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Types of machine learning problems
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@ In any learning problem, need to be able to quantify
performance of an algorithm

@ In supervised learning, we often use a loss function
(or error function) 7 for this task

@ Given instance x with true label y, if the learner’s
prediction on x is y, then
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@ Machine learning can generally be distilled to an
optimization problem

@ Choose a classifier (function, hypothesis) from a set of
functions that minimizes an objective function
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@ Supervised Learning: Algorithm is given labeled
training data and is asked to infer a function
(hypothesis) from a family of functions (e.g., set of all
ANNSs) that is able to predict well on new, unseen
examples

o Classification: Labels come from a finite, discrete set
o Regression: Labels are real-valued

@ Unsupervised Learning: Algorithm is given data

without labels and is asked to model its structure
o Clustering, density estimation

@ Reinforcement Learning: Algorithm controls an agent
that interacts with its environment and learns good
actions in various situations
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@ 0-1 Loss: J(y,y) = lif y # 9, 0 otherwise

@ Square Loss: J(y,9) = (y — 3)?

@ Cross-Entropy: 7(y,5) = —ylny— (1 —y)In(1 — )
(v and y are considered probabilities of a ‘1’ label;
generalizes to multi-class.)

@ Hinge Loss: J(y,3) = max(0,1 —y3J)
(used sometimes for large margin classifiers like SVMs)
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@ Given a loss function 7 and a training set X, the total
loss of the classifier h on X is

errory(h) = Z T x> x) >

xeX
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@ Sulfficiently sophisticated learners (decision trees,
multi-layer ANNs) can often achieve arbitrarily small (or
Introduction zero) loss on a training set

Outiine @ A hypothesis (e.g., ANN with specific parameters) h
ey overfits the training data X if there is an alternative
hypothesis 4’ such that
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To generalize well, need to balance training accuracy with
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@ More importantly, the learner needs to generalize well:
Introdustion Given a new example drawn iid according to unknown
Outline probability distribution D, we want to minimize 4’s
expected loss:

Machine
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errorp(h) = Exup [T (Vx, Jx)]
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@ |s minimizing training loss the same as minimizing
expected loss?
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@ Generally, if the set of functions # the learner has to
choose from is complex relative to what is required for
correctly predicting the labels of X, there’s a larger

Stephen Scott
EUCRYLI]

varam chance of overfitting due to the large number of “wrong”
Introduction choices in H
Outline e Could be due to an overly sophisticated set of functions

Machine
Learning
Problems

e E.g., can fit any set of n real-valued points with an
(n — 1)-degree polynomial, but perhaps only degree 2 is
needed

e E.g., using an ANN with 5 hidden layers to solve the
logical AND problem

o Could be due to training an ANN too long

@ Over-training an ANN often leads to weights deviating
far from zero

@ Makes the function more non-linear, and more complex

@ Often, a larger data set mitigates the problem

Measuring
Performance

Regularization
Causes of Overiiting

Estimating
Generalization
Perfaribance



A eae Regularization

BN Causes of Overfitting: Overtraining

CSCE 970
Lecture 3:

Regularization Error versus weight updates (example 1)
T

Slephen‘ S 0.01 N T T
ac:ri\y:;d 0009 . Training set error . 4
Validation set error *

0008 4
Introduction
Outiine 0007 4 i

; 5 p

Mach - 4
O 2 0005 [, E
Problems 0005 | i
Measuring
Performance 0004 i
Regularization | )
Causes of Overfiting 0.003

0.002 L L L

0 5000 10000 15000 20000

Number of weight updates

Estimating
Generalization
Perfgribance

i Regularization

Bl Parameter Norm Penalties

CSCE 970
Lecture 3:
Regularization

Stephen Scott
and Vinod
Variyam

@ Still want to minimize training loss, but balance it
Outiine against a complexity penalty on the parameters used:
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Regularization
Early Stopping

