with MSE
Analogous to experience replay, mitigated overfitting by
drawing each instance from a unique self-play game:

1 Choose time step U uniformly from {1, . . . , 450}
2 Play moves t = 1, . . . ,U from pσ
3 Choose move aU uniformly
4 Play moves t = U + 1, . . . ,T from pρ
5 Instance (sU+1, zU+1) added to train set

41 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example
AlphaGo

AlphaGo Zero

AlphaZero

AlphaGo (Silver et al., 2016)
Live Play

Now, we’re ready for live play
Rather than exclusively using pρ or vθ to determine
actions, will instead base action choice on a rollout
algorithm
Use the functions learned to simulate game play from
state s forward in time (“rolling it out”) and computing
statistics about the outcome
Repeat as much as time limit allows, then choose most
favorable action
⇒ Monte Carlo Tree Search (MCTS)

42 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example
AlphaGo

AlphaGo Zero

AlphaZero

AlphaGo (Silver et al., 2016)
Monte Carlo Tree Search

Given current state s, MCTS runs four operations:
(a) Selection: Given a tree rooted at s, follow tree policy

to traverse and select a leaf node
(b) Expansion: Expand selected leaf by adding children
(c) Evaluation (simulation): Perform rollout to end of

game
Use pπ to speed up this part

(d) Backup: Use rollout results to update action values of
tree

Each tree edge ((s, a) pair) has statistics:
Prior probability P(s, a)
Action values Wv(s, a) and Wr(s, a)
Value counts Nv(s, a) and Nr(s, a)
Mean action value Q(s, a)

After many parallel simulations, choose action
maximizing Nv(s, a)

43 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example
AlphaGo

AlphaGo Zero

AlphaZero

AlphaGo (Silver et al., 2016)
Monte Carlo Tree Search: Selection

Before reaching leaf state,
choose action

at = argmax
a

(Q(st, a) + u(st, a)) ,

where
u(s, a) = cP(s, a)

√∑
b Nr(s,b)

1+Nr(s,a)

I.e., if (st, at) has been evaluated a lot relative to other
actions from st, Nr(st, at) is large and at is evaluated
mainly by Q
Otherwise, exploration is encouraged
To avoid all searches choosing same actions: When
(st, at) chosen, update stats as if nvl games lost

Nr(st, at) = Nr(st, at) + nvl

Wr(st, at) = Wr(st, at)− nvl44 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example
AlphaGo

AlphaGo Zero

AlphaZero

AlphaGo (Silver et al., 2016)
Monte Carlo Tree Search: Expansion

If Nr(s, a) > nthr, expand next
state s′ in tree

[Nv(s′, a) = Nr(s′a) = 0,Wv(s′a) = Wr(s′, a) = 0,P(s′, a) = pσ(a | s′)]

45 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example
AlphaGo

AlphaGo Zero

AlphaZero

AlphaGo (Silver et al., 2016)
Monte Carlo Tree Search: Evaluation

Expand from leaf sL until game
ends
At each time t ≥ L, each
player chooses at ∼ pπ
At game’s end, compute
zt = ±1 for all t

46 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example
AlphaGo

AlphaGo Zero

AlphaZero

AlphaGo (Silver et al., 2016)
Monte Carlo Tree Search: Backup

At end of simulated game, update
statistics for all steps t ≤ L

1 Undo virtual loss and update z:

Nr(st, at) = Nr(st, at)− nvl + 1

Wr(st, at) = Wr(st, at) + nvl + zt

2 After leaf evaluation done:

Nv(st, at) = Nv(st, at) + 1

Wv(st, at) = Wv(st, at) + vθ(sL)

3 Take weighted average for final action value:

Q(s, a) = (1− λ)

(
Wv(s, a)

Nv(s, a)

)
+ λ

(
Wr(s, a)

Nr(s, a)

)
47 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example
AlphaGo

AlphaGo Zero

AlphaZero

AlphaGo Zero (Silver et al., 2017)
Overview

The “Zero” refers to zero human knowledge
No supervised training from KGS Go data

Trained only via RL in self-play
Trained a single network (p, v) = fθ for both policy and
value

Integrated MCTS into training as well as live play
Folded lookahead search into training loop
Did not rollout to end of game

Input: 19× 19× 17 image stack:
Eight of 17 binary planes indicate locations of player’s
stones the past 8 time steps
Eight of 17 binary planes indicate locations of
opponent’s stones the past 8 time steps
Final plane indicates color to play

Discovered new Go knowledge during self-play,
including previously unknown tactics

48 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example
AlphaGo

AlphaGo Zero

AlphaZero

AlphaGo Zero (Silver et al., 2017)
Self-Play

Play games against self, choosing actions at ∼ πt via
MCTS
Outcome of game recorded as z = ±1

49 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example
AlphaGo

AlphaGo Zero

AlphaZero

AlphaGo Zero (Silver et al., 2017)
Training

Training is a form of policy iteration: Alternating
between

Policy evaluation: Estimating value v of policy p
Policy improvement: Improving policy wrt v

Use MCTS to map NN policy p to search policy π

Self-play outcomes inform updates to v

50 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example
AlphaGo

AlphaGo Zero

AlphaZero

AlphaGo Zero (Silver et al., 2017)
Training

State st’s targets are distribution πt and reward zt

Update network using loss function

sq loss︷ ︸︸ ︷
(zt − v(st))

2−

CE︷ ︸︸ ︷
π>t log pt

regularizer︷ ︸︸ ︷
+c‖θ‖2

51 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example
AlphaGo

AlphaGo Zero

AlphaZero

AlphaGo Zero (Silver et al., 2017)
MCTS

MCTS similar to that of AlphaGo, but drop Nr and Wr

since no rollout: [N(s, a),W(s, a),Q(s, a),P(s, a)]

(a) Select: same as before, but u(s, a) uses N instead of Nr

(b) Expand + evaluate: fθ compute value v(s) (modulo
symmetry) for backup instead of rollout to game end

(c) Backup: same as before, but no Nr or Wr

(d) Play policy: π(a | s0) = N(s0, a)1/τ/
∑

b N(s0, b)1/τ

(τ controls exploration)
52 / 53

CSCE
496/896

Lecture 7:
Reinforcement

Learning

Stephen Scott

Introduction

MDPs

Q Learning

TD Learning

DQN

Atari Example

Go Example
AlphaGo

AlphaGo Zero

AlphaZero

AlphaZero (Silver et al., 2017b)

AlphaGo Zero’s approach applied to chess and shogi
Same use of (p, v) = fθ(s) and MCTS
Go-specific parts removed + other generalizations
No game-specific hyperparameter tuning

Similar framework as Atari

53 / 53

	Introduction
	MDPs
	Q Learning
	TD Learning
	DQN
	Atari Example
	Go Example
	AlphaGo
	AlphaGo Zero
	AlphaZero

