Basic Idea Denoisina AE

GAN

CSCE 496/896 Lecture 5: **Autoencoders**

Stephen Scott

(Adapted from Paul Quint and Ian Goodfellow)

sscott@cse.unl.edu

←□ → ←□ → ← □ → ← □ → へ○

Nebraska

Introduction

Introduction Basic Idea Denoising Al

GAN

input to its output

- Applications:
 - Unlabeled pre-training for semi-supervised learning

Autoencoding is training a network to replicate its

- Learning embeddings to support information retrieval
- Generation of new instances similar to those in the training set
- Data compression

Outputs

4 D > 4 B > 4 E > 4 E > 9 Q @

Nebraska

Outline

Introduction

Stacked AF Sparse AE

- Basic idea
- Stacking
- Types of autoencoders
 - Denoising
 - Sparse
 - Contractive
 - Variational
 - Generative adversarial networks

Nebraska

Basic Idea

Stacked AF Sparse AF

Input		Hidden				Output
•		,	Values	S		
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000
01000000	\rightarrow	.15	.99	.99	\rightarrow	01000000
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000
00000100	\rightarrow	.01	.11	.88	\rightarrow	00000100
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001

- Sigmoid activation functions, 5000 training epochs, square loss, no regularization
- What's special about the hidden layer outputs?

Nebraska

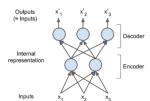
Basic Idea

Denoising AE Contractive AE

GAN

Basic Idea

• An autoencoder is a network trained to learn the identity function: output = input



 Subnetwork called $\mathbf{encoder}\,f(\cdot)$ maps input to an embedded representation

4 D > 4 B > 4 E > 4 E > E 9 Q C

 Subnetwork called decoder $g(\cdot)$ maps back to input space

4 D > 4 B > 4 E > 4 E > E 990

- Can be thought of as lossy compression of input
- Need to identify the important attributes of inputs to reproduce faithfully

Nebraska

Basic Idea

Basic Idea

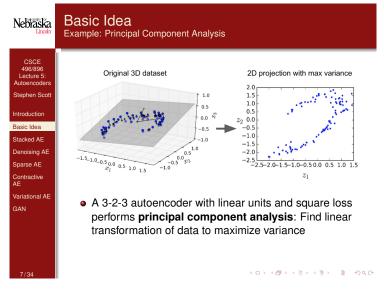
Stacked AE Denoising AE

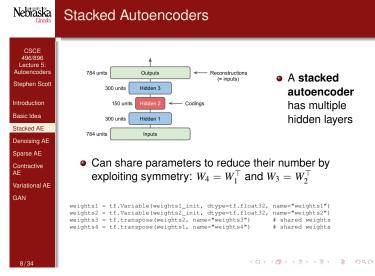
GAN

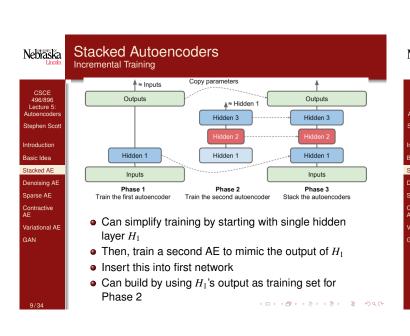
- Undercomplete autoencoders have hidden layer size
 - smaller than input layer size

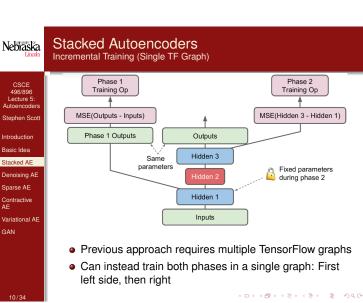
General types of autoencoders based on size of hidden

