

CSCE
496/896

Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

Training

Deep RNNs

LSTMs

GRUs

CSCE 496/896 Lecture 6: Recurrent Architectures

Stephen Scott

(Adapted from Vinod Variyam and Ian Goodfellow)

sscott@cse.unl.edu

Introduction

CSCE
496/896Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

Training

Deep RNNs

LSTMs

GRUs

- All our architectures so far work on fixed-sized inputs
- Recurrent neural networks work on **sequences** of inputs
 - E.g., text, biological sequences, video, audio
 - Can also try 1D convolutions, but lose long-term relationships in input
 - Especially useful for NLP applications: translation, speech-to-text, sentiment analysis
 - Can also **create novel output**: e.g., Shakespearean text, music

Outline

CSCE
496/896
Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

Training

Deep RNNs

LSTMs

GRUs

- Basic RNNs
- Input/Output Mappings
- Example Implementations
- Training
- Long short-term memory
- Gated Recurrent Unit

Basic Recurrent Cell

CSCE
496/896Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

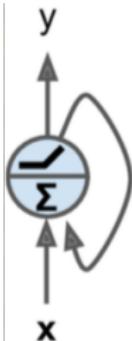
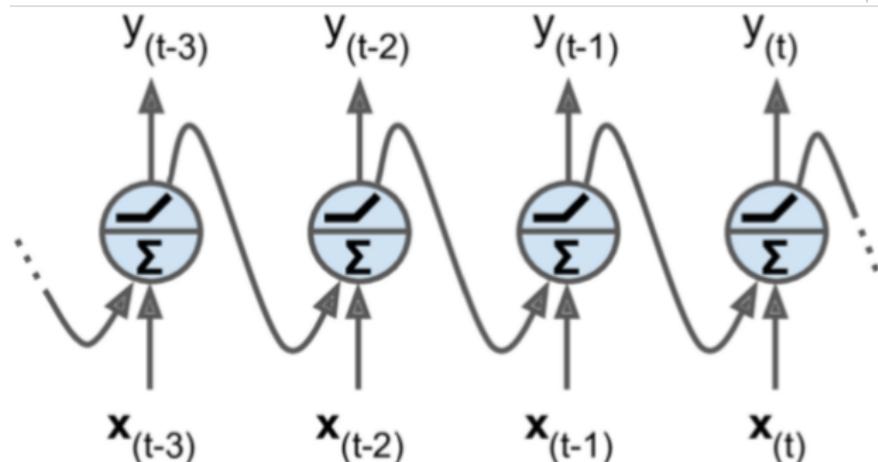
Training

Deep RNNs

LSTMs

GRUs

- A recurrent cell (or recurrent neuron) has connections pointing **backward** as well as forward
- At time step (frame) t , neuron receives input vector $x_{(t)}$ as usual, but also receives its own output $y_{(t-1)}$ from previous step



Basic Recurrent Layer

CSCE
496/896Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

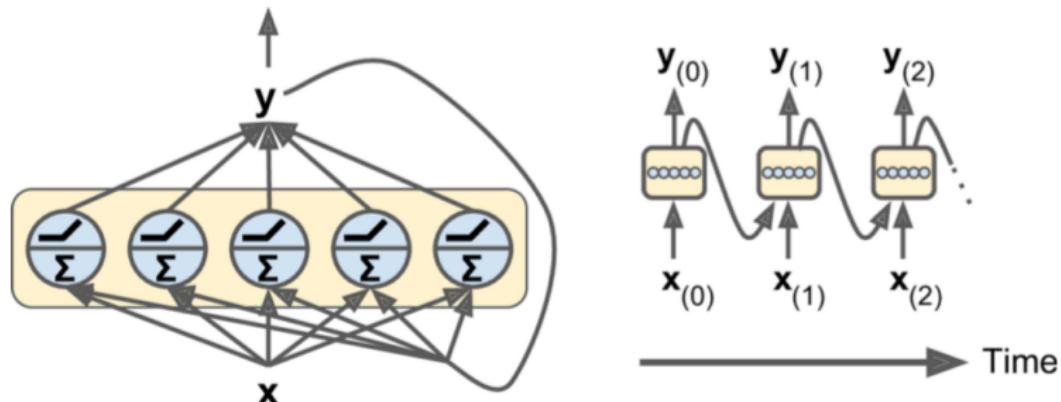
Training

Deep RNNs

LSTMs

GRUs

- Can build a layer of recurrent cells, where each node gets both the vector $x_{(t)}$ and the vector $y_{(t-1)}$



Basic Recurrent Layer

CSCE
496/896Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

Training

Deep RNNs

LSTMs

GRUs

- Each node in the recurrent layer has independent weights for both $x_{(t)}$ and $y_{(t-1)}$
- For a single recurrent node, denote by w_x and w_y
- For the entire layer, combine into matrices W_x and W_y
- For activation function ϕ and bias vector b , output vector is

$$\mathbf{y}_{(t)} = \phi \left(W_x^\top \mathbf{x}_{(t)} + W_y^\top \mathbf{y}_{(t-1)} + \mathbf{b} \right)$$