P Versus Weight updates (example
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@ Danger of stopping too soon
o “Patience” parameter determines how long to wait
@ Can re-start and track best one on separate validation
set

Regularization

Parameter Norm Penalties: L> Norm

@ Q) = (1/2)]|0]3, i.e., sum of squares of network’s
weights

@ Since 0 = w, this becomes
Tw; X,y) = (a/2)w'w+ T (w; X,y)

@ As weights deviate from zero, activation functions
become more nonlinear, which is higher risk of
overfitting

Regularization

Parameter Norm Penalties: L' Norm

@ Q(0) = 0|, i.e., sum of absolute values of network’s
weights

Tw; X.y) = alwli + T (w; X,y)
@ As with L? regularization, penalizes large weights
@ Unlike L? regularization, can drive some weights to zero

e Sparse solution
e Sometimes used in feature selection (e.g., LASSO
algorithm)
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@ Deep ANNs would like to have at least thousands or

Introduction tens of thousands of data points Introduction
Outine @ In classification of high-dimensional data (e.g., image Outine
ey classification), expect the classifier to tolerate ey
Problems transformations and noise Problems
Heasuring = Can artificially enlarge data set by duplicating existing Gl
erformance . N N Performance

: instances and applying transformations :
Regularization . . . Regularization

@ Translating, rotating, scaling o

@ Don't change the class, e.g., “b” vs “d” or “6” vs “9”
o Don’t let duplicates lie in both training and testing
sets
= Can also apply noise injection to input or hidden layers oters
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e Regularization Nebiska AT MEYFLY

BN Multitask Learning BRI} Dropout

CSCE 970 CSCE 970 @ Imagine if, for a network,

ReLgeL::ltaurtaal\:on ° |f mu'tl_ple taSkS Share ReLgeL::ltaurtaal\:on we COUId average over a” ® 0} o 0]
Stephen Scott genenc Parameters, Stephen Scott networks with each @) oto 0’0 Q)
e Vo initially process inputs e Vo subset of nodes deleted 55 B &S

via shared nodes, then () OlQ|0]Q
Introduction do final processing via Introduction [ AnalogOUS to bagging, °‘° ®
Outline task_speCIflc nodes Q @ Outline where We average over " ., °°¢ 5 @@ @
g%iﬁjgs @ Backpropagation works g%ﬁjgs ANNSI tralr}ed on random ®

as before with multiple samples of X o | el e
Measuring Measuring ] . N
Performance output nodes Performance @ In each training iteration, © %D 65® ©
Regularization @ Serves as a regularizer Hcegulanzallion Sample a ran'dom bit o

since parameter tuning vector p, Wh'ch [ m—

of shared nodes is based determines which nodes @ When tramlpg done,

on backpropagated error Ia__\’re usef (e.g(y).,8 o inout ;e-scale1 weights by
Estimating from mu'tlple taSkS Estimating ur(]ﬁ: 05 )for h|ddg; llr;rzttj) (ul )
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@ Parameter Tying: If two learners are learning the
SEn s same task but different scenarios (distributions, etc.), SEn s
Variyam can tie their parameters together Variyam

ity o If w®) are weights for task A and w(*) are weights for Inroduction o Sparse Representations: Instead of penalizing large
Outiine task B, then can use regularization term Outiine weights, penalize large outputs of hidden nodes:
, QW@ w®)) = |[w@) — @2 ,
Machine ’, X 2 X Machine ~
st o Eg.,Ais sup?rwsed and B is un.superw.sed . ez T(6;X,y) = T(0:; X,y) +aQh) ,
— @ Parameter Sharing: When detecting objects in an —
Performance image, the same recognizer should apply invariant to Performance where & is the vector of hidden unit outputs
Regularization translation Regularization

c

e Train a single detector (subnetwork) for an object (e.g.,
cat) by training full network on multiple images with
translated cats, where the cat detector subnets share
parameters (single copy, used multiple times)

