

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

CSCE 496/896 Lecture 2: Basic Artificial Neural Networks

Stephen Scott

(Adapted from Vinod Variyam, Ethem Alpaydin, Tom Mitchell,
Ian Goodfellow, and Aurélien Géron)

sscott@cse.unl.edu

Introduction

Supervised Learning

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

- **Supervised learning** is most fundamental, “classic” form of machine learning
- “Supervised” part comes from the part of *labels* for examples (instances)
- Many ways to do supervised learning; we’ll focus on **artificial neural networks**, which are the basis for deep learning

Introduction

ANNs

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks
Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Consider humans:

- Total number of neurons $\approx 10^{10}$
- Neuron switching time $\approx 10^{-3}$ second (vs. 10^{-10})
- Connections per neuron $\approx 10^4$ – 10^5
- Scene recognition time ≈ 0.1 second
- 100 inference steps doesn't seem like enough
- ⇒ massive parallel computation

Introduction

Properties

CSCE
496/896

Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Properties of artificial neural nets (ANNs):

- Many “neuron-like” switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

Strong differences between ANNs for ML and ANNs for biological modeling

When to Consider ANNs

[Introduction](#)[Supervised Learning](#)[Basic Units](#)[Gradient Descent](#)[Nonlinearly Separable Problems](#)[Backprop](#)[Types of Units](#)[Putting Things Together](#)

- Input is high-dimensional discrete- or real-valued (e.g., raw sensor input)
- Output is discrete- or real-valued
- Output is a vector of values
- Possibly noisy data
- Form of target function is unknown
- Human readability of result is unimportant
- Long training times acceptable

Introduction

History of ANNs

[Introduction](#)[Supervised Learning](#)[Basic Units](#)[Gradient Descent](#)[Nonlinearly Separable Problems](#)[Backprop](#)[Types of Units](#)[Putting Things Together](#)

- **The Beginning:** Linear units and the Perceptron algorithm (1940s)
 - **Spoiler Alert:** stagnated because of inability to handle data not *linearly separable*
 - Aware of usefulness of multi-layer networks, but could not train
- **The Comeback:** Training of multi-layer networks with Backpropagation (1980s)
 - Many applications, but in 1990s replaced by large-margin approaches such as support vector machines and boosting

Introduction

History of ANNs (cont'd)

CSCE
496/896

Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

● The Resurgence: Deep architectures (2000s)

- Better hardware¹ and software support allow for deep (> 5–8 layers) networks
- Still use Backpropagation, but
 - Larger datasets, algorithmic improvements (new loss and activation functions), and deeper networks improve performance considerably
 - Very impressive applications, e.g., captioning images

● The Inevitable: (TBD)

- Oops

¹Thank a gamer today.

Outline

CSCE
496/896

Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

- Supervised learning
- Basic ANN units
 - Linear unit
 - Linear threshold units
 - Perceptron training rule
- Gradient Descent
- Nonlinearly separable problems and multilayer networks
- Backpropagation
- Types of activation functions
- Putting everything together

Learning from Examples

CSCE
496/896Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
DescentNonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

- Let C be the **target function** (or **target concept**) to be learned
 - Think of C as a function that takes as input an **example** (or **instance**) and outputs a **label**
- Goal:** Given **training set** $\mathcal{X} = \{(\mathbf{x}^t, y^t)\}_{t=1}^N$ where $y^t = C(\mathbf{x}^t)$, output **hypothesis** $h \in \mathcal{H}$ that approximates C in its classifications of new instances
- Each instance \mathbf{x} represented as a vector of **attributes** or **features**
 - E.g., let each $\mathbf{x} = (x_1, x_2)$ be a vector describing attributes of a car; x_1 = price and x_2 = engine power
 - In this example, label is binary (positive/negative, yes/no, 1/0, +1/-1) indicating whether instance \mathbf{x} is a “family car”

Learning from Examples (cont'd)

