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@ Machine learning can generally be distilled to an
optimization problem

Introduction

Outline

Machine @ Choose a classifier (function, hypothesis) from a set of

Learning

Problems functions that minimizes an objective function
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@ Types of machine learning problems
@ Loss functions

Machine @ Generalization performance vs training set performance

Prablms @ Overfitting
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Steonon Seot @ Supervised Learning: Algorithm is given labeled
el training data and is asked to infer a function

Variyam (hypothesis) from a family of functions (e.g., set of alll
. ANNSs) that is able to predict well on new, unseen
Outline exampleS

e Classification: Labels come from a finite, discrete set
o Regression: Labels are real-valued

Machine
Learning
Problems

Meastring @ Unsupervised Learning: Algorithm is given data
Performance without labels and is asked to model its structure
Fegularization e Clustering, density estimation

Estimating

Generalizalion @ Reinforcement Learning: Algorithm controls an agent
erformance . . . :

Gomparing that interacts with its environment and learns good
Learning actions in various situations

Algorithms
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Stephen_ Scott . .
and Vinod @ In any learning problem, need to be able to quantify

Variyam .
performance of an algorithm

@ In supervised learning, we often use a loss function
Vachine (or error function) J for this task

e @ Given instance x with true label y, if the learner’s
Meastring prediction on x is y, then

Performance

Overfitting j (y ’ )A} )

Regularization

Estimating is the loss on that instance

Generalization
Performance

Introduction

Outline
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Variyam @ 0-1 Loss: J(y,y) = 1 ify #y, 0 otherwise

T o Square Loss: J(y,) = (v - )

Outiine @ Cross-Entropy: J(y,y) = —ylny— (1 —y)In(1 —y)
[ﬂeaaﬁf;iinnz (v and y are considered probabilities of a ‘1’ label;

Problems generalizes to multi-class.)

Periormance @ Hinge Loss: J(y,§) = max(0,1 —y3)

Overting (used sometimes for large margin classifiers like SVMs)
Regularization

Estimating All non-negative

Generalization
Performance
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@ Given a loss function 7 and a training set X, the total
loss of the classifier h on X is

Introduction

Outline

Machine

Iﬁ?st;reiﬁs error)((h) == Z j(yxaj’x) 9
xeX

Measuring
Performance

where y, is x’s label and y, is i’s prediction
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Variyam @ More importantly, the learner needs to generalize well:

- Given a new example drawn iid according to unknown
Outline probability distribution D, we want to minimize h's
Machine expected loss:

Learning

Problems

Measuring errorp (h) = ]ExND [j(Yxe)]

Performance

Ovetting @ Is minimizing training loss the same as minimizing
Regularization expected |OSS‘7
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Performance
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S @ Sufficiently sophisticated learners (decision trees,

Variyam multi-layer ANNSs) can often achieve arbitrarily small (or
Introduction zero) loss on a training set
Outline @ A hypothesis (e.g., ANN with specific parameters) i
Liachine overfits the training data &’ if there is an alternative
Problems hypothesis 4’ such that
Measuring
ance errory(h) < errorxy(h')
Regularization
Estgi]mating and
Generalization errorp(h) > 61")‘07‘D(h/)

Performance

Comparing
Learning
Algorithms
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SEplie Heii o ° o representations

and Vinod 0 7 2 p

Variyam . ol of sin(2nx)

9 )
i o -1
Introduction
0 1 i s !

Outline
Machine
Learning 3 I M=o Over Fit
Problems : Best Fit Poor
Measuring 0 - t(:) representation
Performance sin(2mx) of sin(2nx)
Loss
Overfitting i g
Regularization 0 RN o =
Estimating . . . .
2l To generalize well, need to balance training accuracy with

Performance

simplicity

Comparing
Learning
Algorithms

Other/ 52
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Regularization

— choose from is complex relative to what is required for
and Vinod correctly predlcpryg the labels of X, there’s a larger

chance of overfitting due to the large number of “wrong”

Introduction choices in H

Outline e Could be due to an overly sophisticated set of functions

Machine @ E.g., can fit any set of n real-valued points with an

Learing (n — 1)-degree polynomial, but perhaps only degree 2 is

Measuring needed. . .

