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BRIl Example: Edge Detection in Images
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@ Atimage pixel I;;, multiply 7;_; j_; by kernel value K| ;,
Introduction and so on, and add to get output I/ J
Outline
Convolutions
10 +1
CNNs 72 0 +2
Example 71 0 +1

Architectures

This kernel measures the image gradient in the x direction
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Locture & @ Good for data with a grid-like topology

Convolutional

Neural o Image data
Retuons o Time-series data
SRR e We'll focus on images
Introduction @ Based on the use of convolutions and pooling
Outline o Feature extraction
Convolutions e Invariance to transformations
CNNs o Parameter-efficient
Example @ Parallels with biological primary visual cortex
o Use of simple cells for low-level detection
@ Each has a local receptive field covering a small region
of the visual field

o Each tends to respond to specific patterns, e.g.,
vertical lines

o Use of complex cells for invariance to transformations
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e @ A convolution is an operation that computes a
Comobin weighted average of a data point and its neighbors
ieural
Reieits @ Weights provided by a kernel
Stephen Scott
Introduction ot Kernel
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Conouions : P Applications:
- . i J k 1 .
@ De-noising
CONNs @ Edge detection
Example .
Architectures o M ‘71 + ';"; M o + b I i o Image blurnng
@ Image
sharpening
ew + fz +| [fw + gz +| [gw + hz 4
W+ gz v o+ kz ky + Iz
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BRIl Example [Image from Kenneth Dwain Harrelson]

joscel Example: Sobel operator for edge detection
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Pass G, and G, over image and add gradient results
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Basic Convolutional Layer

Convolutions

Example: Image Blurring

A box blur kernel computes uniform average of neighbors

1111
1111
1111

@ Imagine kernel represented as weights into a hidden
layer

@ Output of a linear unit is exactly the kernel output

@ If instead use, e.g., ReLU, get nonlinear transformation
of kernel

input neurons
9990- first hidden layer

==

@ Note that, unlike other network architectures, do not
have complete connectivity
= Many fewer parameters to tune

Convolutions

Downsampling: Stride

Can reduce size of layers by downsampling with a stride
parameter

Neuron at row i, column j connects to previous layer’'s rows
isp 10 isp + fi, — 1 and columns js,, t0 js,, + fi — 1

ey Convolutions

Bl Use in Feature Extraction

CSCE
496/896
Lecture 4:
Convolutional

sl @ Use of pre-defined kernels has been common in
feature extraction for image analysis
e User specified kernels, applied them to input image,
and processed results into features for learning

Stephen Scott

Introduction

Outline algorithm
Comvolutions @ But how do we know if our pre-defined kernels are best
Eermon for the specific learning task?
@E @ Convolutional nodes in a CNN will allow the network to
. learn which features are best to extract
@ We can also have the network learn which invariances
are useful
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Architectures f=3 Zero padding
W

Apply zero padding at boundary

Beny Basic Convolutional Layer

EEl  Convolutional Stack
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Extends a higher-layer node’s receptive field



Basic Convolutional Layer

Parameter Sharing
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sepnen seet @ Sparse connectivity from input to hidden greatly

reduces paramters

@ Can further reduce model complexity via parameter
sharing (aka weight sharing)

@ E.g., weight wy ; that multiplies the upper-left value of
the window is the same for all applications of kernel
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Basic Convolutional Layer
Multiple Sets of Kernels
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Can also span multiple channels (e.g., color planes)

Networks
Stephen Scott @ A neuron’s receptive field y E
e/ . | Comottona
Introduction now Sp?ns a” featlure EFM;DL i /)| taver2
Suiie maps Of previous layer L M2
Filters

Convolutions @ Neuron at row i COIUmnj
CNNs of feature map k of layer
£ connects to layer

(¢ —1)’s rows isp to

isp + fr — 1 and columns
jsw to jsw +fw - 1, Channels
spanning all feature croon ]
maps of layer ¢ — 1 o

| Convolutional
| layer 1

o v

Example

Architectures Input layer
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@ To help achieve
translation invariance

POOLING STAGI:

NOJO

O§O§

Stephen Scott and reduce

Introduction complexity, can feed e ° ° °
Outiine . output of neighboring DETECTOR STAGE
Convolutions convolution nodes

CNNs into a pooling node PN

@ Pooling function
typically unweighted
max or average of
inputs

ISR,
HEES

DETECTOR STAGE

Example
Architectures

Beney Basic Convolutional Layer

ERIN Multiple Sets of Kernels

CSCE
496/896
Lecture 4:
Convolutional
Neural
Networks

@ Weight sharing forces the convolution layer to learn a
specific feature extractor
@ To learn multiple extractors simultaneously, can have
multiple convolution layers
o Each is independent of the other
o Each uses its own weight sharing

® @

pool size
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Pooling
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=) h"_
RF size
input image

Beny Basic Convolutional Layer

ERIN  Multiple Sets of Kernels
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@ Let z; be output of node at row i, column j, feature map
e k of current layer ¢
Networks
: @ Let s, and s, be strides, receptive field be f;, x f,,, and
let f,» be number of feature maps in layer ¢ — 1
@ Let xyjy be output of layer-(¢ — 1) node in row 7,
column j, feature map (channel) ¥’
@ Let by be bias term for feature map k and w,,,., be
weight connecting any node in feature map &, position
v), layer ¢ — 1, to feature map k in layer ¢
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So—=1fo—1fpr =1

L EDIDIDY

u=0 v=0 k'=0

Xitj k! Wuvk! k

where i/ = is;, + uandj =js, +v

b Pooling
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Basic

Pooling
Complete Network

Typically pool each channel independently (reduce
dimension, not depth), but can also pool over depth and
keep dimension fixed