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

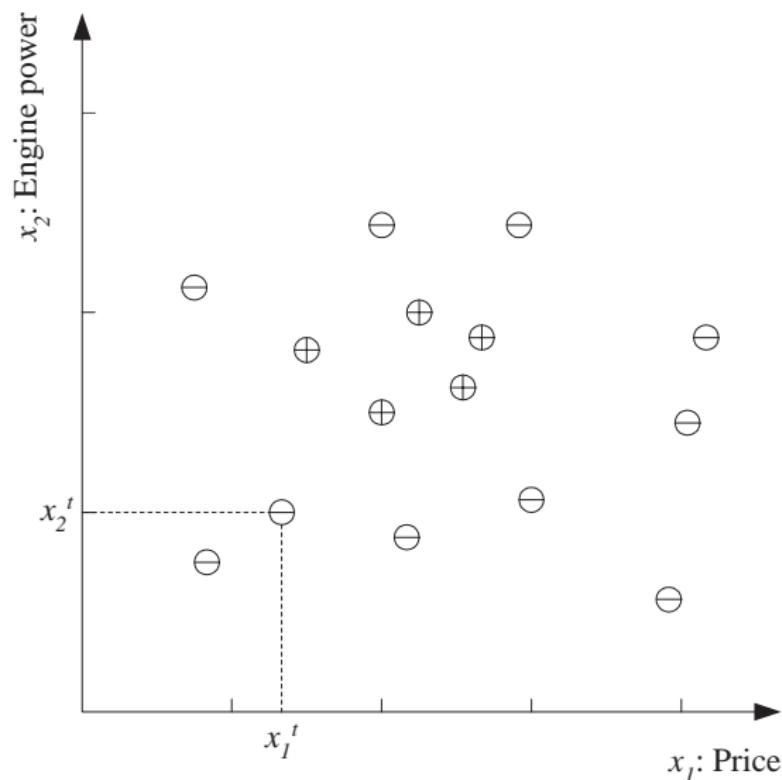
Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together



Thinking about C

- Can think of target concept C as a **function**
 - In example, C is an axis-parallel box, equivalent to upper and lower bounds on each attribute
 - Might decide to set \mathcal{H} (set of candidate hypotheses) to the same family that C comes from
 - Not required to do so
- Can also think of target concept C as a **set** of positive instances
 - In example, C the continuous set of all positive points in the plane
- Use whichever is convenient at the time

Thinking about C (cont'd)

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

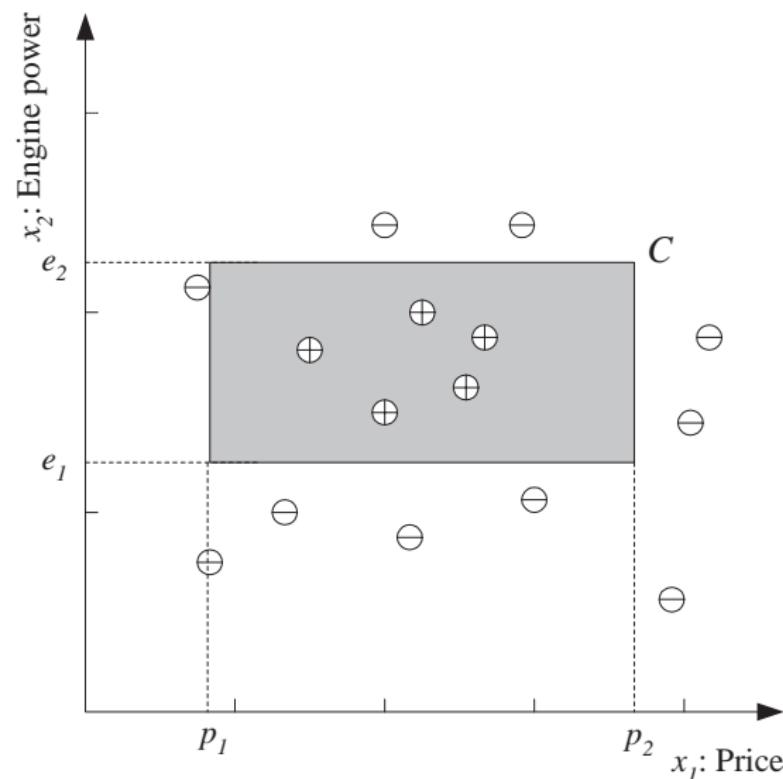
Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together



