NeBWERSWV] OF

Lincoln

CSCE
496/896
Lecture 6:
Recurrent

Architectures CSCE 496/896 Lecture 6:
siepnen seot Recurrent Architectures

Introduction

Basic Idea

1/O Mappi

PR Stephen Scott
Examples
Training
(Adapted from Vinod Variyam and lan Goodfellow)
Deep RNNs

LSTMs

GRUs

sscott@cse.unl.edu

mailto:sscott@cse.unl.edu

Wevet=Y |ntroduction

Lincoln

CSCE
496/896
Lecture 6:
Recurrent

Architectures @ All our architectures so far work on fixed-sized inputs
Stephen Scott

@ Recurrent neural networks work on sequences of

Introduction inputs
Basic Idea
@ E.g., text, biological sequences, video, audio
1/0 Mappings .
Examples @ Can also try 1D convolutions, but lose long-term
Training relationships in input
Deep RNNs @ Especially useful for NLP applications: translation,
LSTMs speech-to-text, sentiment analysis

GRUs

@ Can also create novel output: e.g., Shakespearean
text, music

WCeted Oytline

Lincoln

CSCE
496/896
Lecture 6:
Recurrent
Architectures

Stephen Scott

Basic RNNs
Input/Output Mappings
Example Implementations

Introduction
Basic Idea
1/O Mappings
Examples

B Training
Training
Deep RNNs Long short-term memory

LSTMs

Gated Recurrent Unit

GRUs

\evet- Basic Recurrent Cell

Lincoln

- @ A recurrent cell (or recurrent neuron) has

Lecture 6: connections pointing backward as well as

Recurrent

Architectures forward

Stephen Scot @ At time step (frame) 7, neuron receives input

Introduction vector x;y as usual, but also receives its own
output y(;,_;) from previous step

Basic Idea
1/O Mappings

Examples y(l-S) y(t' y(t'1) y(t)

Training

Deep RNNs

LSTMs

GRUs .

X t-3) X t-2) X(t-1)

Lincoln

Wewet=l Basic Recurrent Layer

CSCE
496/896
Lecture 6:
Recurrent
Architectures

@ Can build a layer of recurrent cells, where each node
gets both the vector x ;) and the vector y(,_)

t

1/O Mappings y

N

Stephen Scott

Introduction

Basic Idea

Yo Y Yo

Examples

Training

2 @&

Deep RNNs

-

?

M (2)
P Time

™M
™M

LSTMs

x
x
x

(0)

GRUs

Ne‘BﬂvERSWV]or

Lincoln

Basic Recurrent Layer

CSCE
496/896
Lecture 6:
Recurrent
Architectures

Stephen Scott @ Each node in the recurrent layer has independent
weights for both x(;y and y,_y)

@ For a single recurrent node, denote by w, and w,
@ For the entire layer, combine into matrices W, and W,

Training @ For activation function ¢ and bias vector b, output
Deep RNNs vector is

LSTMs

GRUs Yoy=¢ (W;x(l‘) + W;—J’(t—l) Jfb)

Introduction
Basic Idea
1/O Mappings

Examples

Ne‘BﬂvERSWV]or

Lincoln

Memory and State

4951965 @ Since a node’s output depends on its past, it can be

Lecure 6: thought of having memory or state

Recurrent

T e State at time ris h(y = f(h(_1,X(,) and output
Stephen Scott
Yo = g(h(tfl)ax(t))
Introduction @ State could be the same as the output, or separate
Basic ldea @ Can think of k() as storing important information about
/O Mappings input sequence
Eramples @ Analogous to convolutional outputs summarizing
Training important image features
Deep RNNs y
LsTws Yoo Yo o Yo
GRUs
" -
D RS
X Xop X1 X2

Eeney |[nput/Output Mappings

Bl Sequence to Sequence

CSCE
Lecre & Many ways to employ this basic architecture:
Ri t
Arcﬁ(i:t:rcrtinres