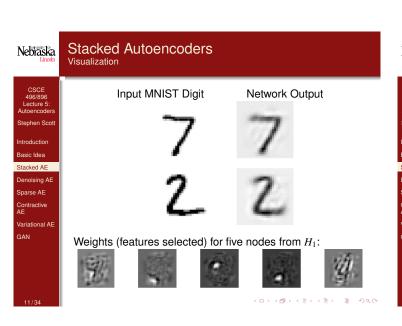
- $\Rightarrow\,$ Dimension of embedded space lower than that of input
- ⇒ Cannot simply memorize training instances
- Overcomplete autoencoders have much larger hidden layer sizes
 - ⇒ Regularize to avoid overfitting, e.g., enforce a sparsity constraint

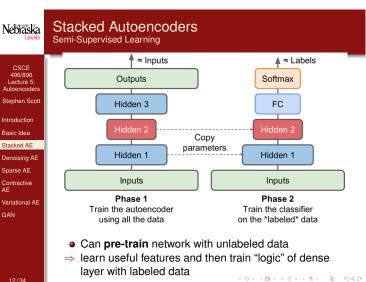








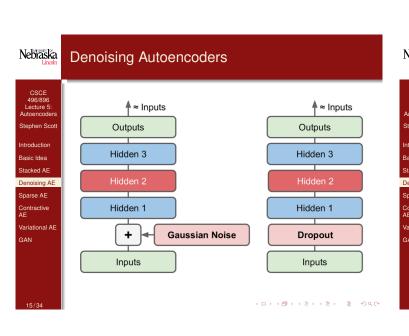


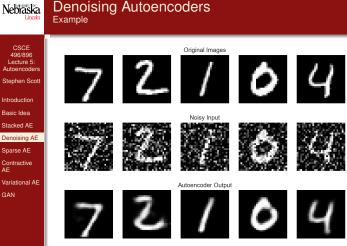


Nebraska Transfer Learning from Trained Classifier Can also transfer from a Hidden 5 Output classifier Trainable trained on Hidden 4 Hidden 4 Basic Idea Reuse different task, Stacked AE Hidden 3 Hidden 3 e.g., transfer a Hidden 2 Hidden 2 GoogleNet weights Hidden 1 Hidden 1 architecture to ultrasound Input layer Input layer classification **Existing DNN** New DNN for Often choose existing one from a model zoo 4 ロ ト 4 原 ト 4 夏 ト 4 夏 ト 9 Q (P)

GAN

- Can train an autoencoder to learn to denoise input by giving input **corrupted** instance \tilde{x} and targeting uncorrupted instance x
- Example noise models:
 - Gaussian noise: $\tilde{x} = x + z$, where $z \sim \mathcal{N}(\mathbf{0}, \sigma^2 I)$
 - Masking noise: zero out some fraction ν of components of x
 - ullet Salt-and-pepper noise: choose some fraction u of components of x and set each to its min or max value (equally likely)





Nebraska **Denoising Autoencoders** How does it work? Even though, e.g., MNIST data are in a 784-dimensional space, they lie on a low-dimensional manifold that captures their most important features Corruption process moves instance x off of manifold Basic Idea Encoder f_{θ} and decoder $g_{\theta'}$ are trained to project \tilde{x} back onto manifold Denoising AE GAN

Nebraska Basic Idea Denoising AE GAN

Sparse Autoencoders

- An overcomplete architecture
- Regularize outputs of hidden layer to enforce sparsity:

$$\tilde{\mathcal{J}}(\mathbf{x}) = \mathcal{J}(\mathbf{x}, g(f(\mathbf{x}))) + \alpha \Omega(\mathbf{h})$$
,

where \mathcal{J} is loss function, f is encoder, g is decoder, h = f(x), and Ω penalizes non-sparsity of h