Hypotheses and Error

- A learning algorithm uses training set \mathcal{X} and finds a hypothesis $h \in \mathcal{H}$ that approximates C
- In example, \mathcal{H} can be set of all axis-parallel boxes
- If C guaranteed to come from \mathcal{H} , then we know that a perfect hypothesis exists
 - In this case, we choose h from the **version space** = subset of \mathcal{H} consistent with \mathcal{X}
 - What learning algorithm can you think of to learn C ?
- Can think of two types of **error** (or **loss**) of h
 - **Empirical error** is fraction of \mathcal{X} that h gets wrong
 - **Generalization error** is probability that a new, randomly selected, instance is misclassified by h
 - Depends on the probability distribution over instances
 - Can further classify error as **false positive** and **false negative**

Hypotheses and Error (cont'd)

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

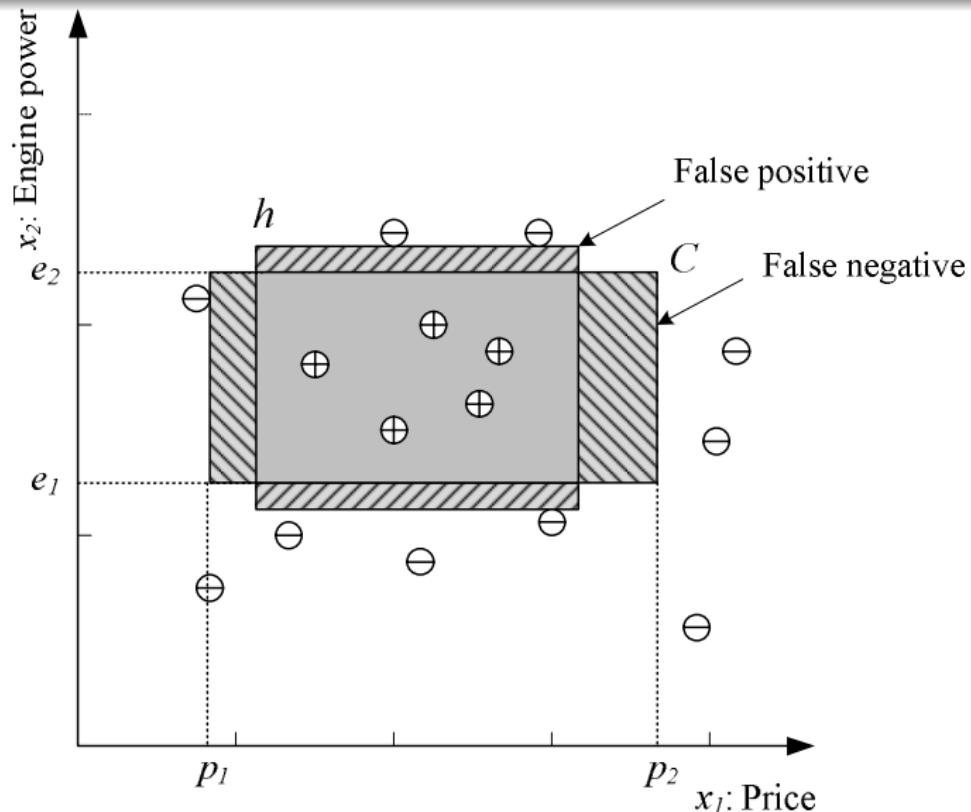
Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together



Linear Unit (Regression)