Memory and State

CSCE
496/896Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

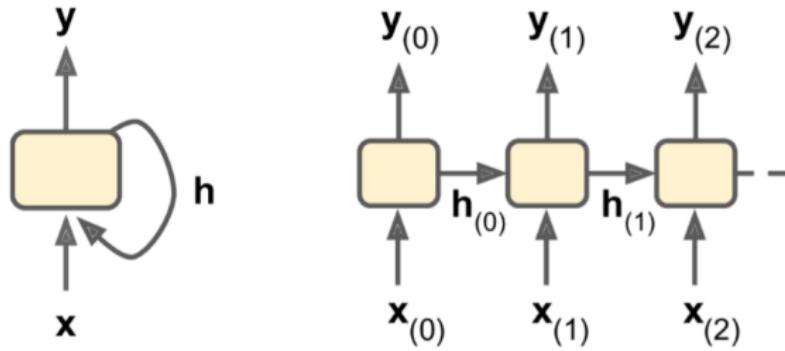
Training

Deep RNNs

LSTMs

GRUs

- Since a node's output depends on its past, it can be thought of having **memory** or **state**
- State at time t is $\mathbf{h}_{(t)} = f(\mathbf{h}_{(t-1)}, \mathbf{x}_{(t)})$ and output $\mathbf{y}_{(t)} = g(\mathbf{h}_{(t-1)}, \mathbf{x}_{(t)})$
- State could be the same as the output, or separate
- Can think of $\mathbf{h}_{(t)}$ as storing important information about input sequence
- Analogous to convolutional outputs summarizing important image features



Input/Output Mappings

Sequence to Sequence

CSCE
496/896
Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

Training

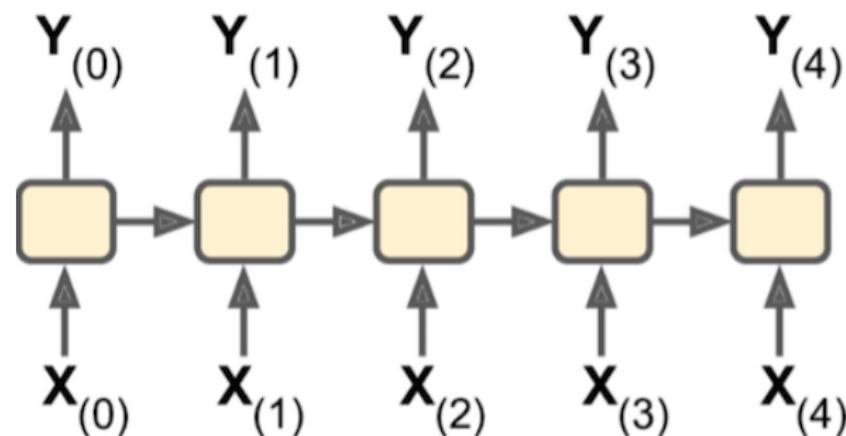
Deep RNNs

LSTMs

GRUs

Many ways to employ this basic architecture:

- **Sequence to sequence:** Input is a sequence and output is a sequence
- E.g., series of stock predictions, one day in advance



Input/Output Mappings

Sequence to Vector

CSCE
496/896Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

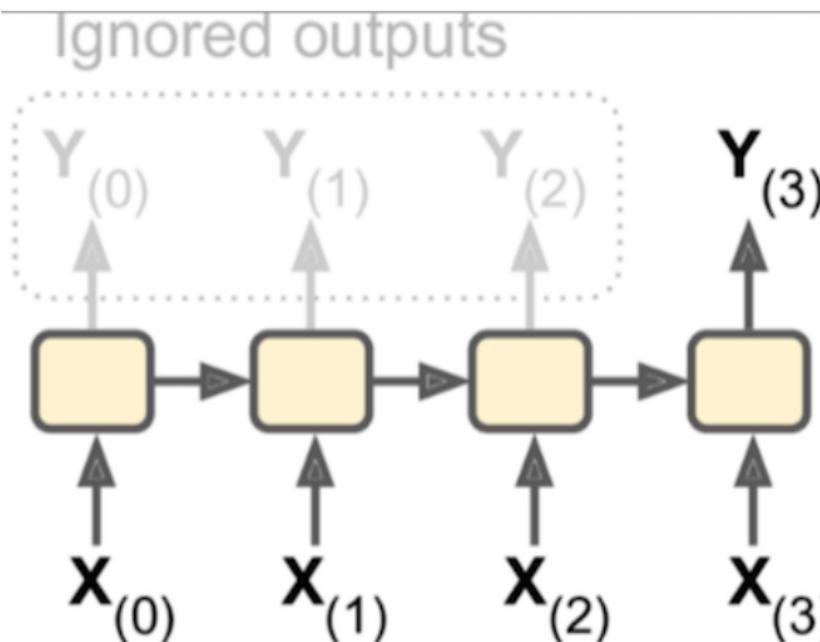
Training

Deep RNNs

LSTMs

GRUs

- **Sequence to vector:** Input is sequence and output a vector/score/ classification
- E.g., sentiment score of movie review



Input/Output Mappings

Vector to Sequence

CSCE
496/896Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

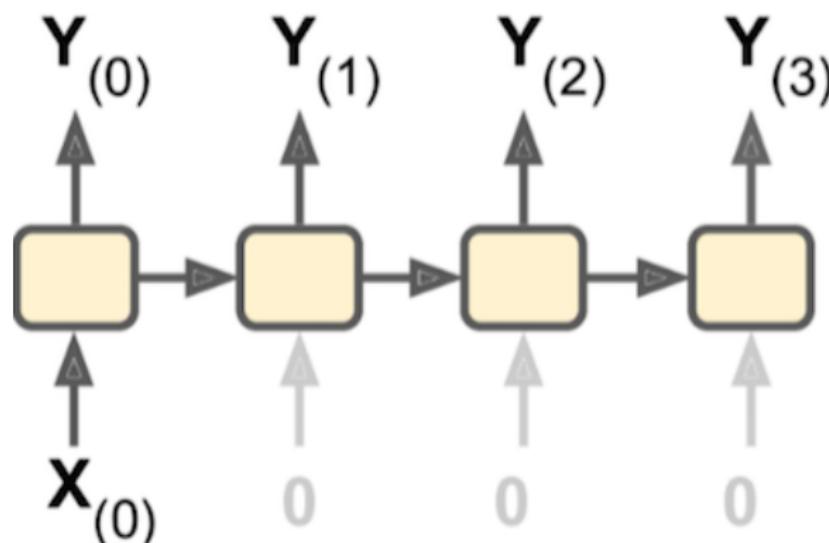
Training

Deep RNNs

LSTMs

GRUs

- **Vector to sequence:** Input is a single vector (zeroes for other times) and output is a sequence
- E.g., image to caption