Estimating
Generalization
Pegigribance Pegi¢ribance
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@ Before setting up an experiment, need to understand
exactly what the goal is

Stephen Scott . . .

aC;‘"‘;;”&d o Estimate _the generalization performance of a

hypothesis

Introduction e Tuning a learning algorithm’s parameters
Outline e Comparing two learning algorithms on a specific task
Machine e Etc.
i) @ Will never be able to answer the question with 100%
Measuring Certainty

Performance

e Due to variances in training set selection, test set
selection, etc.

o Will choose an estimator for the quantity in question,
determine the probability distribution of the estimator,

T and bound the probability that the estimator is way off

o Estimator needs to work regardless of distribution of
training/testing data
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@ Test set V contains N examples, drawn independently
of h and each other

@ N >30
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Then with approximately 95% probability, errorp(h) lies in

Measuring
Performance

errory(h)(1 — errory(h))
N

errory(h) = 1 .96\/

Regularization

Estimating
Generalization

E.g. hypothesis » misclassifies 12 of the 40 examples in test

set V: 1
omparin, h = - = 030
Eeargmg o errorV( ) 40

Alertms Then with approx. 95% confidence, errorp(h) € [0.158,0.442]
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Repeatedly run the experiment, each with different
randomly drawn V (each of size N)

Stephen Scott

R Probability of observing r misclassified examples:
-~ Binomial distribution for n =40,p=0.3

Introduction 0'12 " T T T T T
Qutline 0 i

Machine — |

Learning >~ 0.08

Problems =~ 006k

Measuring 0.041

Performance 002+

Regularization 0

0 5 10 15 20 25 30 35 40

P(r) = C’ ) errorp ()’ (1 — errorp(R))V~"
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l.e., let errorp(h) be probability of heads in biased coin, then
P(r) = prob. of getting r heads out of N flips
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@ Need to note that, in addition to statistical variations,
what we determine is limited to the application that we
are studying

e E.g., if ANN, better than ANN, on speech recognition,
that means nothing about video analysis

@ In planning experiments, need to ensure that training
data not used for evaluation

e |.e., don’t test on the training set!
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Measuring

Performance o Will bias the performance estimator

Regularization e If using data augmentation, don’t let duplicates lie in
Estimating both training and testing sets

Coneraizaton @ Also holds for validation set used for early stopping,

Performance
Setting Goals

Confidence Intervals

tuning parameters, etc.
@ Validation set serves as part of training set, but not used
for model building

Comparing
Learning

Algorithms
Other/ 52

Nebiaska

Lincoln

Confidence Intervals (cont'd)

CSCE 970
Lecture 3:
Regularization

Let errorp(h) be 0-1 loss of 4 on instances drawn according
to distribution D. If

Stephen Scott

Vo o Test set V contains N examples, drawn independently
oduet of h and each other
Outline o N Z 30
Machine
Eearing] Then with approximately c% probability, errorp(h) lies in
Measuring
Performance h 17 h
e errorv(h) + 2 \/ errory (h)( - errory(h))
Estimating
Generalization
N%: | 50% 68% 80% 90% 95% 98% 99%
z: | 067 1.00 128 164 196 233 258
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’ Probability P(r) of r heads in N coin flips, if p = Pr(heads)
Introduction
Outiine @ Expected, or mean value of X, E[X] (= # heads on N
Hachine flips = # mistakes on N test exs), is

Problems N
E[X] = iP(i) = Np = N - errorp(h)
i=0

Measuring
Performance

Regularization

@ Variance of X is
Var(X) = E[(X — E[X])*] = Np(1 — p)
@ Standard deviation of X, oy, is

E[(X - E[X])*] =

Estimating
Generalization
Performance

Seting Goals

Confidence Intervals
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Approximate Binomial Dist. with Normal

errory(h) = r/N is binomially distributed, with

@ MEAN Lerror, (1) = errorp(h) (i.e., unbiased est.)
@ standard deviation o, (i)

errorp(h)(1 — errorp(h))
Oerrory,(h) = N

(increasing N decreases variance)

