

496/896 Lecture 6: Recurrent Architectures Stephen Scott Introduction Basic Idea I/O Mappings Examples Training Deep RNNs

GRUs

Additional CSCE 496/896 Lecture 6: Recurrent Architectures Stephen Scott (Adapted from Vinod Variyam and Ian Goodfellow)

sscott@cse.unl.edu

Nebraska Introduction

GRUs

- All our architectures so far work on fixed-sized inputs
- Recurrent neural networks work on sequences of inputs
- E.g., text, biological sequences, video, audio
- Can also try 1D convolutions, but lose long-term relationships in input
- Especially useful for NLP applications: translation, speech-to-text, sentiment analysis
- Can also **create novel output:** e.g., Shakespearean text, music

・ロト・西ト・モー・ 一日・ うへの

Nebraska Basic Recurrent Layer

6 6: nt res

Basic Idea

Examples

Deep RNNs

GRUs

I/O Mappings

- Each node in the recurrent layer has independent weights for both $\mathbf{x}_{(t)}$ and $\mathbf{y}_{(t-1)}$
- For a single recurrent node, denote by w_x and w_y
- For the entire layer, combine into matrices W_x and W_y
- For activation function ϕ and bias vector $\pmb{b},$ output vector is

$$\mathbf{y}_{(t)} = \phi \left(W_{\mathbf{x}}^{\top} \mathbf{x}_{(t)} + W_{\mathbf{y}}^{\top} \mathbf{y}_{(t-1)} + \mathbf{b} \right)$$

Nebraska Memory and State

- Since a node's output depends on its past, it can be thought of having memory or state
- State at time *t* is $\boldsymbol{h}_{(t)} = f(\boldsymbol{h}_{(t-1)}, \boldsymbol{x}_{(t)})$ and output $\boldsymbol{y}_{(t)} = g(\boldsymbol{h}_{(t-1)}, \boldsymbol{x}_{(t)})$
- State could be the same as the output, or separate • Can think of $h_{(t)}$ as storing important information about
- input sequence Analogous to convolutional outputs summarizing important image features

Input/Output Mappings Nebraska Sequence to Sequence

96/896 ecture 6

tenhen Sr

Basic Idea I/O Mappings

Examples

Training

GRUs

Deep RNNs

ntroduction

I/O Mappings

Examples

Deep RNNs

Basic Idea

I/O Mappings

Examples

Deep RNNs

GRUs

э

Training

LSTMs

Many ways to employ this basic architecture:

- Sequence to sequence: Input is a sequence and output is a sequence
- E.g., series of stock predictions, one day in advance

Input/Output Mappings Nebraska Vector to Sequence

- Vector to sequence: Input is a single vector (zeroes) for other times) and output is a sequence
 - E.g., image to caption

Input/Output Mappings Nebraska Encoder-Decoder Architecture

(0)

- Encoder-decoder: Sequence-to-vector (encoder) followed by vector-to-sequence (decoder)
- Input sequence (x_1, \ldots, x_T) yields hidden outputs (h_1, \ldots, h_T) , then mapped to **context vector** $\boldsymbol{c} = f(\boldsymbol{h}_1, \ldots, \boldsymbol{h}_T)$
- Decoder output y_t depends on previously output $(y_1, ..., y_{t'-1})$ and *c*
- Example application: neural machine translation

Input/Output Mappings Nebraska Encoder-Decoder Architecture: NMT Example

- Pre-trained word embeddings fed into input
- Encoder maps word sequence to vector, decoder maps to translation via softmax distribution
- After training, do translation by feeding previous translated word $y'_{(t-1)}$ to decoder

Basic Idea O Mapping Examples Training Deep RNNs GRUs

Nebraska

ntroductior

xamples

Deep RNNs

Stephen Sco

Basic Idea

I/O Mappings

Examples

Training Deep RNNs

GBUs

Training

LSTMs

Input/Output Mappings Sequence to Vector

• Sequence to vector: Input is sequence and output a vector/score/ classification

Х

(1)

(2)

(3) **X**₍₃₎ х

I/O Mappings

Input/Output Mappings Encoder-Decoder Architecture

- Works through an embedded space like an autoencoder, so can represent the entire input as an embedded vector prior to decoding
- Issue: Need to ensure that the context vector fed into decoder is sufficiently large in dimension to represent context required
- Can address this representation problem via attention mechanism mechanism
 - Encodes input sequence into a vector sequence rather than single vector
 - As it decodes translation, decoder focuses on relevant subset of the vectors

Netranska Linola E-D Architecture: Attention Mechanism (Bahdanau et al., 2015)

 Bidirectional RNN reads input forward and backward simultaneously

Stenhen So

troduction

Basic Idea

I/O Mappings

Examples

Deep RNNs

GRUs

 Encoder builds annotation h_j as concatenation of h
_j and h
_j
 ⇒ h_j summarizes preceding and following inputs
 ith context vector

$$c_{i} = \sum_{j=1}^{T} \alpha_{ij} h_{j}, \text{ where}$$
$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{i=1}^{T} \exp(e_{ik})}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and *e_{ij}* is an **alignment score** between inputs around *j* and outputs around *i*

Nebraska

ntroduction

I/O Mappings

Examples Training

Deep RNNs

LSTMs

Nebraska

Basic Idea

Examples

Deep RNNs

Training

GRUs

I/O Mappings

Input/Output Mappings E-D Architecture: Attention Mechanism (Bahdanau et al., 2015)

• The *i*th element of **attention vector** α_j tells us the probability that target output y_i is aligned to (or translated from) input x_j