@ Sequence to sequence: Input is a sequence and
output is a sequence

@ E.g., series of stock predictions, one day in advance

Stephen Scott

Introduction

: . Yo Yoo Yo Yo Yu

- | R T S A

o Bg g B o W o
b+
Xoo X0 %o %@ Xa

Eeney |[nput/Output Mappings

Lincoln Sequence to Vector

PN @ Sequence to vector: Input is sequence and output a

Lecture 6: vector/score/ classification

Recurrent

Architectures @ E.g., sentiment score of movie review
Stephen Scott

Introduction
Basic Idea

1/O Mappings Y
Examples

Training

Deep RNNs

LSTMs }_» — > |

GRUs

Eeney |[nput/Output Mappings

Bl Vector to Sequence

CSCE
496/896 . .
Lecture 6: @ Vector to sequence: Input is a single vector (zeroes

Recurrent

Architectures for other times) and output is a sequence
Stephen Scot @ E.g., image to caption

o Yo Yo Y

A Y
== r + * 1

t

X

Introduction

Basic Idea

Deep RNNs

- P& P

LSTMs

GRUs

0)

Eeney |[nput/Output Mappings

sl Encoder-Decoder Architecture

CSCE
496/896 @ Encoder-decoder: Sequence-to-vector (encoder)

Lecture 6:

Recurrent followed by vector-to-sequence (decoder)
Architectures . .
o @ Input sequence (xi,...,xr) yields hidden outputs
(hy,...,h7), then mapped to context vector

Stephen Scott

Introduction c :f(hl, o ,hT)

Basic Id .

|/ - @ Decoder output y, depends on previously output
appings

Examples (ylr"ayt’—l) andc

Training @ Example application: neural machine translation

DEEpIANRE __ Encoder Decoder

LSTMs

GRUs

Eeney |[nput/Output Mappings

Bl Encoder-Decoder Architecture: NMT Example

CSCE
4oeiB9e @ Pre-trained word embeddings fed into input
ecture 6:
Recurrent

ANETERUTES @ Encoder maps word sequence to vector, decoder maps
Stephen Scott to translation via softmax distribution
Introduction @ After training, do translation by feeding previous
Basic Idea translated word y’(t_l) to decoder
OlM3ppios Target: Je bois du lait <eos>
Examples Prediction: Je bois le lait <eo0s>
" 4 4 4 L)
Training Encoder — Decoder | Sl ‘
Deep RNNs | A N beraeeeees Foeeoeees U boooeoees booes
@
LSTMs
GRUs H
i rr
3\\):(0)):m):(2{,} 1 X"(O) X X?m 77777 st) X
| 1 | | |
| Embedding lookup ‘ l Embedding lookup |
288 3335 72 : ! 22 M

‘\V\\

“ milk drink " “<go> Je bois du lait”

Eeney |[nput/Output Mappings

sl Encoder-Decoder Architecture

CSCE
496/896
Lecture 6:
Recurrent

i v @ Works through an embedded space like an

Stephen Scott autoencoder, so can represent the entire input as an
ntrodustion embedded vector prior to decoding

Basic Idea @ Issue: Need to ensure that the context vector fed into
/O Mappings decoder is sufficiently large in dimension to represent
Examples context required

el @ Can address this representation problem via attention
Deep RNNs mechanism mechanism

LSTMs . .
e Encodes input sequence into a vector sequence rather

than single vector
@ As it decodes translation, decoder focuses on relevant
subset of the vectors

GRUs

Eeney |[nput/Output Mappings

Bl E-D Architecture: Attention Mechanism (Bahdanau et al., 2015)

CSC
496/89EG . . .
Lecture 6: @ Bidirectional RNN reads input

Recurrent

Architectures forward and backward

S S simultaneously
Introduction @ Encoder builds annotatlon hj
Basic Idea as concatenation of h and %
/0 Mappings = h; summarizes precedmg
Examples and following inputs
Training .