Example
Architectures
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@ Pooling on its

Stephen Scott own won't be

invariant to, e.g.,
Introduction . Large

rotations ) response

Outline

@ Can leverage
multiple, parallel

Convolutions

CNNs
convolutions
= feeding into
Ex; I 1
ArcaIchelures Slnglle (maX)
pooling unit
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@ CNNs are very flexible and very powerful, but:
e Many hyperparameters to tune (number of filters, f;,, f,,,
strides, etc.)
e Training requires remembering all intermediate values
computed (memory-intensive)

e E.g., using filters of size 5 x 5, 200 feature maps each
sized 150 x 100, stride 1, and inputs are 150 x 100 RGB
images

@ Number of parameters is only 15200 (vs 675M for fully
connected)

@ But to store all intermediate computations, need 11.4MB
per instance

o Need to keep these in mind when setting things up, and
adjust architecture, mini-batch size, etc.
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e Example Architectures

B [ eNet-5 (LeCun et al., 1998)
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S4:1. maps 16@515

S2:1. maps
6@14x14
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Introduction

|
[ Fut condection ‘ Gaussian connections

Outline Convolut Convolut Full connection

Convolutions

CNNs Layer Type Maps Size Kemel size Stride Activation
Out  Fully Connected — 10 - - RBF
Example P FullyConnected — 84 - tanh . A A
Architectures G Comolton 20 1x1 5x5 anh (] Outpu'[ is radial basis
S hghaing T sxs 2x2 - function, one function

2 AvgPoding 6 14x14 2x2 tanh per class

a Convolution 6 28X28 5X5

1
2
a Convolution 16 10x10 5x5 1 tanh
2
1
32x32 - -

I nput 1
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Can use multiple applications of convolution and pooling
layers

Stephen Scott

Convolution Pooling Convolution Pooling Fully Fully

Connected Connected

= [, e et

Introduction Output Predictions

Outline

Convolutions

CNNs

Pooling
Complete Network

Example
Architectures

Final result of these steps feeds into fully connected
subnetworks with, e.g., ReLU and softmax units
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@ Performance of state-of-the-art systems often
measured in ILSVRC Image Net Challenge
o Large images, many classes, tough to distinguish
o Top-5 error rate: Fraction of test images not in a
system’s top 5 predictions
@ Notable systems:

Stephen Scott

Introduction
Outline

Convolutions

CNNs
Example o LeNet5

Architectures

AlexNet
GoogLeNet
ResNet

e Example Architectures

BN AlexNet (Krizhevsky et al., 2012): 17% top-5 error rate
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@ Didn't strictly alternate

Layer Type Maps  Size Kemel size Stride Padding Activation .
S0 oy meted 100 = Sofma convolutional and
Example 2] Fully Connected ~ 4,0% - - - Rell H
. o pooling layers

a Convolution 26 Bx1B 3x3 1 SAME Rell

G v W WxB 33 1 SR @ Local response

G Convolution 384 BxB 3x3 1 SAME RelU N - .

S MaPwing 2% BxB 3x3 2 VAD - normalization: StrOng

a Convolution 236 %2 5x5 1 SAME Rell P

S e 6 ma response at (i, )

a Convolution 9% 55x55  MNxn 4 SAME Rell

inhibits same location
in other feature maps

I Input 3(RGB) 224x224 -
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GooglLeNet (Szegedy et al., 2014): 7% top-5 error rate
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Convolutional X ¢ Fully Connected
Neural [102.3:3+26) | | b 144 32 | 000 units |
= {_fooounts |
Networks Local Response D"‘}g“‘
Avg Pool i
Stephen Scott e | @ Inception modules

Convolut

384 384 128 128

nest convolutions and

——— 64, 1x1 + 1(S) & 192 48
ntroduction Local Response 256 320 128 128 H
: Nom 160 % pooling
Outline Max Pool 128 192 96 64 Max Pool
. | 64.33+2) | [ b 128 32 832, 3x3+2(8)
Convolutions Convolution 64 128 32 32 256 320 128 128
L 6a77+28) | | |b 9 16
CNNs oo ? f
Example 4 b = inception module
Architectures 4
Inception Depth
module Concat
@ Different kernel sizes
Convolution Convolution Convolution Convolution
‘ 1x1+1(S) 3x3+1(S) 55+ 1(S) 1x1 +1(S) ‘

capture features at
different scales

Convolution
11 +1(S)

Max Pool
3x341(S)

Convolution
1x1+1(S)
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layers that output close.
X = 10 z0r0 and block
propagation

*

Example Architectures
ResNet (Kaiming He et al., 2015): 3.6% top-5 error rate

Convolution

Layer cose to
it il state

LT -

Softmax
128, 3x3 +1(S)
Fully Connected Convolution
Avg Pool / 4 C i
1024, 77 +1v) |/ /| 128,3x3+1(S) el
. Ci i Batch
E— Deep! N 128,3x3+2(8) | = . Norm
= — = -
64,3435 1(5) 64,3x3 +1(S) BN+
Max Pool \ C i Ct i RelLU
64,3x3+2(S) |\ 64,3x3 +1(5) 64,3x3 +1(S)
Convolution \ Convoluton |~
64, 7x7 + 2(S) 64,3x3 + 1(S) Residual Unit
(i Convolution |

64,3x3 +1(S)

@ Residual units use skip
connections to speed learning
o Initial wts ~ 0 = outputs
~ 0 = depress error signal
@ Skip connections allow error
signal to propagate faster

Residual



