Nebraska CSCE 496/896 Lecture 4: Convolutional Neural Networks Stephen Scott CNNs

sscott@cse.unl.edu

4 D > 4 D > 4 E > 4 E > E 990

Nebraska

Introduction

CNNs

Based on the use of convolutions and pooling

• Feature extraction

Image data Time-series data

- Invariance to transformations

• We'll focus on images

Good for data with a grid-like topology

- Parameter-efficient
- Parallels with biological primary visual cortex
 - Use of simple cells for low-level detection

• A convolution is an operation that computes a weighted average of a data point and its neighbors

- Each has a local receptive field covering a small region of the visual field
- Each tends to respond to **specific patterns**, e.g., vertical lines
- Use of **complex cells** for invariance to transformations

Nebraska

Outline

Convolutions

Convolutions

- CNNs
- Pooling
- Completing the network
- Example architectures

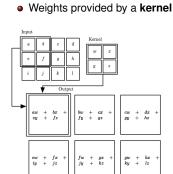
4 D > 4 B > 4 B > 4 B > 9 Q C

Nebraska

Convolutions

Convolutions

CNNs



Applications:

- De-noising
- Edge detection
- Image blurring
- Image sharpening

4 D > 4 D > 4 E > 4 E > E 990

Nebraska

Convolutions

Example: Edge Detection in Images

- Define a small, 2-dimensional kernel over the image I
- At image pixel $I_{i,j}$, multiply $I_{i-1,j-1}$ by kernel value $K_{1,1}$, and so on, and add to get output $I'_{i,i}$

-1	0	+1
-2	0	+2
-1	0	+1

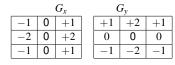
This kernel measures the **image gradient** in the *x* direction

Nebraska

Convolutions

Example [Image from Kenneth Dwain Harrelson]

Example: Sobel operator for edge detection



Pass G_x and G_y over image and add gradient results

Convolutions Example: Image Blurring

A box blur kernel computes uniform average of neighbors

Apply same approach and divide by 9:

Convolutions Use in Feature Extraction

• Use of pre-defined kernels has been common in feature extraction for image analysis

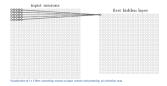
- User specified kernels, applied them to input image, and processed results into features for learning algorithm
- But how do we know if our pre-defined kernels are best for the specific learning task?
- Convolutional nodes in a CNN will allow the network to learn which features are best to extract
- We can also have the network learn which invariances are useful

Nebraska

Basic Convolutional Layer

• Imagine kernel represented as weights into a hidden

- Output of a linear unit is exactly the kernel output
- If instead use, e.g., ReLU, get nonlinear transformation of kernel

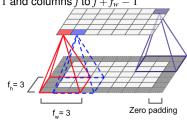


- Note that, unlike other network architectures, do not have complete connectivity
- ⇒ Many fewer parameters to tune

Nebraska

Convolutions Connectivity

Neuron at row i, column j connects to previous layer's rows ito $i + f_h - 1$ and columns j to $j + f_w - 1$

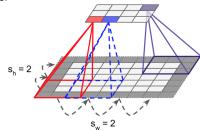


Apply zero padding at boundary

Nebraska

Convolutions Downsampling: Stride

Can reduce size of layers by downsampling with a stride parameter

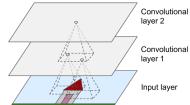


Neuron at row i, column j connects to previous layer's rows is_h to $is_h + f_h - 1$ and columns js_w to $js_w + f_w - 1$

Nebraska

Basic Convolutional Layer Convolutional Stack

Often use multiple convolutional layers in a convolutional



Extends a higher-layer node's receptive field

4 D > 4 D > 4 E > 4 E > E 990

Basic Convolutional Layer Parameter Sharing

 Sparse connectivity from input to hidden greatly reduces paramters

- Can further reduce model complexity via parameter sharing (aka weight sharing)
- E.g., weight w_{1.1} that multiplies the upper-left value of the window is the same for all applications of kernel

Nebraska

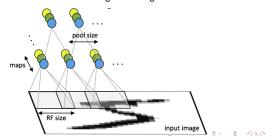
Basic Convolutional Layer Multiple Sets of Kernels

specific feature extractor

To learn multiple extractors simultaneously, can have multiple convolution layers

Weight sharing forces the convolution layer to learn a

- Each is independent of the other
- · Each uses its own weight sharing

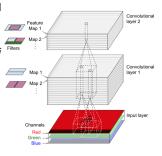


Nebraska

Basic Convolutional Layer Multiple Sets of Kernels

Can also span multiple channels (e.g., color planes)

- A neuron's receptive field now spans all feature maps of previous layer
- Neuron at row i, column j of feature map k of layer ℓ connects to layer $(\ell-1)$'s rows is_h to $is_h + f_h - 1$ and columns js_w to $js_w + f_w - 1$, spanning all feature maps of layer $\ell-1$