- E.g., can use $\Omega(\mathbf{h}) = \sum_i |h_i|$ and ReLU activation to force many zero outputs in hidden layer
- Can also measure average activation of h_i across mini-batch and compare it to user-specified target **sparsity** value p (e.g., 0.1) via square error or Kullback-Leibler divergence:

$$p\log\frac{p}{q} + (1-p)\log\frac{1-p}{1-q} \ ,$$

where q is average activation of h_i over mini-batch

Contractive Autoencoders

Basic Idea

Contractive

GAN

• Similar to sparse autoencoder, but use

$$\Omega(\boldsymbol{h}) = \sum_{j=1}^{m} \sum_{i=1}^{n} \left(\frac{\partial h_i}{\partial x_j} \right)^2$$

- I.e., penalize large partial derivatives of encoder outputs wrt input values
- This contracts the output space by mapping input points in a neighborhood near x to a smaller output neighborhood near f(x)
 - ⇒ Resists perturbations of input x
- If h has sigmoid activation, encoding near binary and a CE pushes embeddings to corners of a hypercube

←□ → ←□ → ← □ → ← □ → へ○

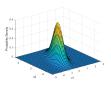
Nebraska

Variational Autoencoders

Basic Idea

VAE is an autoencoder that is also generative model

- ⇒ Can generate new instances according to a probability distribution
- E.g., hidden Markov models, Bayesian networks
- Contrast with discriminative models, which predict classifications
- Encoder f outputs $[\mu, \sigma]^{\top}$
 - Pair (μ_i, σ_i) parameterizes Gaussian distribution for dimension $i = 1, \ldots, n$
 - Draw $z_i \sim \mathcal{N}(\mu_i, \sigma_i)$
 - Decode this latent variable z to get g(z)



<ロ> <西> <西> < 西> < 西> < 百> < 百 > < 百 > の < ○

Nebraska

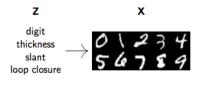
Variational Autoencoders

Latent Variables

Stacked AF

Variational AF

- Independence of z dimensions makes it easy to generate instances wrt complex distributions via decoder g
- Latent variables can be thought of as values of attributes describing inputs
 - E.g., for MNIST, latent variables might represent "thickness", "slant", "loop closure"



4 D > 4 B > 4 B > 4 B > 8 9 9 9

Nebraska

Variational Autoencoders Architecture

Stacked AF Sparse AF

Variational AF

≱ ≈ Inputs Outputs Hidden 5 + Codina space Codings µ $\text{Codings } \sigma$ Hidden 1 Inputs

Nebraska

Variational Autoencoders Optimization

Basic Idea Denoisina AE

Variational AE GAN

- Maximum likelihood (ML) approach for training generative models: find a model (θ) with maximum probability of generating the training set X
- Achieve this by minimizing the sum of:
 - End-to-end AE loss (e.g., square, cross-entropy)
 - Regularizer measuring distance (K-L divergence) from latent distribution $q(z \mid x)$ and $\mathcal{N}(\mathbf{0}, I)$ (= standard multivariate Gaussian)
- $\mathcal{N}(\mathbf{0}, I)$ also considered the **prior distribution** over z (= distribution when no x is known)

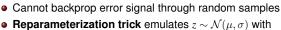
Nebraska

Variational Autoencoders

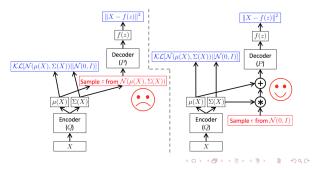
Reparameterization Trick

Basic Idea Denoising Al Contractive

Variational AE GAN



 $\epsilon \sim \mathcal{N}(0,1), z = \epsilon \sigma + \mu$



Variational Autoencoders Example Generated Images: Random

• Draw $z \sim \mathcal{N}(\mathbf{0}, I)$ and display g(z)