Input/Output Mappings

Encoder-Decoder Architecture

CSCE
496/896Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

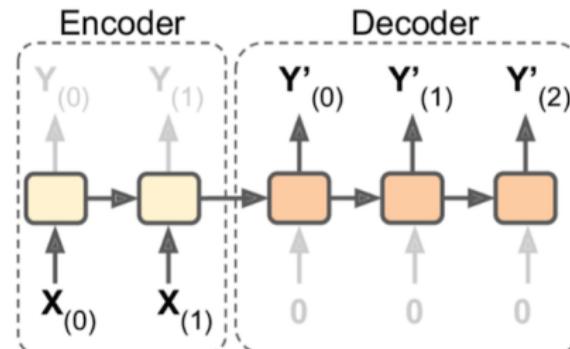
Training

Deep RNNs

LSTMs

GRUs

- **Encoder-decoder:** Sequence-to-vector (**encoder**) followed by vector-to-sequence (**decoder**)
- Input sequence (x_1, \dots, x_T) yields hidden outputs (h_1, \dots, h_T) , then mapped to **context vector** $c = f(h_1, \dots, h_T)$
- Decoder output $y_{t'}$ depends on previously output $(y_1, \dots, y_{t'-1})$ and c
- Example application: **neural machine translation**



Input/Output Mappings

Encoder-Decoder Architecture: NMT Example

CSCE
496/896Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

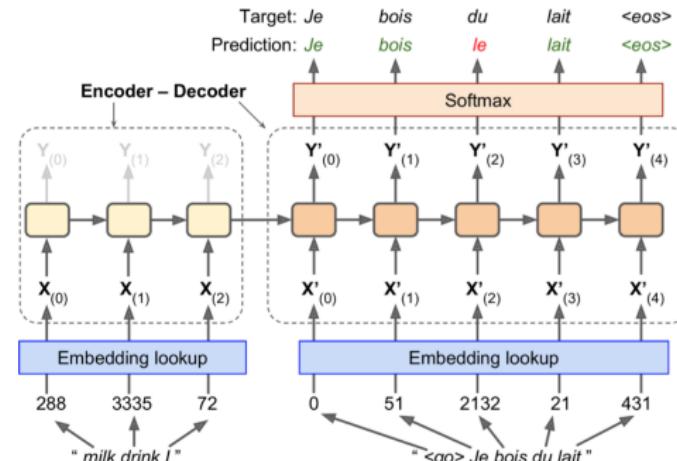
Training

Deep RNNs

LSTMs

GRUs

- Pre-trained word embeddings fed into input
- Encoder maps word sequence to vector, decoder maps to translation via softmax distribution
- After training, do translation by feeding previous translated word $y'_{(t-1)}$ to decoder



Input/Output Mappings

Encoder-Decoder Architecture

CSCE
496/896Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

Training

Deep RNNs

LSTMs

GRUs

- Works through an **embedded space** like an autoencoder, so can represent the entire input as an embedded vector prior to decoding
- Issue: Need to ensure that the context vector fed into decoder is sufficiently large in dimension to represent context required
- Can address this representation problem via **attention mechanism** mechanism
 - Encodes input sequence into a vector sequence rather than single vector
 - As it decodes translation, decoder focuses on relevant subset of the vectors

Input/Output Mappings

E-D Architecture: Attention Mechanism (Bahdanau et al., 2015)

CSCE
496/896

Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

Training

Deep RNNs

LSTMs

GRUs

- **Bidirectional RNN** reads input forward and backward simultaneously

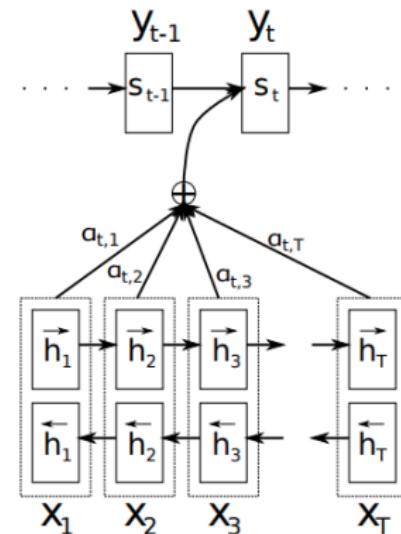
- Encoder builds **annotation** h_j as concatenation of \vec{h}_j and \overleftarrow{h}_j
⇒ h_j summarizes preceding and following inputs

- i th context vector

$$c_i = \sum_{j=1}^T \alpha_{ij} h_j, \text{ where}$$

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^T \exp(e_{ik})}$$

and e_{ij} is an **alignment score** between inputs around j and outputs around i



Input/Output Mappings

E-D Architecture: Attention Mechanism (Bahdanau et al., 2015)

