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Introduction

All our architectures so far work on fixed-sized inputs
Recurrent neural networks work on sequences of
inputs
E.g., text, biological sequences, video, audio
Can also try 1D convolutions, but lose long-term
relationships in input
Especially useful for NLP applications: translation,
speech-to-text, sentiment analysis
Can also create novel output: e.g., Shakespearean
text, music
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Outline

Basic RNNs
Input/Output Mappings
Example Implementations
Training
Long short-term memory
Gated Recurrent Unit
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Basic Recurrent Cell

A recurrent cell (or recurrent neuron) has
connections pointing backward as well as
forward
At time step (frame) t, neuron receives input
vector x

(t) as usual, but also receives its own
output y

(t�1) from previous step
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Basic Recurrent Layer

Can build a layer of recurrent cells, where each node
gets both the vector x

(t) and the vector y

(t�1)
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Basic Recurrent Layer

Each node in the recurrent layer has independent
weights for both x

(t) and y

(t�1)

For a single recurrent node, denote by w

x

and w

y

For the entire layer, combine into matrices W
x

and W
y

For activation function � and bias vector b, output
vector is

y

(t) = �
⇣

W>
x

x

(t) + W>
y

y

(t�1) + b

⌘
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Memory and State

Since a node’s output depends on its past, it can be
thought of having memory or state

State at time t is h

(t) = f (h
(t�1), x

(t)) and output
y

(t) = g(h
(t�1), x

(t))
State could be the same as the output, or separate
Can think of h

(t) as storing important information about
input sequence
Analogous to convolutional outputs summarizing
important image features
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Input/Output Mappings
Sequence to Sequence

Many ways to employ this basic architecture:

Sequence to sequence: Input is a sequence and
output is a sequence
E.g., series of stock predictions, one day in advance
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Input/Output Mappings
Sequence to Vector

Sequence to vector: Input is sequence and output a
vector/score/ classification
E.g., sentiment score of movie review
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Input/Output Mappings
Vector to Sequence

Vector to sequence: Input is a single vector (zeroes
for other times) and output is a sequence
E.g., image to caption
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Input/Output Mappings
Encoder-Decoder Architecture

Encoder-decoder: Sequence-to-vector (encoder)
followed by vector-to-sequence (decoder)
Input sequence (x1, . . . , xT) yields hidden outputs
(h1, . . . , hT), then mapped to context vector

c = f (h1, . . . , hT)

Decoder output yt0 depends on previously output
(y1, . . . , yt0�1) and c

Example application: neural machine translation
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Input/Output Mappings
Encoder-Decoder Architecture: NMT Example

Pre-trained word embeddings fed into input
Encoder maps word sequence to vector, decoder maps
to translation via softmax distribution
After training, do translation by feeding previous
translated word y

0
(t�1) to decoder
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Input/Output Mappings
Encoder-Decoder Architecture

Works through an embedded space like an
autoencoder, so can represent the entire input as an
embedded vector prior to decoding
Issue: Need to ensure that the context vector fed into
decoder is sufficiently large in dimension to represent
context required
Can address this representation problem via attention

mechanism mechanism
Encodes input sequence into a vector sequence rather
than single vector
As it decodes translation, decoder focuses on relevant
subset of the vectors
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Input/Output Mappings
E-D Architecture: Attention Mechanism (Bahdanau et al., 2015)

Bidirectional RNN reads input
forward and backward
simultaneously
Encoder builds annotation hj

as concatenation of
�!
h j and

 �
h j

) hj summarizes preceding
and following inputs

ith context vector
ci =

PT
j=1 ↵ijhj, where

↵ij =
exp(eij)PT

k=1 exp(eik)

and eij is an alignment score between inputs around j and
outputs around i
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Input/Output Mappings
E-D Architecture: Attention Mechanism (Bahdanau et al., 2015)

The ith element of
attention vector ↵j tells
us the probability that
target output yi is aligned
to (or translated from)
input xj

Then ci is expected
annotation over all
annotations with
probabilities ↵j

Alignment score eij indicates how much we should
focus on word encoding hj when generating output yi
(in decoder state si�1)
Can compute eij via dot product h

>
j si�1, bilinear function

h

>
j Wsi�1, or nonlinear activation
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Example Implementation
Static Unrolling for Two Time Steps

X0 = tf.placeholder(tf.float32, [None, n_inputs])
X1 = tf.placeholder(tf.float32, [None, n_inputs])
Wx = tf.Variable(tf.random_normal(shape=[n_inputs, n_neurons],dtype=tf.float32))
Wy = tf.Variable(tf.random_normal(shape=[n_neurons,n_neurons],dtype=tf.float32))
b = tf.Variable(tf.zeros([1, n_neurons], dtype=tf.float32))
Y0 = tf.tanh(tf.matmul(X0, Wx) + b)
Y1 = tf.tanh(tf.matmul(Y0, Wy) + tf.matmul(X1, Wx) + b)