Performance @ E.g., using an ANN with 5 hidden layers to solve the

Regularization logical AND problem

or—— e Could be due to training an ANN too long

parameter Norm @ Over-training an ANN often leads to weights deviating

Data Algmeniation far from zero

S @ Makes the function more non-linear, and more complex

Others

@ Often, a larger data set mitigates the problem

Estimating
Generalization
Perf@rdance
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Stephen Scott 0.01 N T T T
a\?gri\yl/:;d 0.009 . Training set error . i
Validation set error +
: 0.008 [ 4
Introduction b
Iy
Outline 0007 4 .
;5 +
Machine - .
Learning 5 0.006 M .
Problems 0.005 | i
Measuring
Performance 0004 4
Regularization | .
Causes of Overfitting 0.003
S 0.002 ' - -
0 5000 10000 15000 20000
Multitask Learning Number of weight updates

Dropout
Others
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Error versus weight updates (example

001

CSCE 970 0009 o Training set error

LeCtUI’e 3 0.008 Validation set error +
Regularization _ 0007 F
E 0006
Stephen Scott = 000 W
and Vinod 0004
Variyam 0003
0.002
5000 10000 15000 20000
Introduction Number of weight updates
Error versus weight updates (example 2)
Outline 008 :
007 : Training set error
Machine 006 w\% Validation set error +
Learning 005 .
Problems E 004 V\\\.
003
Measuring 002 3
Performance Umo —
Regularization 0 1000 2000 3000 4000 5000 6000

Causes of Overfitting Number of weight updates

Early Stopping

Parameter Norm

@ Danger of stopping too soon

Data Augmentation

ok Learng e “Patience” parameter determines how long to wait
@ Can re-start and track best one on separate validation

Others

Estimating
Generalization Set
Perférrdance
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Introduction @ Still want to minimize training loss, but balance it
Outline against a complexity penalty on the parameters used:

Machine

Learning j(e’ X7y) — j(07 X’y) + « Q(B)

Problems

Measuring
Performance @ « € [0, 00) weights loss 7 against penalty ©

Regularization
Causes of Overfitting
Early Stopping

Parameter Norm
Penalties

Data Augmentation
Multitask Learning
Dropout

Others

Estimating
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and Vinod . ,
Variyam @ Q(0) = (1/2)||0]]3, i.e., sum of squares of network’s
Introduction WelghtS
Outline @ Since 0 = w, this becomes
Machi_ne 5
Probiems Tw; X,y) = (a/2)w'w + T (w; X,y)
Measuring
FETETITETED @ As weights deviate from zero, activation functions
Reguiarnzaton become more nonlinear, which is higher risk of
By g overfitting

Parameter Norm
Penalties

Data Augmentation
Multitask Learning
Dropout

Others
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Introduction g / g A Y \
Outline . - ] =~ \ \\ \
_ “ N
Machine ¢ /{ 7 1 g
Machi
Problems N = R /’
Measuring \ \\ T P 4 /
Performance w1
Regularization
Causes of Overfitting
Early Stopping
e @ w* is optimal for 7, 0 optimal for regularizer
Data Augmentation -
@ J less sensitive to wy, so w (optimal for 7) closer to w;
axis than w;

Estimating
Generalization
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and Vinod @ () = 0], i.e., sum of absolute values of network’s

varem weights
Introduction _
Outline Jw; X,y) = alw|i + T(w; X,y)
Machi_ne
Learing @ As with L? regularization, penalizes large weights
Measuring @ Unlike L? regularization, can drive some weights to zero
Performance
Regularization .
Causes of Ovrfting e Sparse solution
— e Sometimes used in feature selection (e.g., LASSO
— algorithm)

Data Augmentation
Multitask Learning
Dropout

Others

Estimating
Generalization
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@ If H powerful and X small, then learner can choose

e some h € H that fits idiosyncrasies or noise in data

Variyam .

@ Deep ANNs would like to have at least thousands or

Introduction tens of thousands of data points
outine @ In classification of high-dimensional data (e.g., image
il classification), expect the classifier to tolerate
Problems transformations and noise
dedil = Can artificially enlarge data set by duplicating existing
Requiarzaton instances and applying transformations
Causes of Overiting @ Translating, rotating, scaling
oon Somen @ Don’t change the class, e.g., “b” vs “d” or “6” vs “9”
memm @ Don’t let duplicates lie in both training and testing
Multitask Learning sets
Otrers = Can also apply noise injection to input or hidden layers

Estimating
Generalization
Perferdance
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Regularization

generic parameters,
o initially process inputs
d Vinod
a\l;ariy:ri initia y p p

via shared nodes, then

Introduction do final processing via
Outine task-specific nodes
Machine .
Learning @ Backpropagation works
Problems . .