CSCE
496/896
Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

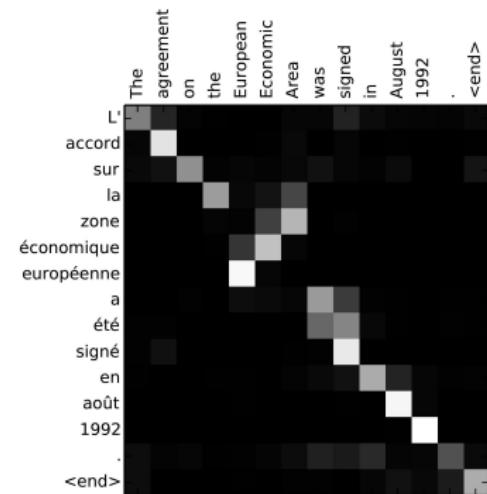
Training

Deep RNNs

LSTMs

GRUs

- The i th element of **attention vector** α_j tells us the probability that target output y_i is aligned to (or translated from) input x_j
- Then c_i is expected annotation over all annotations with probabilities α_j
- Alignment score e_{ij} indicates how much we should focus on word encoding h_j when generating output y_i (in decoder state s_{i-1})
- Can compute e_{ij} via dot product $h_j^\top s_{i-1}$, bilinear function $h_j^\top W s_{i-1}$, or nonlinear activation



Example Implementation

Static Unrolling for Two Time Steps

CSCE
496/896

Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

Training

Deep RNNs

LSTMs

GRUs

```
X0 = tf.placeholder(tf.float32, [None, n_inputs])
X1 = tf.placeholder(tf.float32, [None, n_inputs])
Wx = tf.Variable(tf.random_normal(shape=[n_inputs, n_neurons], dtype=tf.float32))
Wy = tf.Variable(tf.random_normal(shape=[n_neurons, n_neurons], dtype=tf.float32))
b = tf.Variable(tf.zeros([1, n_neurons], dtype=tf.float32))
Y0 = tf.tanh(tf.matmul(X0, Wx) + b)
Y1 = tf.tanh(tf.matmul(Y0, Wy) + tf.matmul(X1, Wx) + b)
```

Input:

```
# Mini-batch:      instance 0, instance 1, instance 2, instance 3
X0_batch = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 0, 1]]) # t = 0
X1_batch = np.array([[9, 8, 7], [0, 0, 0], [6, 5, 4], [3, 2, 1]]) # t = 1
```

Example Implementation

Static Unrolling for Two Time Steps

CSCE
496/896

Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

Training

Deep RNNs

LSTMs

GRUs

Can achieve the same thing more compactly via
`static_rnn()`

```
X0 = tf.placeholder(tf.float32, [None, n_inputs])
X1 = tf.placeholder(tf.float32, [None, n_inputs])
basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)
output_seqs, states = tf.contrib.rnn.static_rnn(basic_cell, [X0, X1],
                                                dtype=tf.float32)
Y0, Y1 = output_seqs
```

Automatically unrolls into length-2 sequence RNN

Example Implementation

Automatic Static Unrolling

CSCE
496/896Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

Training

Deep RNNs

LSTMs

GRUs

Can avoid specifying one placeholder per time step via
`tf.stack` and `tf.unstack`

```
X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
X_seqs = tf.unstack(tf.transpose(X, perm=[1, 0, 2]))
basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)
output_seqs, states = tf.contrib.rnn.static_rnn(basic_cell, X_seqs,
                                                dtype=tf.float32)
outputs = tf.transpose(tf.stack(output_seqs), perm=[1, 0, 2])
...
X_batch = np.array([
    # t=0          t=1
    [[0, 1, 2], [9, 8, 7]], # instance 0
    [[3, 4, 5], [0, 0, 0]], # instance 1
    [[6, 7, 8], [6, 5, 4]], # instance 2
    [[9, 0, 1], [3, 2, 1]], # instance 3
])
```

- Uses `static_rnn()` again, but on all time steps folded into a single tensor
- Still forms a large, static graph (possible memory issues)

Example Implementation

Dynamic Unrolling

CSCE
496/896
Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

Training

Deep RNNs

LSTMs

GRUs

Even better: Let TensorFlow unroll **dynamically** via a
`while_loop()` in `dynamic_rnn()`

```
X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])  
  
basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)  
outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32)
```

Can also set `swap_memory=True` to reduce memory
problems

Example Implementation

Variable-Length Sequences

CSCE
496/896Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

Training

Deep RNNs

LSTMs

GRUs

- May need to handle **variable-length inputs**
- Use 1D tensor `sequence_length` to set length of each input (and maybe output) sequence
- Pad smaller inputs with zeroes to fit input tensor
- Use “end-of-sequence” symbol at end of each output

```
seq_length = tf.placeholder(tf.int32, [None])
...
outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32,
                                    sequence_length=seq_length)
...
X_batch = np.array([
    # step 0      step 1
    [[0, 1, 2], [9, 8, 7]], # instance 0
    [[3, 4, 5], [0, 0, 0]], # instance 1 (padded with a zero vector)
    [[6, 7, 8], [6, 5, 4]], # instance 2
    [[9, 0, 1], [3, 2, 1]], # instance 3
])
seq_length_batch = np.array([2, 1, 2, 2])
...
with tf.Session() as sess:
    init.run()
    outputs_val, states_val = sess.run(
        [outputs, states], feed_dict={X: X_batch, seq_length: seq_length_batch})
```

Training

Backpropagation Through Time (BPTT)