5 @ ith context vector

eep RNNs T
LSTMs Ci = Z =1 O‘ijh" where
GRUs = L(eu)

= ST explen) % X

and ¢; is an alignment score between inputs around j and
outputs around i

ey Input/Output Mappings

Bl E-D Architecture: Attention Mechanism (Bahdanau et al., 2015)

CSCE @ The ith element of s .
496/896 - g S E
Lecture 6: attention vector q; tells RN ITY

Arcpaent us the probability that g
Stephen Scott target output y; is aligned o
, to (or translated from) one
Introduction . t économique
Basic Idea Inpu Xj européenne

/O Mappings @ Then ¢; is expected
Examples annotation over all
Training annotations with

Deep RNNs probabilities «;
LSTMs

GRUS @ Alignment score ¢;; indicates how much we should
focus on word encoding k; when generating output y;
(in decoder state s;_)

@ Can compute e;; via dot product ths,-_l, bilinear function

thWs,-_l, or nonlinear activation

e Example Implementation

Bl Static Unrolling for Two Time Steps

CSCE
496/896
Lecture 6:
Recurrent
Architectures

= tf.placeholder (tf.float32, [None, n_inputs])
Stephen Scott X1 = tf.placeholder (tf.float32, [None, n_inputs]
Wx = tf.Variable (tf.random_normal (shape=[n_inputs, n_neurons],dtype=tf.float32))
Wy = tf.Variable (tf.random_normal (shape=[n_neurons,n_neurons],dtype=tf.float32))
b = tf.variable(tf.zeros([1l, n_neurons], dtype=tf.float32))
Basic Idea Y0 = tf.tanh(tf.matmul (X0, Wx) + b)
Yl = tf.tanh(tf.matmul (Y0, Wy) + tf.matmul (X1, Wx) + b)

Introduction

1/0 Mappings

Examples Input.

Training

g RN # Mini-batch: instance 0, instance 1, instance 2, instance 3

LSTMs X0_batch = np.array(([0, 1, 2], [3, 4, 51, [6, 7, 8], [9, O, 1]]) # t 0
X1_batch = np.array([[9, 8, 7], [0, O, O], [6, 5, 4], [3, 2, 1]1]) # t =1

GRUs

e Example Implementation

Bl Static Unrolling for Two Time Steps

CSCE
496/896
Lecture 6:
Recurrent
Architectures

Stephen Scott . i i
J Can achieve the same thing more compactly via

Introduction static_rnn ()
Basic Idea X0 = tf.placeholder (tf.float32, [None, n_inputs])
) X1 = tf.placeholder (tf.float32, [None, n_inputs])
1/0 Mappings basic_cell = tf.contrib.rnn.BasicRNNCell (num_units=n_neurons)

output_seqgs, states = tf.contrib.rnn.static._rnn(basic_cell, [X0, X1],
dtype=tf.float32)
Y0, Y1 = output_segs

Examples
Training
Deep RNNs
LSTMs Automatically unrolls into length-2 sequence RNN

GRUs

NeBWERSWV] OF

Lincoln

CSCE
496/896
Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction
Basic Idea
1/0 Mappings
Examples

Training

Deep RNNs

LSTMs
GRUs

Example Implementation

Automatic Static Unrolling

Can avoid specifying one placeholder per time step via
tf.stack and tf.unstack

X = tf.placeholder (tf.float32, [None, n.steps, n_inputs])
X_seqgs = tf.unstack(tf.transpose (X, perm=[1, 0, 2]))
basic_cell = tf.contrib.rnn.BasicRNNCell (num_units=n_neurons)
output_seqgs, states = tf.contrib.rnn.static_rnn(basic_cell, X_segs,
dtype=tf.float32)
outputs = tf.transpose(tf.stack (output_seqgs), perm=[1, 0, 2])

X_batch = np.arr

ay ([
t=0 t=1
reo, 1, 21, (9, 8, 711, # instance 0
[(3, 4, 51, [0, O, 0]], # instance 1
[re, 7, 81, (6, 5, 411, # instance 2
[re, o, 11, 3, 2, 111, # instance 3
1)

@ Uses static_rnn () again, but on all time steps
folded into a single tensor

@ Still forms a large, static graph (possible memory
issues)

e Example Implementation

Bl Dynamic Unrolling

CSCE
496/896
Lecture 6:
Recurrent
Architectures

Stephen Scott . .
Bl Even better: Let TensorFlow unroll dynamically via a

Introduction while_loop () indynamic_rnn ()

Basic Idea X = tf.placeholder (tf.float32, [None, n_steps, n_inputs])