Want to compute confidence interval = interval centered at
errorp(h) containing ¢% of the weight under the distribution

Approximate binomial by normal (Gaussian) dist:
@ mean Herrory (h) = errorD(h)

@ standard deviation o, ()

Normal Probability Distribution (cont’d)

Oerrory (h) =~

\/errorv (h)(1 — errory(h))
N

2

0 1

80% of area (probability) lies in u & 1.280

¢% of area (probability) lies in p £ z. o

Zct

%:

50%
0.67

68%
1.00

80%
1.28

90%
1.64

95%
1.96

98%
2.33

99%
2.58

Then with approximately 95% probability, errory (h) lies in

Confidence Intervals Revisited

errorp(h)(1 — errorp(h))

errorp(h) £ 1,96\/ m

Equivalently, errorp(h) lies in

errorp(h)(1 — errorp(h))

errory(h) £ 1.96\/ N

which is approximately

(One-sided bounds yield upper or lower error bounds)

errory(h)(1 — errory(h))
N

errory(h) £ 1 .96\/

If vV contains N > 30 examples, indep. of » and each other
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Normal Probability Distribution

Normal distribution with mean 0, standard deviation 1

04
035
03 F
025
02 F
015

005

3 2 -1 0 1 2 3

T ()
P V2mro? P2 o
@ The probability that X will fall into the interval (a,b) is

given by fab p(x)dx
@ Expected, or mean value of X, E[X], is E[X] = u
@ Variance is Var(X) = o2, standard deviation is ox = o

Normal Probability Distribution (cont’d)

Can also have one-sided bounds:
04 ' '
035
03
025
02

% of area lies < p + z.0 of > pu — z.0, where
7 = 2100—(100—c) /2

98% 99%
2.05 233

c%: | 50%
z: | 0.0

68% 80%
0.47 0.84

90%
1.28

95%
1.64

Central Limit Theorem

How can we justify approximation?

Consider set of iid random variables Y1, ..., Yy, all from
arbitrary probability distribution with mean p and finite
variance o2. Define sample mean ¥ = (1/N) 3""_, ¥;

Y is itself a random variable, i.e., result of an experiment
(e.g., errors(h) = r/N)

Central Limit Theorem: As N — oo, the distribution
governing Y approaches normal distribution with mean 1
and variance ¢?/N

Thus the distribution of errors(h) is approximately normal for
large N, and its expected value is errorp(h)

(Rule of thumb: N > 30 when estimator’s distribution is
binomial; might need to be larger for other distributions)
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@ Pick parameter to estimate: errorp(h)
(0-1 loss on distribution D)

Introduction @ Choose an estimator: errory(h)
Outline (0-1 loss on independent test set V)

ey Determine probability distribution that governs
Problems estimator: errory,(h) governed by binomial distribution,
LI approximated by normal when N > 30
Regularization @ Find interval (L, U) such that ¢% of probability mass
falls in the interval

o Couldhave L= —co0r U =

o Use table of z. or z. values (if distribution normal)
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TS @ Partition data set X into K equal-sized subsets

Vg Xy, X, .., Xk, where ‘/Y,‘ > 30
Introduction @ Forifrom1to K, do
Outline (Use X; for testing, and rest for training)
0 V-
Problems e 77 =X \ X]

@ Train learning algorithm L! on 7; to get /!
@ Train learning algorithm L? on 7; to get /;
@ Let p) be error of /; on test set V;
Q pi=p! -}

© Error difference estimate p = (1/K) Zlei

Measuring
Performance

Regularization

Estimating
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Performance
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Student’s ¢ Distribution (One-Sided Test)