CSCE
496/896Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

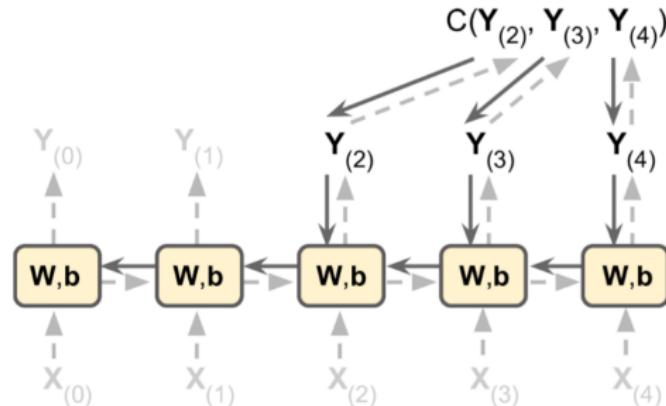
Training

Deep RNNs

LSTMs

GRUs

- Unroll through time and use BPTT
- Forward pass mini-batch of sequences through unrolled network yields output sequence $Y_{(t_{\min})}, \dots, Y_{(t_{\max})}$
- Output sequence evaluated using cost $C(Y_{(t_{\min})}, \dots, Y_{(t_{\max})})$
- Gradients propagated backward through unrolled network (summing over all time steps), and parameters



Training

Example: Training on MNIST as a Vector Sequence

CSCE
496/896

Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

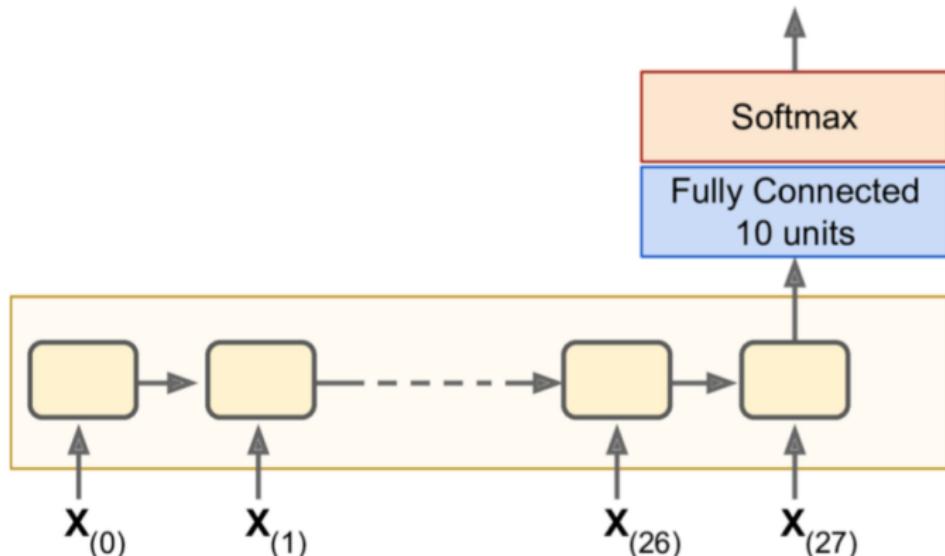
Training

Deep RNNs

LSTMs

GRUs

- Consider MNIST inputs provided as sequence of 28 inputs of 28-dimensional vectors
- Feed in input as usual, then compute loss between target and softmax output after 28th input



Training

Example: Training on MNIST as a Vector Sequence

CSCE
496/896

Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

Training

Deep RNNs

LSTMs

GRUs

```
X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.int32, [None])
basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)
outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32)
logits = tf.layers.dense(states, n_outputs)
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y,
                                                          logits=logits)
loss = tf.reduce_mean(xentropy)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)
correct = tf.nn.in_top_k(logits, y, 1)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
init = tf.global_variables_initializer()
```

Training

Example: Training on Time Series Data

CSCE
496/896

Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

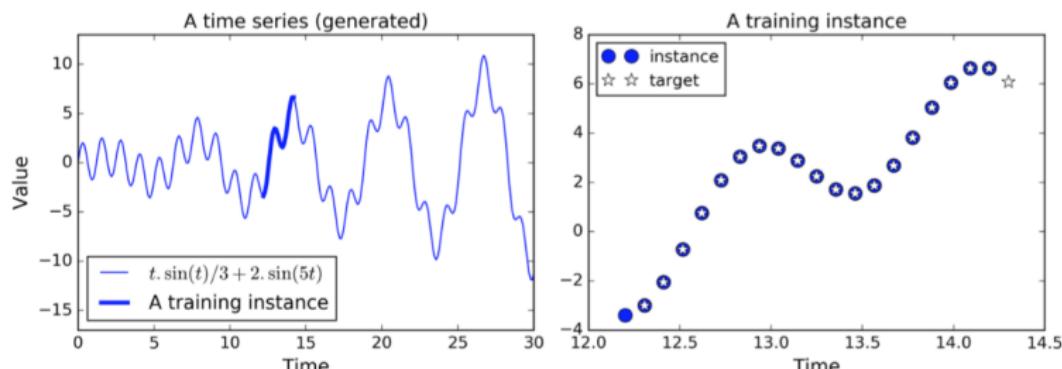
Training

Deep RNNs

LSTMs

GRUs

- Input is **time series**
- Target is same as input, but shifted one into the future
- E.g., stock prices, temperature



