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@ Can build a layer of recurrent cells, where each node
gets both the vector x,) and the vector y(,_)
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All our architectures so far work on fixed-sized inputs

@ Recurrent neural networks work on sequences of
inputs

Stephen Scott

Introduction

IE‘ZS;;‘S:QS e E.g., text, biological sequences, video, audio

Examples @ Can also try 1D convolutions, but lose long-term
Training relationships in input

Deep RNNs @ Especially useful for NLP applications: translation,
LSTMs speech-to-text, sentiment analysis

o @ Can also create novel output: e.g., Shakespearean

text, music
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Basic Recurrent Cell

CSCE @ A recurrent cell (or recurrent neuron) has y

496/896

Lo connections pointing backward as well as
Architectures forward

Stephen Scott

@ At time step (frame) ¢, neuron receives input
vector x(,y as usual, but also receives its own
output y(,_;y from previous step
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@ Each node in the recurrent layer has independent
weights for both xy and y(,_)

Introduction

Basic Idea @ For a single recurrent node, denote by w, and w,

';O “"a’l’p‘"gs @ For the entire layer, combine into matrices W, and W,
xamples

— @ For activation function ¢ and bias vector b, output

Deep RNNs VeCtor |S

LSTMs T T

GRUs Yoy =9 (Wx Xy + Wy ye-) +b)



WY Memory and State [Eveney [nput/Output Mappings

Lincoln Lincoln Sequence to Sequence

CSCE
Wl \Many ways to employ this basic architecture:

e @ Since a node’s output depends on its past, it can be

L thought of having memory or state et

;:;f:‘;;: o State attime ris h; = f(h1),x()) and output ;:;t::(;z @ Sequence to sequence: Input is a sequence and
Yy = &h—1): %) output is a sequence

Introduction @ State could be the same as the output, or separate Introduction e E.g., series of stock predictions, one day in advance
Basic ldea @ Can think of &, as storing important information about Basic Idea & ’ y
1/0 Mappings input sequence 1/0 Mappings Y(O) Y(‘1 ) Y(2) Y(S) Y(4)
Examples @ Analogous to convolutional outputs summarizing Examples
Training Training

important image features

Deep RNNs

Deep RNNs

LSTMs y(0) y(1 ) y(2) LSTMs

&D 64&)4&} bt
ho 3~ Py X X X X X
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e Input/Output Mappings SeE Input/Output Mappings

Bl Sequence to Vector Bl Vector to Sequence
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e @ Sequence to vector: Input is sequence and output a

Locture 6 vector/score/ classification Locure 6 ) ]yectt%r t(:. sequenge. Itantjt' is a single vector (zeroes
Architectures @ E.g., sentiment score of movie review Arehitectures or other times) and output is a sequence
Stephen Scott Stephen Scott ) Eg image to Caption
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BEl Encoder-Decoder Architecture BRIl Encoder-Decoder Architecture: NMT Example

CSCE CSCE

1961696 ° F“COdgrt-)dECOderi Sequence-to‘;vectgr (encoder) 406186 @ Pre-trained word embeddings fed into input
w vector-to- n r
i ollowed by vector-to-seque c.:e( eco er) o @ Encoder maps word sequence to vector, decoder maps
Stephen Soot ° |(r;lput sezu;erltr:]e (xi, - - 7xdTi y|eldst h'fden toutputs —r— to translation via softmax distribution
..., hr), then mapped to context vector N ) . .
S c i’ f(h7 T hr) PP Iniroduction @ After training, do translation by feeding previous
= ...,nr
Basic Idea e . Basi Idea translated word y{,_,, to decoder
i @ Decoder output y, depends on previously output -
/O Mappings d HOIMappings Target: Je bois du lait <e0s>
Examples (y]7 e 7yl‘/*1) anac Examples Prediction: Je bois le lait  <eos>
Taining @ Example application: neural machine translation T Ersor-onsr | N TR
Desp AN __Encoder Decoder Desp ANNs T e e v v
LSTMs f W Y LSTMs | |
! AR OO |
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@ Works through an embedded space like an
autoencoder, so can represent the entire input as an
embedded vector prior to decoding

@ Issue: Need to ensure that the context vector fed into
decoder is sufficiently large in dimension to represent
context required

@ Can address this representation problem via attention
mechanism mechanism

e Encodes input sequence into a vector sequence rather
than single vector

e As it decodes translation, decoder focuses on relevant
subset of the vectors
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BB E-D Architecture: Attention Mechanism (Bahdanau et al., 2015)