. as before with multiple
Measuring
Performance Output nodes
Roguaraten @ Serves as a regularizer
et since parameter tuning
of shared nodes is based
D on backpropagated error

Others

from multiple tasks

Estimating
Generalization
Pegdriance
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Lecture 3:

Regularization we could average over all ol ol EcR o
Stephen Scot networks with each cfclotelcfclio
and Vinod é‘@ ol& oo
Variyam subset of nodes deleted
) Olalo]|qQ
Introduction @ Analogous to bagging, 0*0 @ & ® B
Outiine where we average over OB QO ©
Machine ANNS trained on random Q 191K ]0
Learning () () (h2)
P b| Base network
Mro ems samples of X 3 ®
e @ In each training iteration, OlQlolo
Regularization Sample a random bit o O©
S vector u, which T
eraes determines which nodes @ When training done,
R are used (e.g., re-scale weights by
P(u; = 1) = 0.8 for input P(ui=1)

Estimating unit, 0.5 for hidden unit)

Generalization
Peg@rBance
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@ Parameter Tying: If two learners are learning the

Stepher Scott same task but different scenarios (distributions, etc.),
Variyam can tie their parameters together
treduction o If w) are weights for task A and w'®) are weights for
Outline task B, then can use regularization term
_ QWA w®) = [[w) — w®|2
Machine 7, X 12 .
Learning e E.g., Ais supervised and B is unsupervised
roolems
—— @ Parameter Sharing: When detecting objects in an
Performance image, the same recognizer should apply invariant to
Regularization translation
Causes of Overfitting . . .
Eary Stopping e Train a single detector (subnetwork) for an object (e.g.,
Fonaies cat) by training full network on multiple images with
e p— translated cats, where the cat detector subnets share

Dropout

parameters (single copy, used multiple times)

Estimating
Generalization
PegBrBance
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Introduction @ Sparse Representations: Instead of penalizing large
Outiine weights, penalize large outputs of hidden nodes:

Machine
Learning hod

Problems j(e, X:y) — j(ea va) + O[Q(h) Y

Measuring
Performance

where h is the vector of hidden unit outputs
Regularization

Causes of Overfitting

Early Stopping

Parameter Norm
Penalties

Data Augmentation
Multitask Learning
Dropout

Estimating
Generalization
Pegdrbance
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Machine
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Problems

Measuring
Performance

Regularization

Estimating

Generalization
Performance
Setting Goals
Confidence Intervals

Comparing
Learning
Algorithms
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Estimating Generalization Performance
Setting Goals

@ Before setting up an experiment, need to understand
exactly what the goal is
e Estimate the generalization performance of a
hypothesis
e Tuning a learning algorithm’s parameters
e Comparing two learning algorithms on a specific task
e Etc.

@ Will never be able to answer the question with 100%
certainty

e Due to variances in training set selection, test set
selection, etc.

e Will choose an estimator for the quantity in question,
determine the probability distribution of the estimator,
and bound the probability that the estimator is way off

e Estimator needs to work regardless of distribution of
training/testing data
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B Setting Goals

CSCE 970
Lecture 3:

Regularization @ Need to note that, in addition to statistical variations,

Stephen Scott what we determine is limited to the application that we
nd Vini H
il are studying
_ e E.g., if ANN, better than ANN, on speech recognition,
introduction that means nothing about video analysis
Outline . . .
Vachine @ In planning experiments, need to ensure that training
Loaring data not used for evaluation
) o l.e., don’t test on the training set!
Measuring . . .
Performance o Will bias the performance estimator
Regularization e If using data augmentation, don’t let duplicates lie in
Estimating both training and testing sets
Generalization e Also holds for validation set used for early stopping,
Seting Gosls tuning parameters, etc.