Training

Example: Training on Time Series Data

CSCE
496/896

Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

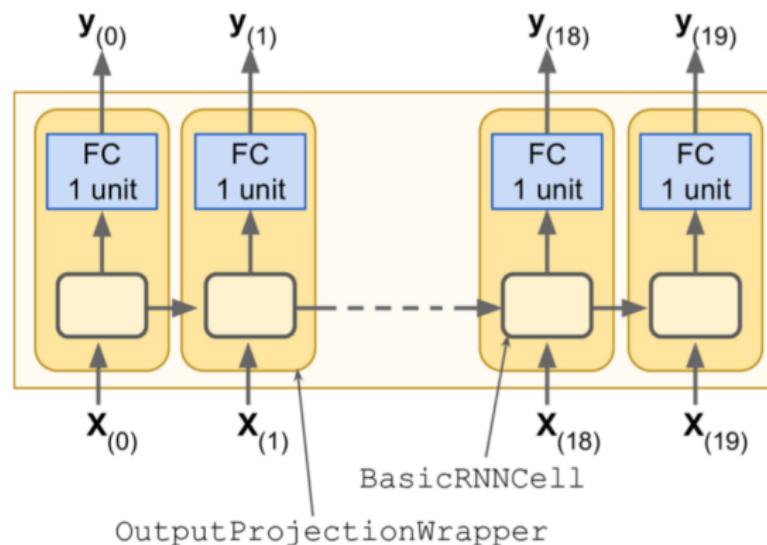
Training

Deep RNNs

LSTMs

GRUs

- Use sequences of length $n_steps=20$ and $n_neurons=100$ recurrent neurons
- Since output size = 100 > 1 = target size, use `OutputProjectionWrapper` to feed recurrent layer output into a linear unit to get a scalar



Training

Example: Training on Time Series Data

CSCE
496/896

Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

Training

Deep RNNs

LSTMs

GRUs

```
n_steps = 20
n_inputs = 1
n_neurons = 100
n_outputs = 1
X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None, n_steps, n_outputs])
cell = tf.contrib.rnn.OutputProjectionWrapper(
    tf.contrib.rnn.BasicRNNCell(num_units=n_neurons, activation=tf.nn.relu),
    output_size=n_outputs)
outputs, states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)
```

Training

Example: Training on Time Series Data

CSCE
496/896

Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

Training

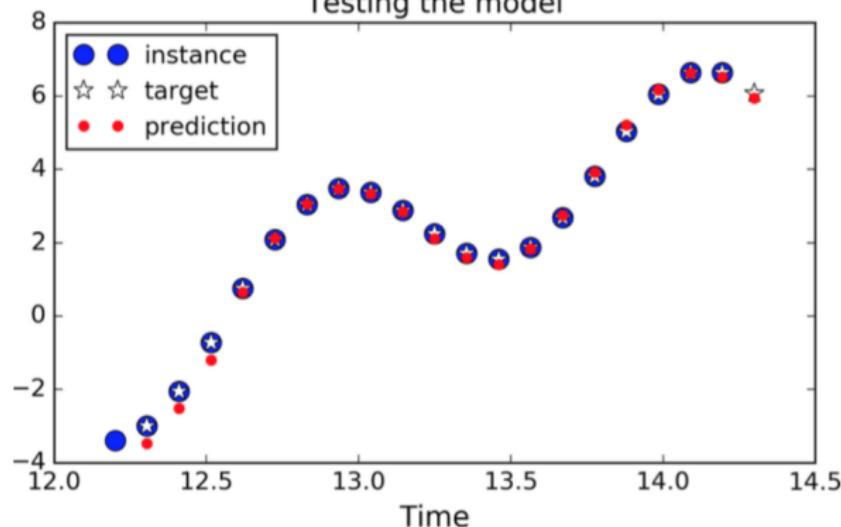
Deep RNNs

LSTMs

GRUs

Results on same sequence after 1000 training iterations

Testing the model



Training

Example: Creating New Time Series

CSCE
496/896
Lecture 6:
Recurrent
Architectures
Stephen Scott

Introduction
Basic Idea
I/O Mappings
Examples

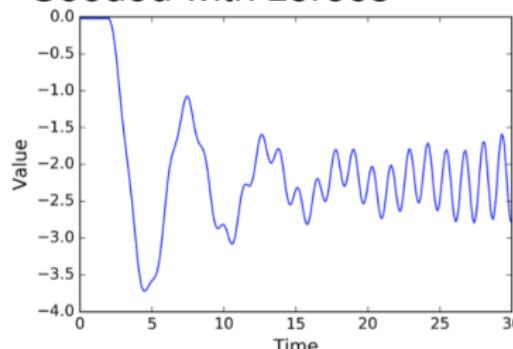
Training

Deep RNNs
LSTMs
GRUs

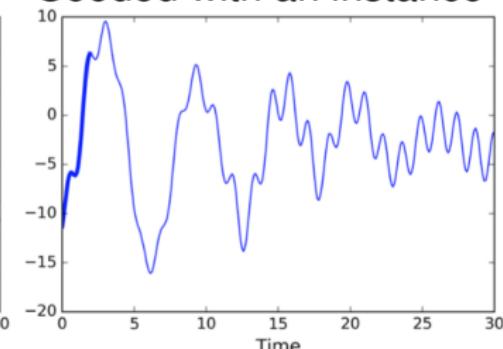
- Feed to trained model **seed sequence** of size `n_steps`, append predicted value to sequence, feed last `n_steps` back in to predict next value, etc.

```
sequence = [0.] * n_steps
for iteration in range(300):
    X_batch = np.array(sequence[-n_steps:]).reshape(1, n_steps, 1)
    y_pred = sess.run(outputs, feed_dict={X: X_batch})
    sequence.append(y_pred[0, -1, 0])
```