4 D > 4 D > 4 E > 4 E > E 990

Nebraska

Basic Convolutional Layer Multiple Sets of Kernels

- Let z_{ijk} be output of node at row i, column j, feature map k of current layer ℓ
- Let s_h and s_w be strides, receptive field be $f_h \times f_w$, and let $f_{n'}$ be number of feature maps in layer $\ell-1$
- Let $x_{i'j'k'}$ be output of layer- $(\ell-1)$ node in row i', column j', feature map (channel) k'
- Let b_k be bias term for feature map k and $w_{uvk'k}$ be weight connecting any node in feature map k', position (u, v), layer $\ell - 1$, to feature map k in layer ℓ

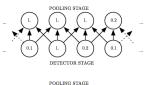
$$z_{ijk} = b_k + \sum_{u=0}^{f_h - 1} \sum_{v=0}^{f_w - 1} \sum_{k' = 0}^{f_{w'} - 1} x_{i'j'k'} w_{uvk'k}$$

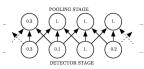
where $i' = is_h + u$ and $j' = js_w + v$

Nebraska

Pooling

- To help achieve translation invariance and reduce complexity, can feed output of neighboring convolution nodes into a pooling node
- Pooling function typically unweighted max or average of inputs

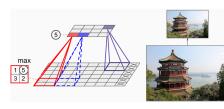




4 D > 4 D > 4 E > 4 E > E 990

Nebraska

Pooling

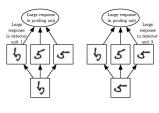


Typically pool each channel independently (reduce dimension, not depth), but can also pool over depth and keep dimension fixed

Pooling Other Transformations

Pooling on its own won't be invariant to, e.g., rotations

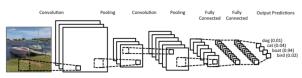
 Can leverage multiple, parallel convolutions feeding into single (max) pooling unit



Nebraska

Completing the Network

Can use multiple applications of convolution and pooling layers



Final result of these steps feeds into fully connected subnetworks with, e.g., ReLU and softmax units

Nebraska

Considerations

- CNNs are very flexible and very powerful, but:
 - Many hyperparameters to tune (number of filters, f_h , f_w , strides, etc.)
 - Training requires remembering all intermediate values computed (memory-intensive)
 - $\bullet~$ E.g., using filters of size 5 \times 5, 200 feature maps each sized 150×100 , stride 1, and inputs are 150×100 RGB images
 - Number of parameters is only 15200 (vs 675M for fully
 - But to store all intermediate computations, need 11.4MB per instance
 - Need to keep these in mind when setting things up, and adjust architecture, mini-batch size, etc.

4 D > 4 B > 4 B > 4 B > 9 Q C

Nebraska

Example Architectures

 Performance of state-of-the-art systems often measured in ILSVRC Image Net Challenge

- Large images, many classes, tough to distinguish
- Top-5 error rate: Fraction of test images not in a system's top 5 predictions
- Notable systems:
 - LeNet-5
 - AlexNet
 - GoogLeNet
 - ResNet

4 D > 4 B > 4 B > 4 B > B 990

Nebraska

Example Architectures LeNet-5 (LeCun et al., 1998)

Fully Connected -Avg Pooling 5×5 2×2 Ava Poolina 14×14 2×2

32 × 32

Output is radial basis function, one function per class

Nebraska

Example Architectures

AlexNet (Krizhevsky et al., 2012): 17% top-5 error rate

Layer	Type	Maps	Size	Kernel size	Stride	Padding	Activation
Out	Fully Connected	-	1,000	-	-	-	Softmax
F9	Fully Connected	-	4,096	-	-	-	ReLU
F8	Fully Connected	-	4,096	-	-	-	ReLU
(7	Convolution	256	13 × 13	3×3	1	SAME	ReLU
C6	Convolution	384	13 × 13	3×3	1	SAME	ReLU
CS	Convolution	384	13 × 13	3×3	1	SAME	ReLU
54	Max Pooling	256	13 × 13	3×3	2	VALID	-
G	Convolution	256	27 × 27	5×5	1	SAME	ReLU
52	Max Pooling	96	27 × 27	3×3	2	VALID	-
C1	Convolution	96	55 × 55	11 × 11	4	SAME	ReLU
	4	n (0.00)					

- Didn't strictly alternate convolutional and pooling layers
- Local response normalization: strong response at (i, j)inhibits same location in other feature maps

4 D > 4 B > 4 B > 4 B > B 990

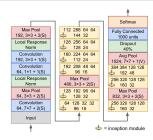
4 D > 4 B > 4 B > 4 B > B 990

Example Architectures

GoogLeNet (Szegedy et al., 2014): 7% top-5 error rate

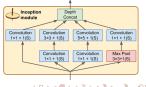
Outline

CNNs Example Architectures



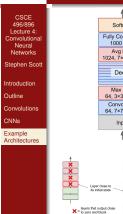
 Different kernel sizes capture features at different scales

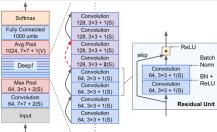
Inception modules nest convolutions and pooling



Example Architectures

ResNet (Kaiming He et al., 2015): 3.6% top-5 error rate





- Residual units use skip connections to speed learning
 - $\bullet \ \ \text{Initial wts} \approx 0 \Rightarrow \text{outputs}$ $pprox 0 \Rightarrow$ depress error signal
 - Skip connections allow error signal to propagate faster