Confidence Intervals

@ Validation set serves as part of training set, but not used
for model building

Comparing
Learning
Algorithms

Other/ 52
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Introduction

Outline

Machine
Learning
Problems

Measuring
Performance

Regularization

Estimating
Generalization
Performance
Setting Goals
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Confidence Intervals

Let errorp(h) be 0-1 loss of hypothesis & on instances drawn
according to distribution D. If

@ Test set V contains N examples, drawn independently
of h and each other

@ N >30

Then with approximately 95% probability, errorp(h) lies in

errory(h)(1 — errory(h))
N

errory(h) £ 1 .96\/

E.g. hypothesis i misclassifies 12 of the 40 examples in test

set V. 1
h) = — =0.30
errory(h) 20

Then with approx. 95% confidence, errorp(h) € [0.158,0.442]



Ne‘BﬂvERSWV]or

Lincoln

Confidence Intervals (cont’'d)

Oz G Let errorp(h) be 0-1 loss of 4 on instances drawn according

Lecture 3_: . . \
IREEEEEe to distribution D. If
Stephen Scott

Vatyam @ Test set V contains N examples, drawn independently
S of h and each other
QOutline o N 2 30
Machine
Learning Then with approximately c% probability, errorp(h) lies in
Measuring
Performance error ]’l 1 — error h
Regularization errory (h) + Zc \/ V( )( N V( ))
Estimating
Generalization
Feriormance N%: | 50% 68% 80% 90% 95% 98% 99%

Setting Goals

z: | 067 1.00 128 1.64 196 233 2.58

Comparing
Learning
Algorithms

Othgr/ 52

Why?
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Repeatedly run the experiment, each with different

errory(h) is a Random Variable

randomly drawn V (each of size N)

Probability of observing r misclassified examples:

0.14
0.12

0.1
0.08
0.06
0.04
0.02

P(r)

Binomial distribution for n =40, p =0.3

0

5 10 15 20 25 30 35 40

(7) errorp(h) (1 — errorp(h)N~"

l.e., let errorp(h) be probability of heads in biased coin, then
P(r) = prob. of getting r heads out of N flips
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Probability P(r) of r heads in N coin flips, if p = Pr(heads)

Introduction
Outiine @ Expected, or mean value of X, E[X] (= # heads on N
i flips = # mistakes on N test exs), is
Problemgs N
Periormance E[X] = » iP(i) =Np =N -errorp(h)
Regularization i=0
Estmating @ Variance of X is
eneralization
ey Var(X) = E[(X — E[X])*] = Np(1 - p)

@ Standard deviation of X, oy, is

Comparing
Learning
Algorithms

Otler/ 52

ox = /E[(X — E[X])?] = /Np(1 —p)
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Lincoln

GelCE ey errory(h) = r/N is binomially distributed, with

Lecture 3:
Regularization

O — @ Mean fiyyor,n) = errorp(h) (i.e., unbiased est.)

il @ standard deviation o, 1)
Introduction . errorp (l’l)(l — errorp (h))
Outiine Oerrory (h) = N
Learning (increasing N decreases variance)
Problems
Measuring Want to compute confidence interval = interval centered at

Performance

errorp(h) containing ¢% of the weight under the distribution

Regularization

ucml  Approximate binomial by normal (Gaussian) dist:
Performance @ mean Merrorv(h) = errorp(h)
etting Goals . .
S e standard deviation o,,,,,.,
Comp‘aring
Fa \/ errory (h) (1 — errory ()
g, h ~
Ot 52 errory (h) N
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Variyam
0.15 - |
. 0.1 - 4
Introduction o0s - ]
Outline 0 L L . .
3 2 -1 0 1 2 3

Machine
Learning

Problems 1 X — /‘L
Measuring p(X) = —F— eXp | —x%
Performance V2ro2 2 o

Regularization

Estimating @ The probability that X will fall into the interval (a, b) is

Generalization

Performance given by fabp(x) dx

Setting Goals

Coricence nional @ Expected, or mean value of X, E[X], is E[X] =
CREEIRE @ Variance is Var(X) = o2, standard deviation is ox = o

Learning
Algorithms

Other/ 52
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Introduction

Outline

Machine
Learning
Problems

0

Measuring 80% of area (probability) lies in 1 + 1.28¢0

Performance

LRl <% of area (probability) liesin p+z. o

Estimating

80% 90% 95% 98% 99%
1.28 164 196 2.33 2.58

Generalization

Performance

Setting Goals C%: 50% 680/0
Comparing Ze: 067 1 Oo

Learning
Algorithms

Othgr/ 52
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Can also have one-sided bounds:

Normal Probability Distribution (cont'd)