Seeded with zeroes



Seeded with an instance



Deep RNNs

CSCE
496/896
Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

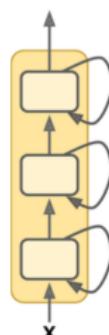
Examples

Training

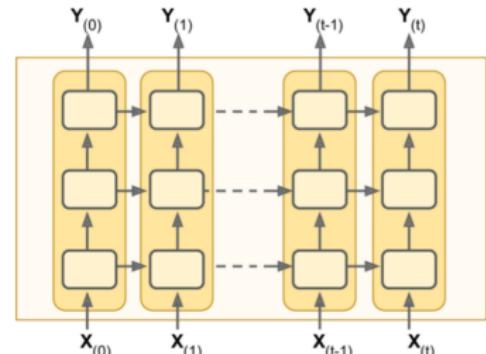
Deep RNNs

LSTMs

GRUs



```
n_neurons = 100
n_layers = 3
layers = [tf.contrib.rnn.BasicRNNCell(num_units=n_neurons,
                                         activation=tf.nn.relu)
          for layer in range(n_layers)]
multi_layer_cell = tf.contrib.rnn.MultiRNNCell(layers)
outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32)
```



Training over Many Time Steps

CSCE
496/896Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

Training

Deep RNNs

LSTMs

GRUs

- Vanishing and exploding gradients can be a problem with RNNs, like with other deep networks
 - Can as usual address with, e.g., ReLU, batch normalization, gradient clipping, etc.
- Can still suffer from long training times with long input sequences
 - **Truncated backpropagation through time** addresses this by limiting `n_steps`
 - Lose ability to learn long-term patterns
- In general, also have problem of first inputs of sequence have diminishing impact as sequence grows
 - E.g., first few words of long text sequence
- Goal: Introduce **long-term memory** to RNNs
- Allow a network to **accumulate** information about the past, but also decide when to **forget** information

Long Short-Term Memory

Hochreiter and Schmidhuber (1997)

CSCE
496/896
Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

Training

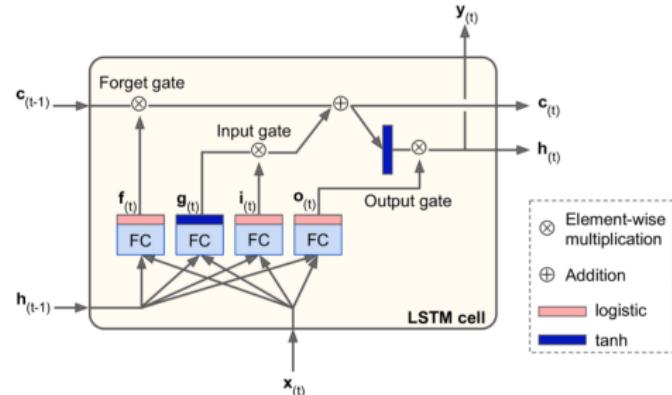
Deep RNNs

LSTMs

GRUs

- Vector $h_{(t)}$ = **short-term state**, $c_{(t)}$ = **long-term state**

- At time t , some memories from $c_{(t-1)}$ are forgotten in the **forget gate** and new ones (from **input gate**) added



⊗ Element-wise multiplication
⊕ Addition
red logistic
blue tanh

- Result sent out as $c_{(t)}$
- $h_{(t)}$ (and $y_{(t)}$) comes from processing long-term state in **output gate**

```
lstm_cell = tf.contrib.rnn.BasicLSTMCell(num_units=n_neurons)
```

Long Short-Term Memory

Hochreiter and Schmidhuber (1997)

CSCE
496/896Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

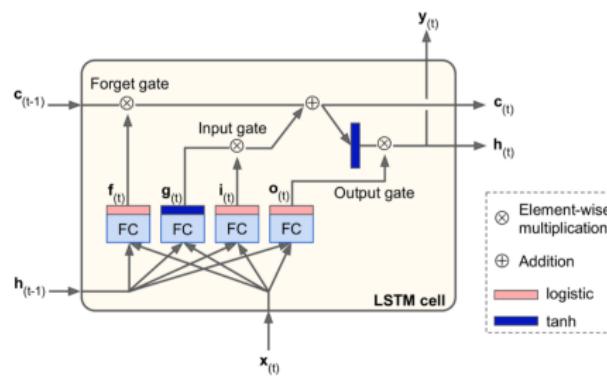
Examples

Training

Deep RNNs

LSTMs

GRUs



- $g_{(t)}$ combines input $x_{(t)}$ with state $h_{(t-1)}$
- $f_{(t)}, i_{(t)}, o_{(t)}$ are **gate controllers**
- $f_{(t)} \in [0, 1]^n$ controls forgetting of $c_{(t-1)}$
- $i_{(t)}$ controls remembering of $g_{(t)}$

- $o_{(t)}$ controls what of $c_{(t)}$ goes to output and $h_{(t)}$
- Output depends on long- and short-term memory
- Network learns what to remember long-term based on $x_{(t)}$ and $h_{(t-1)}$