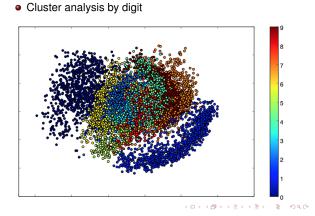
Nebraska

Variational Autoencoders Example Generated Images: Manifold

• Uniformly sample points in z space and decode

Nebraska

Variational Autoencoders 2D Cluster Analysis



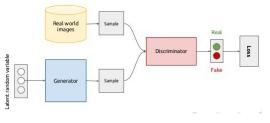
Nebraska

Generative Adversarial Network

Stacked AF

GAN

- GANs are also generative models, like VAEs
- Models a game between two players
 - Generator creates samples intended to come from training distribution
 - Discriminator attempts to discern the "real" (original training) samples from the "fake" (generated) ones
- Discriminator trains as a binary classifier, generator trains to fool the discriminator



Nebraska

Generative Adversarial Network How the Game Works

GAN

ullet Let D(x) be discriminator parameterized by $oldsymbol{ heta}^{(D)}$

• Goal: Find $\theta^{(D)}$ minimizing $J^{(D)}$ ($\theta^{(D)}$, $\theta^{(G)}$)

ullet Let G(z) be generator parameterized by $m{ heta}^{(G)}$ • Goal: Find $\theta^{(G)}$ minimizing $J^{(G)}(\theta^{(D)}, \theta^{(G)})$

• A **Nash equilibrium** of this game is $(\theta^{(D)}, \theta^{(G)})$ such that each $\theta^{(i)}$, $i \in \{D, G\}$ yields a local minimum of its corresponding J

Nebraska

Generative Adversarial Network

asic Idea

GAN

Each training step:

• Draw a minibatch of x values from dataset

• Draw a minibatch of z values from prior (e.g., $\mathcal{N}(\mathbf{0}, I)$)

• Simultaneously update $\theta^{(G)}$ to reduce $J^{(G)}$ and $\theta^{(D)}$ to reduce $J^{(D)}$, via, e.g., Adam

• For $J^{(D)}$, common to use cross-entropy where label is 1 for real and 0 for fake

 Since generator wants to trick discriminator, can use $J^{(G)} = -J^{(D)}$

• Others exist that are generally better in practice, e.g., based on ML

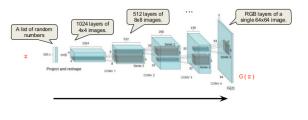
Generative Adversarial Network DCGAN: Radford et al. (2015)

CSCE 496/896 Lecture 5: Autoencoders Stephen Scott

Introduction
Basic Idea
Stacked AE
Denoising AE
Sparse AE
Contractive
AE

"Deep, convolution GAN"

 Generator uses transposed convolutions (e.g., tf.layers.conv2d_transpose) without pooling to upsample images for input to discriminator



4日 > 4個 > 4 種 > 4 種 > 種 > 例 < @ >

Nebraska

Generative Adversarial Network DCGAN Generated Images: Bedrooms

CSCE 496/896 Lecture 5: Autoencoders Stephen Scott

Introduction
Basic Idea
Stacked AE
Denoising AE
Sparse AE
Contractive

GAN

Trained from LSUN dataset, sampled z space

= 400 P

Nebraska

Generative Adversarial Network DCGAN Generated Images: Adele Facial Expressions

CSCE 496/896 Lecture 5: Autoencoders Stephen Scott

Introduction
Basic Idea
Stacked AE
Denoising AE
Sparse AE
Contractive
AE
Variational Al

GAN

33/34

Trained from frame grabs of interview, sampled z space

Nebraska

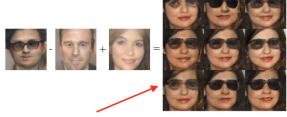
Generative Adversarial Network DCGAN Generated Images: Latent Space Arithmetic

CSCE 496/896 Lecture 5: Autoencoder Stephen Sco

Introduction
Basic Idea
Stacked AE
Denoising AE
Sparse AE
Contractive
AE

Variational AE

Performed semantic arithmetic in z space!



(Non-center images have noise added in z space; center is noise-free)

4 D > 4 B > 4 E > 4 E > 9 Q C