- Then c_i is expected annotation over all annotations with probabilities α_i
- Alignment score e_{ij} indicates how much we should focus on word encoding h_j when generating output y_i (in decoder state s_{i-1})
- Can compute e_{ij} via dot product $h_j^{\top} s_{i-1}$, bilinear function $h_i^{\top} W s_{i-1}$, or nonlinear activation $a_{i-1} + a_{i-1} + a_{$

Nebraska Linoh Static Unrolling for Two Time Steps

CSCE 496/896 Lecture 6: Recurrent Architectures	
Stephen Scott	<pre>X0 = tf.placeholder(tf.float32, [None, n_inputs]) X1 = tf.placeholder(tf.float32, [None, n_inputs]) Wx = tf.Variable(tf.random_normal(shape=[n_inputs, n_neurons],dtype=tf.float32))</pre>
ntroduction	<pre>Wy = tf.Variable(tf.random_normal(shape=[n_neurons,n_neurons],dtype=tf.float32)) b = tf.Variable(tf.zeros([1, n_neurons], dtype=tf.float32))</pre>
asic Idea O Mappings	Y0 = tf.tanh(tf.matmul(X0, Wx) + b) Y1 = tf.tanh(tf.matmul(Y0, Wy) + tf.matmul(X1, Wx) + b)
xamples	Input:
Deep RNNs STMs GRUs	<pre># Mini-batch: instance 0, instance 1, instance 2, instance 3 X0_batch = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 0, 1]]) # t = 0 X1_batch = np.array([[9, 8, 7], [0, 0, 0], [6, 5, 4], [3, 2, 1]]) # t = 1</pre>

Nebiaska	Example Implementation	Nebraska	Example Implementation
Lincoln	Static Unrolling for Two Time Steps	Lincoln	Automatic Static Unrolling
CSCE 496/896 Lecture 6: Recurrent Architectures Stephen Scott Introduction Basic Idea I/O Mappings Examples Training Deep RINIs LSTMs GRUS	Can achieve the same thing more compactly via static_rnn() x0 = tf.placeholder(tf.float32, [None, n_inputs]) x1 = tf.placeholder(tf.float32, [None, n_inputs]) basic_cell = tf.contrib.rnn.statio_rnn(basic_cell, [X0, x1], dtype=tf.float32) y0, y1 = output_seqs Automatically unrolls into length-2 sequence RNN	CSCE 496/896 Lecture 6: Recurrent Architectures Stephen Scott Introduction Basic Idea I/O Mappings Examples Training Deep RNNs LSTMs GRUs	<pre>Can avoid specifying one placeholder per time step via tf.stack and tf.unstack X = tf.placeholder(tf.float32, [None, n.steps, n_inputs]) X_seqs = tf.unstack(tf.transpose(X, perm=[1, 0, 2])) basic_cell = tf.contrib.rn.BasicRNNCell(nm_units=n_neurons) outputs=gs, states = tf.contrib.rn.state_rn(basic_cell, X_seqs,</pre>

Training Nebraska Nebraska Backpropagation Through Time (BPTT) CSCE Unroll through time and use BPTT 496/896 Lecture 6 Recurrent ecture 6 • Forward pass mini-batch of sequences through unrolled Recurren Inchitectur Architectur network yields output sequence $Y_{(t_{\min})}, \ldots, Y_{(t_{\max})}$ Output sequence evaluated using cost ntroduction ntroductior $C\left(Y_{(t_{\min})},\ldots,Y_{(t_{\max})}\right)$ asic Idea asic Idea Gradients propagated backward through unrolled I/O Mappings I/O Mapping network (summing over all time steps), and parameters Examples Examples $C(\mathbf{Y}_{(2)}, \mathbf{Y}_{(3)}, \mathbf{Y}_{(4)})$ Training Deep RNNs Deep RNNs I STMs **Y**₍₂₎ Y₍₄₎ Υ₍₃₎ À Á W,b W,b W,b W,b W,b **X**₍₄₎ ∃ • • • • • 3.5

Training

I STMs

・ロト・西ト・ヨト・ヨト・ヨー もくの

Training Example: Training on MNIST as a Vector Sequence

- Consider MNIST inputs provided as sequence of 28 inputs of 28-dimensional vectors
 - Feed in input as usual, then compute loss between target and softmax output after 28th input

Nebraska

Stenhen Sco

ntroduction Basic Idea

O Mapping Examples

Training

Deep RNNs GRUs

Training Example: Training on Time Series Data

- Use sequences of length n_steps=20 and n_neurons=100 recurrent neurons
- Since output size = 100 > 1 = target size, use OutputProjectionWrapper to feed recurrent layer output into a linear unit to get a scalar

Nebraska	Training
Lincoln	Example: Training on Time Series Data
CSCE 496/896 Lecture 6: Recurrent Architectures Stephen Scott Introduction Basic Idea I/O Mappings Examples Training Deep RNNs LSTMs GRUs 26/35	<pre>n_steps = 20 n_inputs = 1 n_outputs = 1 2 = f_placeholder(ff.float32, [None, n_steps, n_inputs]) y = f.f_placeholder(ff.float32, [None, n_steps, n_outputs]) cell = (f_oontrib.rnn.duptprejectionKrapp(</pre>

Lincoin	
CSCE 496/896 e.ecture 6: Recurrent chitectures ephen Scott oduction	 Vanishing and exploding gradients can be a problem with RNNs, like with other deep networks Can as usual address with, e.g., ReLU, batch normalization, gradient clipping, etc. Can still suffer from long training times with long input sequences
Mappings amples ining	 Truncated backpropagation through time addresses this by limiting n_steps Lose ability to learn long-term patterns
ep RNNs T <mark>Ms</mark> Us	 In general, also have problem of first inputs of sequence have diminishing impact as sequence grows E.g., first few words of long text sequence Goal: Introduce long-term memory to RNNs
	• Allow a network to accumulate information about the

(E) (E) = 9000 < @ >

GRU ce