CSCE 970 df 0.600 0.900 0.950 0.975 0.990
Leoture 3: 1 U325 | 077 37 078 | 6319 ] 12706 | 3ien | 6367
Regularization 2 0289 | 0617 06 886 | 2020 | 4303 | 6965 | 9.5
@ 3 0277 | 0581 | 0.97 5] 353 | 3082 | akal | teal
SRy T | 0271 | o%es | 0o =33 | 2132 | 2776 | 3747 | 4e0d
Varyam 5 0267 | 0558 | 0520 76 015 | 2671 | 3%t 032
5 0265 | 0553 | 0506 | 1440 | 1043 | 2447 | 3345 | 307
7 U263 | 0543 B 15 595 | 2365 | 2008 359
Introduction & 0.26. 546 B89 .397 860 2,306 2.856 355
Outiine 2 0.261_L 0.5 0,583 JELE] 833 | 2262 | 2821 250
10 |_0260 | 053 0870 57 E12 | 2008 | a7es 169
Machine 1 0.260 | 0540 | 0.876 363 7% | 2301 | 2718 1108
Learning 12 0.259 0.539 873 .356 .782 2179 2681 | 3.055
Problems 13 [ 0250 | 0538 I 350 77| 2160 550 012

Measuring
Performance

If p+ . xk—1 5, < 0 our assertion that L! has less error than
L? is supported with confidence ¢

Regularization
Estimating
Generalization
Performance

So if K-fold CV used, compute p, look up 7. x—1 and check if
p<- tc,Kfl Sp

Comparing
Learning
Algorithms

One-sided test; says nothing about L2 over L!

Students ¢
Distribution

41/52

Nebiaska

Lincoln

Comparing Learning Algorithms
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@ What if we want to compare two learning algorithms L!
and L? (e.g., two ANN architectures, two regularizers,
etc.) on a specific application?
o Insufficient to simply compare error rates on a single
test set

@ Use K-fold cross validation and a paired 7 test
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K-Fold Cross Validation (cont'd)
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@ Now estimate confidence that true expected error

difference < 0
= Confidence that L! is better than L? on learning task

@ Use one-sided test, with confidence derived from
student’s ¢ distribution with K — 1 degrees of
freedom

@ With approximately ¢% probability, true difference of
expected error between L! and L? is at most

Stephen Scott
and Vinod
Variyam
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where
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1 K 5
mZ(Pi*P)

i=1
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@ Say you want to show that learning algorithm L!
performs better than algorithms L2, L3, L*, [°

@ If you use K-fold CV to show superior performance of
L! over each of L?,..., L’ at 95% confidence, there’s a
5% chance each one is wrong

= There’s an over 18.5% chance that at least one is
wrong

= Our overall confidence is only just over 81%
@ Need to account for this, or use more appropriate test
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More Specific Performance Measures
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@ So far, we've looked at a single error rate to compare
hypotheses/learning algorithms/etc.
@ This may not tell the whole story:
o 1000 test examples: 20 positive, 980 negative
o h' gets 2/20 pos correct, 965/980 neg correct, for
accuracy of (2 +965)/(20 + 980) = 0.967
o Pretty impressive, except that always predicting
negative yields accuracy = 0.980
o Would we rather have 4?2, which gets 19/20 pos correct
and 930/980 neg, for accuracy = 0.949?

Stephen Scott
and Vinod
Variyam
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Estimating . ’. .
SoreliEon o Depends on how important the positives are, i.e.,
‘eriormance . .

frequency in practice and/or cost (e.g., cancer
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ROC Curves
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@ Consider classification via ANN + linear threshold unit

@ Normally threshold f(x; w, ) at 0, but what if we
changed it?

@ Keeping w fixed while changing threshold = fixing
hyperplane’s slope while moving along its normal vector

Stephen Scott
and Vinod
Variyam
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@ Get a set of classifiers, one per labeling of test set

@ Similar situation with any classifier with confidence
Other value, e.g., probability-based
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e ROC Curves

BB  Plotting #p versus fp (cont'd)
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Confusion Matrices
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Break down error into type: true positive, etc.