CsCE @ The ith element of T
496/896 . g §F
Usctire e attention vector o tells RN 1P

e us the probability that [ E—
T — target output y; is aligned o
to (or translated from) o
Introduction . t économique,
Basic Idea |npU xj européenne|
/O Mappings @ Then ¢; is expected

annotation over all
annotations with
probabilities o

Examples

Training

Deep RNNs

LSTMs

GRUs @ Alignment score e;; indicates how much we should
focus on word encoding %; when generating output y;
(in decoder state s;_;)

@ Can compute ¢;; via dot product £;"s; 1, bilinear function
h_]-TWs,-,l, or nonlinear activation
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Can achieve the same thing more compactly via
static_rnn()

Introduction

Basic Idea X0 = tf.placeholder (tf.float32, [None, n_inputs])

X1 = tf.placeholder(tf.float32, [None, n_inputs])

basic_cell = tf.contrib.rnn.BasicRNN 1 (num_units=n_neurons)

output_seqs, states = tf.co tic.rnn(basic_cell, (X0, X1],
dtype=tf.float32)

Y0, Y1 = output_seqs

1/O Mappings

Examples
Training
Deep RNNs

LSTMs Automatically unrolls into length-2 sequence RNN

GRUs

\aree Input/Output Mappings

BB E-D Architecture: Attention Mechanism (Bahdanau et al., 2015)
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o Bidirectional RNN reads input
forward and backward
simultaneously

@ Encoder builds annotation #;
as concatenation of 7,~ and ?j

= h; summarizes preceding
and following inputs

@ ith context vector
¢ =Y., ayhy, where

exp(e;)

.: ZZ;I_EXP(Eik) k
and ¢;; is an alignment score between inputs around j and

outputs around i
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X0 = tf.placeholder (tf.float32, [None, n_inputs])

Stephen Scott X1 = tf.placeholder (tf.float32, [None, n_inputs])
Wx = tf.Variable(tf.random_normal (shape=[n_inputs, n_neurons],dtype=tf.float32))

ifEsliEan Wy = tf.Variable(tf.random_normal (shape=[n_neurons,n_neurons],dtype=tf.float32))
b = tf.Variable(tf.zeros([1l, n_neurons], dtype=tf.float32))

Basic Idea Y0 = h (t£.matmul ( + b)
Y1 = tf.tanh(tf.matmul(Y0, Wy) + tf.matmul(X1, Wx) + b)

1/0 Mappings

Exampl

e Input:

Training

BB NS # Mini-batch: instance 0, instance 1, instance 2, instance 3

LSTMs X0_batch = np.array([[0, 1, 2], [3, 4, 51, [6, 7, 8], [9, 0, 11]) # t =0
X1_batch = np.array([[9, 8, 7], [0, O, 01, [6, 5, 4], [3, 2, 1]1]) # t = 1

GRUs

ey Example Implementation

BN  Automatic Static Unrolling

JoScER Can avoid specifying one placeholder per time step via
tf.stack and tf.unstack

Lecture 6:
Recurrent
Architectures X = tf.placeholder (tf.float32, [None, n-c 5, n_inputs])

X_seqs = tf.unstack (tf.transpose (X, perm=[1, 0, 2]1))

basic_cell = tf.contrib.rnn.BasicRNNCell (num_units=n_neurons)
output_seqs, states = tf.contrib.rnn.static_rnn(basic_cell, X_seqgs,

dtype=tf.float32)

outputs = tf.transpose(tf.stack (output_segs), perm=[1, 0, 2])

Stephen Scott

Introduction

Basic Idea

X_batch = np.array ([
1/0 Mappings # t=0 t=1

o 1,02), 19, 8, instance

(o 711, # 0

Examples [(3, 4, s), (0, 0, 0]), # instance 1

i {6, 7, 81, (6, 5, 411, # instance 2

Training {19, 0, 11, (3, 2, 111, # instance 3
1

Deep RNNs

LSTMs

GRES @ Uses static_rnn () again, but on all time steps

folded into a single tensor
@ Still forms a large, static graph (possible memory
issues)
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Even better: Let TensorFlow unroll dynamically via a
while_loop () indynamic_rnn ()

Introduction

Basic Idea X = tf.placeholder (tf.float32, [None, n_steps, n_inputs])

/O Mappings basic_cell = tf.contrib.rnn.BasicRNNCell (num_units=n_neurons)

B outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32)
Training
Deep RNNs Can also set swap_memory=True to reduce memory
LSTMs problems