Input:

# Mini-batch: instance 0, instance 1, instance 2, instance 3
X0_batch = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 0, 1]]) # t = 0
X1_batch = np.array([[9, 8, 7], [0, 0, 0], [6, 5, 4], [3, 2, 1]]) # t = 1
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Example Implementation
Static Unrolling for Two Time Steps

Can achieve the same thing more compactly via
static_rnn()
X0 = tf.placeholder(tf.float32, [None, n_inputs])
X1 = tf.placeholder(tf.float32, [None, n_inputs])
basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)
output_seqs, states = tf.contrib.rnn.static rnn(basic_cell, [X0, X1],

dtype=tf.float32)
Y0, Y1 = output_seqs

Automatically unrolls into length-2 sequence RNN
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Example Implementation
Automatic Static Unrolling

Can avoid specifying one placeholder per time step via
tf.stack and tf.unstack
X = tf.placeholder(tf.float32, [None, n steps, n_inputs])

X_seqs = tf.unstack(tf.transpose(X, perm=[1, 0, 2]))
basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)
output_seqs, states = tf.contrib.rnn.static_rnn(basic_cell, X_seqs,

dtype=tf.float32)
outputs = tf.transpose(tf.stack(output_seqs), perm=[1, 0, 2])

...
X_batch = np.array([

# t=0 t=1
[[0, 1, 2], [9, 8, 7]], # instance 0
[[3, 4, 5], [0, 0, 0]], # instance 1
[[6, 7, 8], [6, 5, 4]], # instance 2
[[9, 0, 1], [3, 2, 1]], # instance 3
])

Uses static_rnn() again, but on all time steps
folded into a single tensor
Still forms a large, static graph (possible memory
issues)
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Example Implementation
Dynamic Unrolling

Even better: Let TensorFlow unroll dynamically via a
while_loop() in dynamic_rnn()
X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])

basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)
outputs, states = tf.nn.dynamic rnn(basic_cell, X, dtype=tf.float32)

Can also set swap_memory=True to reduce memory
problems
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Example Implementation
Variable-Length Sequences

May need to handle variable-length inputs

Use 1D tensor sequence_length to set length of
each input (and maybe output) sequence
Pad smaller inputs with zeroes to fit input tensor
Use “end-of-sequence” symbol at end of each output

seq_length = tf.placeholder(tf.int32, [None])
...
outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32,

sequence length=seq length)
...
X_batch = np.array([

# step 0 step 1
[[0, 1, 2], [9, 8, 7]], # instance 0
[[3, 4, 5], [0, 0, 0]], # instance 1 (padded with a zero vector)
[[6, 7, 8], [6, 5, 4]], # instance 2
[[9, 0, 1], [3, 2, 1]], # instance 3

])
seq_length_batch = np.array([2, 1, 2, 2])
...
with tf.Session() as sess:

init.run()
outputs_val, states_val = sess.run(

[outputs, states], feed_dict={X: X_batch, seq_length: seq_length_batch})
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Training
Backpropagation Through Time (BPTT)

Unroll through time and use BPTT
Forward pass mini-batch of sequences through unrolled
network yields output sequence Y

(t
min

)

, . . . , Y
(t
max

)

Output sequence evaluated using cost
C
�
Y
(t
min

)

, . . . , Y
(t
max

)

�

Gradients propagated backward through unrolled
network (summing over all time steps), and parameters

21 / 35

CSCE
496/896

Lecture 6:
Recurrent

Architectures

Stephen Scott

Introduction

Basic Idea

I/O Mappings

Examples

Training

Deep RNNs

LSTMs

GRUs

Training
Example: Training on MNIST as a Vector Sequence

Consider MNIST inputs provided as sequence of 28
inputs of 28-dimensional vectors
Feed in input as usual, then compute loss between
target and softmax output after 28th input
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Training
Example: Training on MNIST as a Vector Sequence

X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.int32, [None])
basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)
outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32)
logits = tf.layers.dense(states, n outputs)
xentropy = tf.nn.sparse softmax cross entropy with logits(labels=y,

logits=logits)
loss = tf.reduce mean(xentropy)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)
correct = tf.nn.in_top_k(logits, y, 1)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
init = tf.global_variables_initializer()
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Training
Example: Training on Time Series Data

Input is time series

Target is same as input, but shifted one into the future
E.g., stock prices, temperature
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Training
Example: Training on Time Series Data