Stephen Scott
EUCRYLI]

Predicted Class

Variyam
oduet True Class Positive Negative | Total
ntroduction
e Positive tp - true positive | fin : false negative | p
Machine Negative Jp : false positive | m : true negative n
Learning / /
Problems Total D n N
Measuring
Performance Confusion Matrix
Regularization @ Generalizes to multiple
Estimating ClasseS N
Generalization £ oo
RETHENES @ Allows one to quickly
oA assess which classes E o
Algorithms are missed the most, and o2
TS into what other class RE—— .,

True values
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ey ROC Curves

Lincoln Plotting 7p versus fp
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@ Consider the “always —” hyp. What is fp? What is p?
What about the “always +” hyp?

Stephen Scott
and Vinod

Variyam

rodcton @ In between the exiremes, we plot TP versus FP by
outine sorting the test examples by the confidence values
Machine

Learning

o Ex | Confidence | label | Ex | Confidence | label
LI X1 169.752 + X6 —12.640 —
Regularization X2 109.200 + X7 —29.124 -
Estimating X3 19.210 — Xg —83.222 -
Pertormance. x4 1.905 + | x| —91.554 +
Comparing X5 —2.75 + X10 —128.212 —
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@ The convex hull of the ROC curve yields a collection of
classifiers, each optimal under different conditions
o If FP cost = FN cost, then draw a line with slope |N|/|P|
at (0, 1) and drag it towards convex hull until you touch
it; that's your operating point
e Can use as a classifier any part of the hull since can
randomly select between two classifiers
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e ROC Curves 2oy ROC Curves

Bl Convex Hull Bl Miscellany

CSCE 970 CSCE 970 . .

Ty o @ What is the worst possible ROC curve?
Regularization Regularization . . B

@ One metric for measuring a curve’s goodness: area

Stephen Scott Stephen Scott

and Vinod and Vinod under curve (AUC)

Variyam Variyam

1 _

Introduction Introduction Z’“r cp 2 en I(h(x+) > h(x-))
Outline Outline ‘P| ‘N|
ey ey i.e., rank all examples by confidence in “+" prediction,
AL AL count the number of times a positively-labeled example
Measuring (HEEENTS (from P) is ranked above a negatively-labeled one (from
erformance Performance

N), then normalize
e What is the best value?

Regularization Regularization

@ Can also compare curves against “single-point”

Estimating

Estimati HH

Generalzation classifiers when no curves Generalizaton o Distribution approximately normal if [P|, |N| > 10, so can
Perf . . Perf . . .

eriormance o In plot, ID3 better than our SVM iff negatives scarce; nB cromanee find confidence intervals

c c i

Coarming never better Coarming @ Catching on as a better scalar measure of performance

Algorithms Rgailins than error rate

a— @ Possible (though tricky) with multi-class problems
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WEeetled Precision-Recall Curves WEetled Precision-Recall Curves (contd)
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CSCE 970

Cocturol3] @ As with ROC, vary
egulanzalmn
St threshold to trade

phen‘ Scott .

and Vinod precision and recall

‘ariyam
@ Can compare curves

based on containment
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LEEll Consider information retrieval task, e.g., web search
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Introduction Introduction

OQutline OQutline

Machine Machine @ More suitable than ROC
Prabions Prabions for large numbers of i i
Measuring Measuring negatives
Performance Performance
Regularization Regularization @ Use Fg-measure to combine at a specific point, where
(Easetlergz:;;gamn < Alldocuments ' relevant X not relevant {Q retrieved (Easetlergz:;;gamn ﬂ Welghts preCiSion & reca":
Performance ey / . . e Performance
precision = 1p/p’ = fraction of retrieved that are positive recision - recall
Co|1\p§r\r1g Co|1\p§r\r1g F — (1 + 52) p
Learning _ _ . ags . Learning [5 - (52 B .. ) + ll
Algorithms recall = p/p = fraction of positives retrieved Algorithms precision) + reca
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