04 -
035
03 r
025
02 |
0.15
0.1 |
005

0

1 2 3

¢% of area lies < y+ z.o or >y — z.o, where

!/ __
Z¢ = 2100—(100—c) /2

c%: | 50% 68% 80%
z: | 0.0 0.47 0.84

90%
1.28

95% 98% 99%
1.64 2.05 2.33
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Confidence Intervals Revisited

If V contains N > 30 examples, indep. of 4 and each other

Then with approximately 95% probability, errory(h) lies in

errorp(h)(1 — errorp(h))
N

errorp(h) £ 1 .96\/

Equivalently, errorp(h) lies in

errorp(h)(1 — errorp(h))
N

errory(h) £ 1.96\/

which is approximately

errory(h)(1 — errory(h))
N

errory(h) £ 1.96\/

(One-sided bounds yield upper or lower error bounds)
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Central Limit Theorem

How can we justify approximation?

Consider set of iid random variables Y1, ..., Yy, all from
arbitrary probability distribution with mean p and finite
variance o2. Define sample mean Y = (1/N) Y%, ¥;

Y is itself a random variable, i.e., result of an experiment
(e.g., errors(h) = r/N)

Central Limit Theorem: As N — oo, the distribution
governing Y approaches normal distribution with mean
and variance o*/N

Thus the distribution of errorg(h) is approximately normal for
large N, and its expected value is errorp(h)

(Rule of thumb: N > 30 when estimator’s distribution is
binomial; might need to be larger for other distributions)
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Calculating Confidence Intervals

@ Pick parameter to estimate: errorp(h)
(0-1 loss on distribution D)

@ Choose an estimator: errory (h)
(0-1 loss on independent test set V)

© Determine probability distribution that governs
estimator: errory,(h) governed by binomial distribution,
approximated by normal when N > 30

© Find interval (L, U) such that ¢% of probability mass
falls in the interval

e Couldhave L= —occorU = o0
e Use table of z. or z. values (if distribution normal)
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iroduction @ What if we want to compare two learning algorithms L!
outine and L? (e.g., two ANN architectures, two regularizers,
VESiie etc.) on a specific application?

Learning

Problems @ Insufficient to simply compare error rates on a single
Measuring test set

Performance
Regularization @ Use K-fold cross validation and a paired  test

Estimating
Generalization
Performance

Comparing
Learning
Algorithms
K-Fold CV
Student's 1

Distribution

38/52
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R @ Partition data set X' into K equal-sized subsets

Variyam X, A, ..., Xk, where ")(l| =30

Introduction @ Forifrom1to K, do
Outline (Use X; for testing, and rest for training)

V=2

Problems 9 77 =X \ )C'l

Measuring @ Train learning algorithm L' on 7; to get A}
Performance @ Train learning algorithm L? on 7; to get /7

R larizati i j
egHiarizaton @ Let p) be error of /, on test set V;
Estimating

Generalization (6] Di = p,l — p,z
Performance . .
@ Error difference estimate p = (1/K) ¥ p;

Comparing
Learning
Algorithms
K-Fold CV

Student’s 1
Distribution
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Weeet=d 1 _Fold Cross Validation (contd)

Lincoln

CSCE 970 . .
Lecture 3: @ Now estimate confidence that true expected error

Regularization

difference < 0
Stephen_ Scott . . .

e = Confidence that L! is better than L? on learning task
rodustion @ Use one-sided test, with confidence derived from
outine student’s 1 distribution with K — 1 degrees of
Machine freedom
L i . . e .

Problems @ With approximately ¢% probability, true difference of
Measuring expected error between L' and L? is at most
Performance
Regularization
Estimating p + tC’Kil Sp
Generalization
Performance Whel’e
Comparing 1 K
Learning
_ 2
Algorithms s, = P

—FIdV P K(K o 1) z; (pl p)

tudent's 1 =

Distribution
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Wevet= Student's ¢ Distribution (One-Sided Test)

Lincoln

CSCE 970 df __ 0.600 0700 _ 0.800 _ 0.900 _ 0.950 _ 0.975 _ 0.990 _ 0.995
Lecture 3: 1 0325 | 0707 | 1356 | 3058 | 6314 | 12706 | 31821 | 63.657
Regularization 2 0.289 0.617 1.061 1.886 2.920 4,303 6,985 9.925
S 3 0277 | 0584 | 0.6/8 | 1638 | 2353 | 3182 | 4541 | 684l
o Vinod 3 0271 | 09569 | 00541 | 1533 | 213 | 277 | 3747 | 4604
Variyam 5 0267 | 0550 | 0920 | 1476 | 2015 | 2671 | 3365 | 403