I/0 Mappings basic_cell = tf.contrib.rnn.BasicRNNCell (num_units=n_neurons)

E outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32)
xamples

Training

Deep RNNs Can also set swap_memory=True to reduce memory
LSTMs problems

GRUs

e Example Implementation

Bl Variable-Length Sequences

Jrere @ May need to handle variable-length inputs

Lecture 6:
Recurer @ Use 1D tensor sequence_length to set length of
rchitectures .
each input (and maybe output) sequence

@ Pad smaller inputs with zeroes to fit input tensor

Stephen Scott

Introduction « »

@ Use “end-of-sequence” symbol at end of each output
Basic Idea
1/0 Mappings seq_length = tf.placeholder(tf.int32, [Nonel)
Examples outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32,

- sequence._length=seq.length)
Training .
X_batch = np.array ([

e NG # step 0 step 1
LSTMs reo, 1, 21, (9, 8, 711, # instance 0

[(3, 4, 5], [0, O, 0]], # instance 1 (padded with a zero vector)
GRUs (6, 7, 81, [6, 5, 411, # instance 2

[eo, o, 11, (3, 2, 111, # instance 3

N}

seq_length_batch = np.array([2, 1, 2, 1)
with tf.Session() as sess:
init.run()
outputs_val, states_val = sess.run(
[outputs, states], feed_dict={X: X_batch, seg_length: seqg_length_batch})

ey lraining
B Backpropagation Through Time (BPTT)

Jrere @ Unroll through time and use BPTT

Lecture 6:

Recurer @ Forward pass mini-batch of sequences through unrolled
rchitectures .
Stephen Scot network yields output sequence Y, . v, -5 Y
. @ Output sequence evaluated using cost
Introduction C (Y(tmin)j e Y(zmax))

Basic Idea

@ Gradients propagated backward through unrolled
SR network (summing over all time steps), and parameters

Training C(Y(z) Y Y(4))

7 |

LSTMs Y Y Y
GRUs (2) (3) (4)

Lol
[W,b](_[W.b]<_[W.b]‘_[W.b]<—[W,b]

1/0 Mappings

e lraining

Bl Example: Training on MNIST as a Vector Sequence

496/855 @ Consider MNIST inputs provided as sequence of 28

Lecture 6: . . .
E inputs of 28-dimensional vectors
Architectures .
@ Feed in input as usual, then compute loss between

target and softmax output after 28th input
Introduction

Basic Idea f

Stephen Scott

1/0 Mappings S ft

Examples oftmax
Training Fully Connected
Deep RNNs 10 units
LSTMs A

GRUs

L -~ : =1 T]

(0) (1 (26) (27)

X —p

e lraining

Bl Example: Training on MNIST as a Vector Sequence

CSCE
496/896
Lecture 6:
Recurrent
Architectures

Stephen Scott
P X = tf.placeholder (tf.float32, [None, n_steps, n_inputs])

y = tf.placeholder(tf.int32, [None])

Introduction basic_cell = tf.contrib.rnn.BasicRNNCell (num_units=n_neurons)
outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32)
Basic Idea logits = tf.layers.dense(states, n.outputs)
.,) xentropy = tf.nn.sparse.softmax.cross.entropy-with_logits (labels=y,
I/G Mappings logits=logits)
loss = tf.reduce.mean (xentropy)
Examples - . S . .
optimizer = tf.train.AdamOptimizer (learning_rate=learning_rate)
Training training_op = optimizer.minimize (loss)
correct = tf.nn.in_top_k (logits, y, 1)
Deep RNNs accuracy = tf.reduce_mean (tf.cast (correct, tf.float32))

init = tf.global_variables_initializer()
LSTMs

GRUs

Nebizdka [LEURLR]

Bl Example: Training on Time Series Data

CSCE
496/896
Lecture 6:
Recurrent

Architectures @ Input is time series
Stephen Scott
@ Target is same as input, but shifted one into the future