GRUs

Ay [raining
BN  Backpropagation Through Time (BPTT)
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@ Unroll through time and use BPTT
@ Forward pass mini-batch of sequences through unrolled
network yields output sequence Y, . y,..., Y.
@ Output sequence evaluated using cost
€ (Y Yitmar))
@ Gradients propagated backward through unrolled
—— network (summing over all time steps), and parameters

Training C(Y(Z)' Y(a)' Y(4))

7|

Y(Z) Y(3) Y(A)

Stephen Scott
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Example: Training on MNIST as a Vector Sequence
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X = tf.placeholder (tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder (tf.int32, [None])

basic_cell = tf.contrib.rnn.BasicRNNCell (num_units=n_neurons)
outputs, stat _rnn (basic_cell, X, dtype=tf.float32)
Basic Idea logits
xentrop

Introduction

with_logits (lab

1/O Mappings
loss = tf.reducemean (xentropy)

optimizer = tf.train.AdamOptimizer (learning_rate=learning_rate)
training_op = optimizer.minimize (loss)

correct = tf.nn.in_top_k(logits, y, 1)

accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))

init = tf.global variables_initializer()

Examples

Training
Deep RNNs

LSTMs

GRUs
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@ May need to handle variable-length inputs

@ Use 1D tensor sequence_length to set length of
each input (and maybe output) sequence

@ Pad smaller inputs with zeroes to fit input tensor

@ Use “end-of-sequence” symbol at end of each output

Stephen Scott

Introduction
Basic Idea

seq_length = tf.placeholder(tf.int32, [None])

1/0 Mappings

outputs, states = tf.nn.dynamic_rnn(basic_cell,

Examples , dtype=tf.float32,
i sequence_length=seq._length)
Training .
Deep RNNs X bateh = np.array ([
# step 0 step 1
LSTMs fo, 1, 21, (9, 8, 7 instance
(3, 4, 51, (0, 0, O (padded with a zero vector)

. 0
, # instance 1
, # instance 2

# 3

1
1
6, 7, 81, [6, 5, 4]
] instance

[
GRUs [
(e, o, 11, 3, 2, 1

seq_length_batch = np.array([2, 1, 2, 2])

with tf.Session() as sess:
init.run()
outputs_val, states_val = sess.run(
[outputs, states], feed_dict={X: X_batch, seq_length: seq length_batch})

Ay Iraining

BB Example: Training on MNIST as a Vector Sequence
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@ Consider MNIST inputs provided as sequence of 28
inputs of 28-dimensional vectors
@ Feed in input as usual, then compute loss between
target and softmax output after 28th input
Introduction

Basic Idea f

1/0 Mappings

Stephen Scott

Softmax

Examples

Training

Fully Connected
10 units
LSTMs A

Deep RNNs

3

(26) (27)

Ay Iraining

BN Example: Training on Time Series Data
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@ Input is time series
@ Target is same as input, but shifted one into the future

Stephen Scott

Introduction .
@ E.g., stock prices, temperature

Basic Idea
/O Mappings A time series (generated) N A training instance

nstance
Examples ooo *

o
Trainin
& N 000 ©
Deep RNNs 5 % ©
P g 2 ° 00°
LSTMs o °
o
GRUs —  t.sin(t)/3 + 2.sin(5t) -2 o
= A training instance P
5 10 15 20 25 30 1o 125 30 135 140 145

Time Time
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Deep RNNs

Training

Example: Training on Time Series Data

@ Use sequences of length n_steps=20 and
n_neurons=100 recurrent neurons
@ Since output size = 100 > 1 = target size, use
OutputProjectionWrapper to feed recurrent layer
output into a linear unit to get a scalar
Yo0) Yoy Y18) Y(19)

g

BasicRNNCell

OutputProjectionWrapper

Training

Example: Training on Time Series Data

Results on same sequence after 1000 training iterations
Testing the model

8 T T T T
@® @ instance
6% ¥ target Q.°*
e o prediction o
4 °
(]
0®® ® ° ®
2t ® ©00®
]
o}
(4]
14
2t o
L ? ‘
12.0 12.5 13.0 13.5 14.0 14.5
Time

Deep RNNs

@ A deep RNN has multiple
recurrent layers stacked

ﬁ) n_neurons = 100
n_layers = 3
layers = [tf.contrib.rnn.BasicRNNCell (num_units=n_neurons,
activation=tf.nn.relu)
for layer in range(n_layers)]
multi_layer_cell = tf.contrib.rnn.MultiRNNCell (layers)
outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32)

X

Ay [raining

BN Example: Training on Time Series Data
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n_steps = 20
n_inputs = 1
n_neurons = 100
n_outputs = 1
X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None, n_steps, n_outputs])
Examples cell = tf.contrib.rnn.OutputProjection per (
tf.contrib.rnn.BasicRNNCell (num_units=n_neurons, activation=tf.nn.relu),

Introduction

Basic Idea

1/0 Mappings

Training output_size=n_outputs)

outputs, states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)

Deep RNNs

LSTMs
GRUs

Ay [raining

BN Example: Creating New Time Series
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@ Feed to trained model seed sequence of size
n_steps, append predicted value to sequence, feed
last n_steps back in to predict next value, etc.