Long Short-Term Memory

CSCE 496/896 Lecture 6: Recurrent Architectures

Stephen Scott

Introduction

Basic Ideas

VO Mappings

Examples

Training

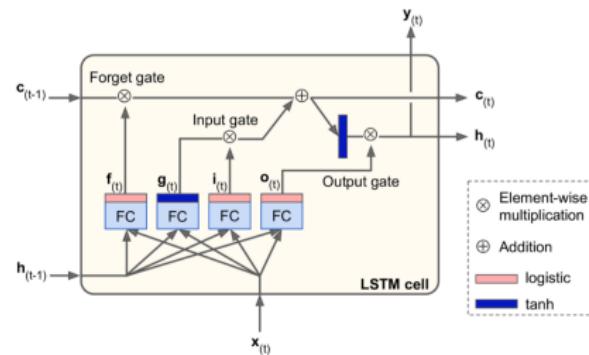
Deep BNNs

LSTMs

GBUs

- $i_{(t)} = \sigma(W_{xi}^\top \mathbf{x}_{(t)} + W_{hi}^\top \mathbf{h}_{(t-1)} + b_i)$
- $f_{(t)} = \sigma(W_{xf}^\top \mathbf{x}_{(t)} + W_{hf}^\top \mathbf{h}_{(t-1)} + b_f)$
- $o_{(t)} = \sigma(W_{xo}^\top \mathbf{x}_{(t)} + W_{ho}^\top \mathbf{h}_{(t-1)} + b_o)$
- $g_{(t)} = \tanh(W_{xg}^\top \mathbf{x}_{(t)} + W_{hg}^\top \mathbf{h}_{(t-1)} + b_g)$

- $\mathbf{c}_{(t)} = \mathbf{f}_{(t)} \otimes \mathbf{c}_{(t-1)} + \mathbf{i}_{(t)} \otimes \mathbf{g}_{(t)}$
- $\mathbf{y}_{(t)} = \mathbf{h}_{(t)} = \mathbf{o}_{(t)} \otimes \tanh(\mathbf{c}_{(t)})$



- Can add **peephole connection**: Let $c_{(t-1)}$ affect $f_{(t)}$ and $i_{(t)}$ and $c_{(t-1)}$ affect $o_{(t)}$

Gated Recurrent Unit

CSCE
496/896
Lecture 6:
Recurrent
Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

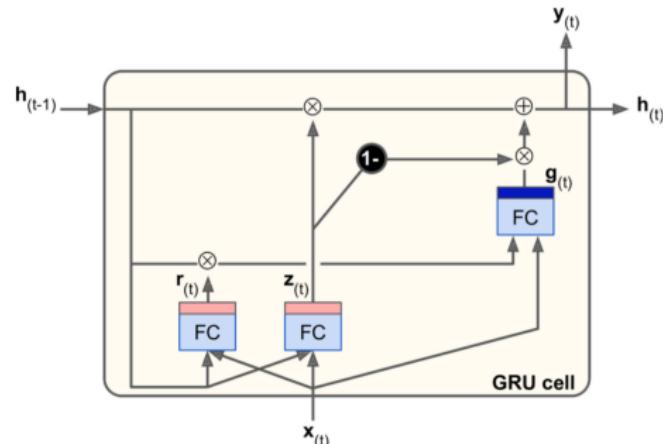
Training

Deep RNNs

LSTMs

GRUs

- Simplified LSTM
- Merge $c_{(t)}$ into $\mathbf{h}_{(t)}$
- Merge $f_{(t)}$ and $i_{(t)}$ into $\mathbf{z}_{(t)}$
 - $\mathbf{z}_{(t),i} = 0 \Rightarrow$ forget $\mathbf{h}_{(t-1),i}$ and add in $\mathbf{g}_{(t),i}$



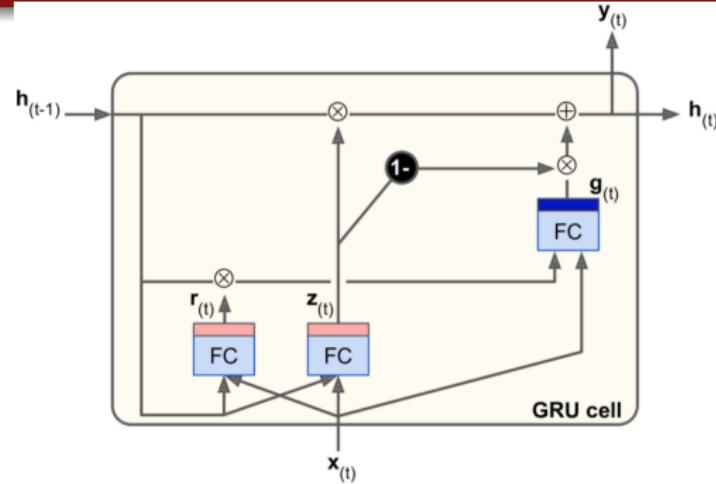
- $o_{(t)}$ replaced by $r_{(t)}$ \Rightarrow forget part of $\mathbf{h}_{(t-1)}$ when computing $\mathbf{g}_{(t)}$

```
gru_cell = tf.contrib.rnn.GRUCell(num_units=n_neurons)
```

Gated Recurrent Unit

CSCE
496/896
Lecture 6:
Recurrent
Architectures
Stephen Scott

Introduction
Basic Idea
I/O Mappings
Examples
Training
Deep RNNs
LSTMs
GRUs



- $z_{(t)} = \sigma (W_{xz}^\top x_{(t)} + W_{hz}^\top h_{(t-1)} + b_z)$
- $r_{(t)} = \sigma (W_{xr}^\top x_{(t)} + W_{hr}^\top h_{(t-1)} + b_r)$
- $g_{(t)} = \tanh (W_{xg}^\top x_{(t)} + W_{hg}^\top (r_{(t)} \otimes h_{(t-1)}) + b_g)$
- $y_{(t)} = h_{(t)} = z_{(t)} \otimes h_{(t-1)} + (1 - z_{(t)}) \otimes g_{(t)}$