Introduction .
@ E.g., stock prices, temperature

Basic Idea
1/O Mappings A time series (generated) 8 A training instance

instance
Examples 6 target oooﬁ{

(]
Training 4 000 o
Deep RNNs 5 %, o°
eep 3 2 o 00®
LSTMs o °
[+]
GRUs — t.sin(t)/3 + 2.sin(5t) 2 °
= A training instance °°
0 5 10 15 20 25 30 120 12.5 13.0 13.5 14.0 14.5

Time Time

Nebiiska ILEUQITT6)

Bl Example: Training on Time Series Data

496,956 @ Use sequences of length n_steps=20 and

pocture 6 n_neurons=100 recurrent neurons

Recurrent

Architectures @ Since output size = 100 > 1 = target size, use
Stephen Scot OutputProjectionWrapper to feed recurrent layer
Introduction output into a linear unit to get a scalar
Basic Idea y(O) y 1) y(m) y 19)
1/0 Mappings
Examples
Training FC FC FC FC
1 unit 1 unit 1 unit 1 unit

Deep RNNs

A A

LSTMs

GRUs [_]_____
; | T
X X X

(0) (1) (18) (19)
BasicRNNCell

OutputProjectionWrapper

e lraining

Bl Example: Training on Time Series Data

CSCE
496/896
Lecture 6:
Recurrent
Architectures

Stephen Scott

n_steps = 20
Introduction n_inputs = 1
n_neurons = 100

Basic Idea n_outputs = 1
110 Mappings X i tf.placeholder (tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None, n_steps, n_outputs])
Examples cell = tf.contrib.rnn.OutputProjectionWrapper (
tf.contrib.rnn.BasicRNNCell (num_units=n_neurons, activation=tf.nn.relu),
Training output_size=n_outputs)

outputs, states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)
Deep RNNs

LSTMs

GRUs

e lraining

Bl Example: Training on Time Series Data

CSCE
496/896
Lecture 6:
et Results on same sequeTnce aftr(‘ar 10(5)(|) training iterations
esting the mode

Stephen Scott 8 - T
@ @ instance
’ [X
Introduction 6 | % target <) v 4
et 6 e e prediction o
4 4
1/0 Mappings ®9 -]
Exampl ® ® Y ®
xamples I 4
-~ : ® (I ®
Training o
(8 4
Deep RNNs
. 9
LSTMs 2 9 1
GRUs [+)
Gl ®°
12.0 12.5 13.0 13.5 14.0 14.5

Time

e lraining

Bl Example: Creating New Time Series

CSCE

Leciure & @ Feed to trained model seed sequence of size

Recurrent H
P n_steps, append predicted value to sequence, feed
Stephen Scott last n_steps back in to predict next value, etc.
Introduction sequence = [0.] % n_steps
. for iteration in range (300) :
Basic Idea X_batch = np.array(sequence[-n.steps:]) .reshape(l, n_steps, 1)
110 Mappings y_pred = sess.run(outputs, feed_dict={X: X_batch})
sequence.append (y.pred[0, -1, 0])
Examples
Training Seeded with zeroes Seeded with an instance
0.0 10
Deep RNNs —05
5
LSTMs -1.0
0
GRUs o ¥
E -2.0 -5
-2.5
-10
-3.0
35 -15
-4.0 -20
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Time Time

Nebiaska SBEEYIONSININS

Lincoln

CSCE
496/896
Lecture 6:
Recurrent
Architectures

Stephen Scott

@ A deep RNN has multiple

Introduction recurrent layers stacked
;

1/0 Mappings T 1 T
Examples X0 Xa) Xey Xy
Training

Deep RNNs

n_neurons = 100
n_layers = 3
layers = [tf.contrib.rnn.BasicRNNCell (num_units=n_neurons

activation=tf.nn.relu)
for layer in range(n_layers)]
multi_layer_cell = tf.contrib.rnn.MultiRNNCell (layers)
outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32)

X —

Nebwmska‘”z;n;n Training over Many Time Steps

4961506 @ Vanishing and exploding gradients can be a problem

Lecture 6:

Recurrent with RNNs, like with other deep networks
Areniectures e Can as usual address with, e.g., ReLU, batch
normalization, gradient clipping, etc.