Stephen Scott

Introduction

sequence = [0.] * n_steps

—— for iteration in range(300):

EEleER X_batch = np.array(sequence [-n_steps:]).reshape(l, n_steps, 1)

/O Mappings y_pred = sess.run(outputs, feed_dict={X: X_batch})
sequence.append (y-pred(0, -1, 0])

Examples

Training

So?eded with zeroes §eeded with an instance

Deep RNNs

LSTMs -10
GRUs e

Value

5 10 15 20 25 5 10 15 20 25
Time Time
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Training over Many Time Steps
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@ Vanishing and exploding gradients can be a problem
with RNNs, like with other deep networks

o Can as usual address with, e.g., ReLU, batch
normalization, gradient clipping, etc.
@ Can still suffer from long training times with long input
sequences
o Truncated backpropagation through time addresses
this by limiting n_steps
o Lose ability to learn long-term patterns
@ In general, also have problem of first inputs of
sequence have diminishing impact as sequence grows
e E.g., first few words of long text sequence

@ Goal: Introduce long-term memory to RNNs

@ Allow a network to accumulate information about the
past, but also decide when to forget information

Stephen Scott
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Examples
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Deep RNNs

LSTMs
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@ Vector k() = short-term state, c¢(,, = long-term state

. @ Attime ¢, some ¥
ephen Scott .

memories from Forge gate |
Introduction c([7 l) are o Qy‘ \I» X hm
Basic Idea o

forgotten in the
forget gate and
new ones (from
input gate)
added

/i Output gate c
1/0 Mappings @ Element-wise

multplication
Examples

@ Addition

h

Training 't-1) —f

| == logistic

Deep RNNs | m—tanh

@ Result sentout as ¢,

@ k) (and y(;)) comes from processing long-term state in
output gate

lstm_cell = tf.contrib.rnn.BasicLSTMCell (num_units=n_neurons)

e Long Short-Term Memory

BB Hochreiter and Schmidhuber (1997)

soa50s @in=o0 (WT X+ A hg_1y +b;)
Lecture 6:
RS o i) — o (Whxi + Wiph oy +by)
Stephen Scott [ 0([) =0 (Wxax(f) + W’;I; h(tfl) + b())
Introduction ) g8n = tanh (W;;x(t) + W’;I:g h(t—l) -+ bg)
Basic Idea
1/0 Mappings Yo
Examples ﬁ
Training ° c(’) = o A

Deep RNNs J (1)

] pugan A,Lﬂ \
C(—1) T D& %g% ?
0= h(,) = fiff\?{ézaﬁ:
0() @ tanh (c(,) #%(7 S

@ Can add peephole connection: Let ¢(,_) affect £
and i and ¢, affect o,

Weeer=l Gated Recurrent Unit
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Introduction

Basic Idea

1/O Mappings

Examples GRU cell

Training
Deep RNNs

LSTMs (

0zy=o0 W;EX(,) + W,:;h(,_l) erz)

o riy =0 (Wgx() + Wy b1y +br)
) gn = tanh (W;ZE,X(,) + W,;I;, (r(,) K h(,,l)) +bg)
(1-z()) @8

@y =hu =z @hiy) +
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Long Short-Term Memory
Hochreiter and Schmidhuber (1997)

@ g(;) combines input
x(;) with state k)
oy are gate

‘ g 7 g L ° fi: k):
controllers
9, o] ) Output gate .
%% © e @ fiy €[0,1]" controls

Yo

Forget gate

" m - forgetting of ¢,
R LSTM cell === logistic
- @ i(, controls

remembering of g,

o, controls what of ¢, goes to output and k)
° Output depends on Iong- and short-term memory

@ Network learns what to remember long-term based on
) and h(t—l)

Gated Recurrent Unit

@ Simplified LSTM Yo
@ Merge ¢(, into hey [ ,
ha)
o Mergef(t) and i(,)
into z(,
@z, =0=
forgeth, 1).i
and add in

|
8(1),i )

GRU cell

o, replaced by r(,
computing 146}

= forget part of &(,_;) when

gru-cell = tf.contrib.rnn.GRUCell (num-units=n_neurons)