6 0265 | 0553 | 0006 | 1440 | 1843 | 2447 | 3143 | 3707

7 0265 | 0549 | 0.89% | 1415 895 | 2365 | 2996 | 5400

Introduction 8 0262 | 054 | 0.889 397 860 | 2306 | 289 [ 5355
Outine 9 0.261 | 0583 | 0.883 353 833 | 2260 | 2821 | 3250
10 0.260 0.542 0.879 372 812 2228 2764 3.169

Machine 11 0260 | 0540 | 0876 | 1363 | 179 | 2201 | 2718 | 3106
Learning 12 | 0259 | 0539 | 0873 | 135 | 1782 | 2179 | 2681 | 3055
Problems 13 | 0250 | 0538 | 0870 | 1350 | 1771 | 2160 | 2650 | 301

Measuring

Performance If p+ t.x—15, < O our assertion that L' has less error than

Al [ is supported with confidence ¢
Estimating
Generalization

Performance So if K-fold CV used, compute p, look up 7. x—; and check if

Comparing D < —Ick—15p

Learning

Algorith . .

crssol One-sided test; says nothing about .2 over L!

Student's 1
Distribution



Nebidska QLWL

Lincoln

CSCE 970
Lecture 3:
Regularization

Stephen Scott
il i @ Say you want to show that learning algorithm L!

Variyam
’ performs better than algorithms L%, L3, L*, L’
@ If you use K-fold CV to show superior performance of

Introduction

Outline . ,
Machins L' over each of L?, ..., [’ at 95% confidence, there’s a
Learning 5% chance each one is wrong
Problems
Measuring = There’s an over 18.5% chance that at least one is
Performance

wrong
Regularization . . .
Estimating = Our overall confidence is only just over 81%
Generalization . .
Performance @ Need to account for this, or use more appropriate test

Comparing

Learning
Algorithms
K-Fold CV

Student's 1
Distribution
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Lincoln

CSCE 970
Lecture 3:
Regularization

Stephen Scott
and Vinod
Variyam

Introduction

Outline

Machine
Learning
Problems

Measuring
Performance

Regularization

Estimating
Generalization
Performance

Comparing
Learning
Algorithms

Other
Performance
Measures

More Specific Performance Measures

@ So far, we've looked at a single error rate to compare
hypotheses/learning algorithms/etc.
@ This may not tell the whole story:
e 1000 test examples: 20 positive, 980 negative
e h! gets 2/20 pos correct, 965/980 neg correct, for
accuracy of (2 + 965)/(20 + 980) = 0.967
e Pretty impressive, except that always predicting
negative yields accuracy = 0.980
e Would we rather have 42, which gets 19/20 pos correct
and 930/980 neg, for accuracy = 0.949?
e Depends on how important the positives are, i.e.,
frequency in practice and/or cost (e.g., cancer
diagnosis)



WCete Confusion Matrices

Lincoln

CSCE 970 Break down error into type: true positive, etc.

Lecture 3:
Regularization

Stephen Scott

il Predicted Class
_ True Class Positive \ Negative | Total

Introduction — — =
il Positive tp : true positive | fn : false negative | p
Machine Negative fp : false positive | m : true negative n
S Total P o N
Measuring
Performance Confusion Matrix
Regularization ("] Genera”zes tO mu|’[lp|e
Estimating classes o8
Generalization g s
FEIEINENES @ Allows one to quickly '
e assess which classes
Algorithms are missed the most, and
e ance into what other class ms— .,

Measuws True values
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Lincoln

CSCE 970
Lecture 3:
Regularization

Stephen Scott
and Vinod
Variyam

Introduction

Outline

Machine
Learning
Problems

Measuring
Performance

Regularization
Estimating

Generalization
Performance

Comparing
Learning
Algorithms

Other
Performance
MetsU8es

ROC Curves

@ Consider classification via ANN + linear threshold unit

@ Normally threshold f(x;w,b) at 0, but what if we
changed it?

@ Keeping w fixed while changing threshold = fixing
hyperplane’s slope whil\e moving along its normal vector

®-. S predall +
L e®
-0 \\
o
@) [ ]
b hANE]
. O~
pred all - ‘Q

@ Get a set of classifiers, one per labeling of test set

@ Similar situation with any classifier with confidence
value, e.g., probability-based



e ROC Curves

B Plotting 7 versus fp

CSCE 970
Lecture 3:
Regularization

Stophen Seot @ Consider the “always —” hyp. What is fp? What is p?
CIIV: What about the “always +” hyp?