Introduction @ Can still suffer from long training times with long input
Basic Idea SequenceS

ORI e Truncated backpropagation through time addresses
Examples this by limiting n_steps
Training e Lose ability to learn long-term patterns
@ In general, also have problem of first inputs of
sequence have diminishing impact as sequence grows
e E.g., first few words of long text sequence

@ Goal: Introduce long-term memory to RNNs

@ Allow a network to accumulate information about the
past, but also decide when to forget information

Stephen Scott

Deep RNNs

ety Long Short-Term Memory

Bl Hochreiter and Schmidhuber (1997)

CSCE
sonies0 @ Vector h(,) = short-term state, ¢,) = long-term state
eclure o:

Recurrent

Architectures A . Yo
Stephen Scott ® t tlme_t’ some
memories from _ (Fogergae \
. (t-1)) cl
Introduction c(t—l) are Inpmr%a(e/ \l - I hu
i . 0
sasicldea forgotten in the .l 1)
/0 M i utput gate pmmmmmmmeeeeee
oo forget gate and i
xamples 3 ' :
N new ones (from | © Additon
Training . Mty —s ! == logistic
input gate) HEHEY |
Deep RNNs T | m— tanh |

added N

@ Result sent out as ¢,
® h(; (andy) comes from processing long-term state in
output gate

lstm.cell = tf.contrib.rnn.BasicLSTMCell (num_units=n_neurons)

oed Long Short-Term Memory

Bl Hochreiter and Schmidhuber (1997)

CSCE . .
496/896 ® g combines input

Reoument 1 x(;) With state k(,_)

Architectures Forget gate |

Stephen Scott o Inpmgale/¢\l | :“' o f t t) !Ilo(t are gate
1 o con roliers
Introduction Outputgate | p--oe-o-eeeee
Bacio Idea o e @ fpy €10, 1]" controls
| ® Addition
/O Mappings Nt —» LSTM cell) : logistic fO rg ettlng Of c(t—l)
Examples e e iy controls

Training Y remembering of 8

Deep RNNs

o(; controls what of ¢(;y goes to output and h
@ Output depends on long- and short-term memory

@ Network learns what to remember long-term based on
X (1) and h(,_])

oed Long Short-Term Memory
Bl Hochreiter and Schmidhuber (1997)

L43?/%9E% ° i(z) =0 (W;; X + W;;h(t—l) + bi)
Recurrent ') f(t) =0 <W;}x(,) + Wh‘—;‘ h(t—l) + bf)

Architectures

Stephen Scott @oy=0 (WxTo X + W]L h(t—l) + bO)
Introduction o g(t) = tanh <W;; x(,) + W}Ig h(t—l) + bg)

Basic Idea

1/0 Mappings

Examples

- @ cC = [o
Training (t) . Input gate \.
Deep RNNs f(t) QC(—1) T D8 (1) . 0/
® yo =hu =

o @tanh (c))

LSTM cell

@ Can add peephole connection: Let ¢, affect f(,
and i and ¢,_,) affect o

WCvet- Gated Recurrent Unit

Lincoln

CSCE

496/896 @ Simplified LSTM

Lecture 6:

Archiectures @ Merge C(r) into by [A
Stephen Scott h(l‘) %
Introduction 4 Mergef and l () / “)
Basic Idea In’[O Z() =)

1/0 Mappings @ Z(n,i = 0= o]

Examples forget h(t—l),i 5O

Training and add in . GRU cell)

Deep RNNs 8@),i ©

LSTMs

o, replaced by r(,) = forget part of h,_;) when
computing g,

gru-cell = tf.contrib.rnn.GRUCell (num_units=n_neurons)

NeBWERSWV] OF

Lincoln

Gated Recurrent Unit

CSCE
496/896
Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

1/0 Mappings
GRU cell)

Examples
Training

R
ST © 7y =0 (Wex() + W b1y +b;)

® ryy =0 (Waxu + Wy hy_1) +b)

© g() = tanh (Wix() + Wi, (riy @ 1)) +by)
® ¥y =h =20 @1y + (1 -209) @80

	Introduction
	Basic Idea
	I/O Mappings
	Examples
	Training
	Deep RNNs
	LSTMs
	GRUs