Use sequences of length n_steps=20 and
n_neurons=100 recurrent neurons
Since output size = 100 > 1 = target size, use
OutputProjectionWrapper to feed recurrent layer
output into a linear unit to get a scalar
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Training
Example: Training on Time Series Data

n_steps = 20
n_inputs = 1
n_neurons = 100
n_outputs = 1
X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None, n_steps, n_outputs])
cell = tf.contrib.rnn.OutputProjectionWrapper(

tf.contrib.rnn.BasicRNNCell(num_units=n_neurons, activation=tf.nn.relu),
output_size=n_outputs)

outputs, states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)
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Training
Example: Training on Time Series Data

Results on same sequence after 1000 training iterations
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Training
Example: Creating New Time Series

Feed to trained model seed sequence of size
n_steps, append predicted value to sequence, feed
last n_steps back in to predict next value, etc.

sequence = [0.] * n_steps
for iteration in range(300):

X_batch = np.array(sequence[-n steps:]).reshape(1, n_steps, 1)
y_pred = sess.run(outputs, feed_dict={X: X_batch})
sequence.append(y pred[0, -1, 0])

Seeded with zeroes Seeded with an instance
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Deep RNNs

A deep RNN has multiple
recurrent layers stacked

n_neurons = 100
n_layers = 3
layers = [tf.contrib.rnn.BasicRNNCell(num_units=n_neurons,

activation=tf.nn.relu)
for layer in range(n_layers)]

multi_layer_cell = tf.contrib.rnn.MultiRNNCell(layers)
outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32)
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Training over Many Time Steps

Vanishing and exploding gradients can be a problem
with RNNs, like with other deep networks

Can as usual address with, e.g., ReLU, batch
normalization, gradient clipping, etc.

Can still suffer from long training times with long input
sequences

Truncated backpropagation through time addresses
this by limiting n_steps
Lose ability to learn long-term patterns

In general, also have problem of first inputs of
sequence have diminishing impact as sequence grows

E.g., first few words of long text sequence

Goal: Introduce long-term memory to RNNs
Allow a network to accumulate information about the
past, but also decide when to forget information
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Long Short-Term Memory
Hochreiter and Schmidhuber (1997)

Vector h

(t) = short-term state, c

(t) = long-term state

At time t, some
memories from
c

(t�1) are
forgotten in the
forget gate and
new ones (from
input gate)
added

Result sent out as c

(t)

h

(t) (and y

(t)) comes from processing long-term state in
output gate

lstm cell = tf.contrib.rnn.BasicLSTMCell(num units=n neurons)
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Long Short-Term Memory
Hochreiter and Schmidhuber (1997)

g

(t) combines input
x

(t) with state h

(t�1)

f

(t), i

(t), o

(t) are gate

controllers

f

(t) 2 [0, 1]n controls
forgetting of c

(t�1)

i

(t) controls
remembering of g

(t)

o

(t) controls what of c

(t) goes to output and h

(t)

Output depends on long- and short-term memory
Network learns what to remember long-term based on
x

(t) and h

(t�1)
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Long Short-Term Memory
Hochreiter and Schmidhuber (1997)

i

(t) = �
�
W>

xi

x

(t) + W>
hi

h

(t�1) + b

i

�

f

(t) = �
⇣

W>
xf

x

(t) + W>
hf

h

(t�1) + b

f

⌘

o

(t) = �
�
W>

xo

x

(t) + W>
ho

h

(t�1) + b

o

�

g

(t) = tanh
⇣

W>
xg

x

(t) + W>
hg

h

(t�1) + b

g

⌘

c

(t) =
f

(t)⌦c

(t�1)+ i

(t)⌦g

(t)

y

(t) = h

(t) =
o

(t) ⌦ tanh
�
c

(t)
�

Can add peephole connection: Let c

(t�1) affect f

(t)
and i

(t) and c

(t�1) affect o

(t)
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Gated Recurrent Unit

Simplified LSTM
Merge c

(t) into
h

(t)

Merge f

(t) and i

(t)
into z

(t)
z(t),i = 0)
forget h(t�1),i
and add in
g(t),i

o

(t) replaced by r

(t) ) forget part of h

(t�1) when
computing g

(t)

gru cell = tf.contrib.rnn.GRUCell(num units=n neurons)
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Gated Recurrent Unit

z

(t) = �
�
W>

xz

x

(t) + W>
hz

h

(t�1) + b

z

�

r

(t) = �
�
W>

xr

x

(t) + W>
hr

h

(t�1) + b

r

�

g

(t) = tanh
⇣

W>
xg

x

(t) + W>
hg

�
r

(t) ⌦ h

(t�1)
�
+ b

g

⌘

y

(t) = h

(t) = z

(t) ⌦ h

(t�1) +
�
1� z

(t)
�
⌦ g

(t)
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