Variyam
@ In between the extremes, we plot TP versus FP by
sorting the test examples by the confidence values

Introduction
Outline

Machine

Probleme Ex | Confidence | label | Ex | Confidence | label
Pertormasee xp | 169.752 + [ x | —12.640 -
Regularization X2 109.200 + X7 —29.124 —
Estimating X3 1 921 0 — X8 —83.222 —
e x4 1.905 + || xo | —91.554 +
Comparing X5 —2.75 + X10 —128.212 —

Learning
Algorithms

Other
Performance
MetsUBes
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Lincoln

CSCE 970
Lecture 3:
Regularization

Stephen Scott
and Vinod
Variyam

Introduction
Outline

Machine
Learning
Problems

Measuring
Performance

Regularization

Estimating
Generalization
Performance

Comparing
Learning
Algorithms

Other
Performance
MegsLBRs

ROC Curves

Plotting #p versus fp (contd)




e ROC Curves

Bl Convex Hull

CSCE 970
Lecture 3:
Regularization

Stephen Scott
and Vinod ® o o
Variyam

@naive Bayes
Introduction

Outline

Machine
Learning Fp
Problems

Measuring

Performance @ The convex hull of the ROC curve yields a collection of
fedtlanzaioy classifiers, each optimal under different conditions

et e If FP cost = FN cost, then draw a line with slope |N|/|P|
Reiioinance at (0, 1) and drag it towards convex hull until you touch
Eg::g;rging it; that’s your operating point

Algorithms e Can use as a classifier any part of the hull since can
Other randomly select between two classifiers

Performance

MetsUBes



e ROC Curves

B Convex Hull

CSCE 970
Lecture 3:
Regularization

Stephen Scott
and Vinod
Variyam

Introduction .

@naive Bayes
Outline

Machine

Learning
Problems

Measuring
Performance

Regularization

@ Can also compare curves against “single-point”

Genoraliaaion classifiers when no curves

erormance o In plot, ID3 better than our SVM iff negatives scarce; nB
Comparing

Learning never better

Algorithms

Other
Performance
MetsUBes



e ROC Curves

Bl Miscellany

it @ What is the worst possible ROC curve?

Regularization

Steonen Seatt @ One metric for measuring a curve’s goodness: area
ephen Sco
and Vinod under curve (AUC):

Variyam
Introduction ZX+ cP in EN I(h(X+) > h(x—))
Outline |P||N|
il i.e., rank all examples by confidence in “+” prediction,
roblems count the number of times a positively-labeled example
dedil (from P) is ranked above a negatively-labeled one (from

N), then normalize
e What is the best value?

Regularization

Estimating . X X X i
Generalization e Distribution approximately normal if |P|, |N| > 10, so can
Performance . . .

) find confidence intervals
e e Catching on as a better scalar measure of performance
Algorithms than error rate
Periormance @ Possible (though tricky) with multi-class problems

Mezsuses



hLctey Precision-Recall Curves

Lincoln

CSCE 970
Lecture 3:

LSl Consider information retrieval task, e.g., web search
Stephen Scott

and Vinod
Variyam

Introduction
Outline

Machine
Learning
Problems

Measuring
Performance

Regularization

Estimating
Generalization
Performance

 All documenis  » relevant X not relevant O retrieved

precision = 1p/p’ = fraction of retrieved that are positive

Comparing
Learning

Algorithms recall = 1p/p = fraction of positives retrieved

Other
Performance
Mezslses
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CSCE 970
Lecture 3:
Regularization

Stephen Scott
and Vinod
Variyam

Introduction

Outline

Machine
Learning
Problems

Measuring
Performance

Regularization
Estimating

Generalization
Performance

Comparing
Learning
Algorithms

Other
Performance
MezzBes

Precision-Recall Curves (cont'd)

@ As with ROC, vary
threshold to trade *
precision and recall

@ Can compare curves
based on containment

@ More suitable than ROC
for large numbers of )
negatives

@ Use Fz-measure to combine at a specific point, where
5 weights precision vs recall:

precision - recall

Fg=(1 2
p=(1+5 )(ﬁz - precision) + recall
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