CSCE
496/896Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

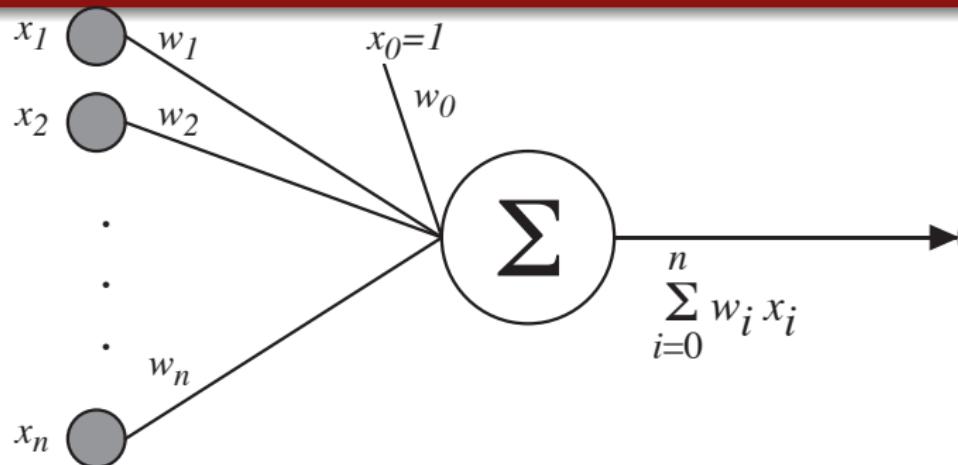
Linear Unit

Linear Threshold
UnitPerceptron Training
RuleGradient
DescentNonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things



$$\hat{y} = f(\mathbf{x}; \mathbf{w}, b) = \mathbf{x}^\top \mathbf{w} + b = w_1 x_1 + \cdots + w_n x_n + b$$

- Each weight vector \mathbf{w} is different h
- If set $w_0 = b$, can simplify above
- Forms the basis for many other activation functions

Linear Threshold Unit (Binary Classification)

CSCE
496/896Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

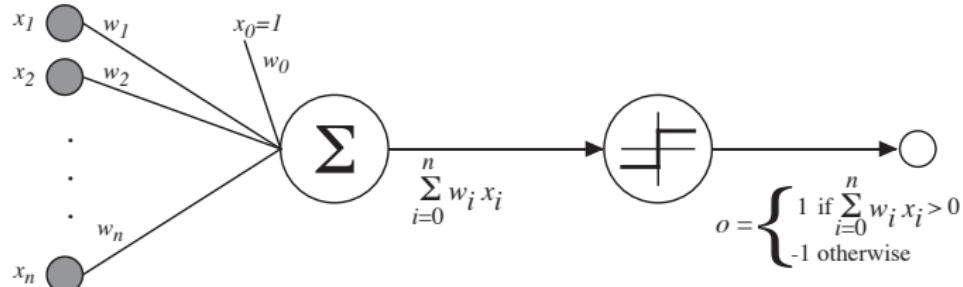
Linear Unit

Linear Threshold
UnitPerceptron Training
RuleGradient
DescentNonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things



$$y = o(\mathbf{x}; \mathbf{w}, b) = \begin{cases} +1 & \text{if } f(\mathbf{x}; \mathbf{w}, b) > 0 \\ -1 & \text{otherwise} \end{cases}$$

(sometimes use 0 instead of -1)

Linear Threshold Unit

Decision Surface

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Linear Unit

Linear Threshold
Unit

Perceptron Training
Rule

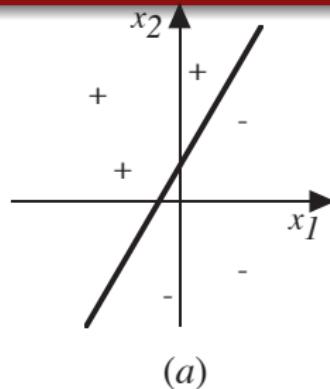
Gradient
Descent

Nonlinearly
Separable
Problems

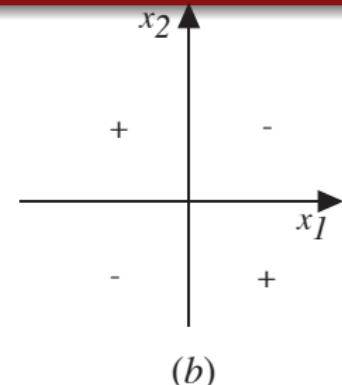
Backprop

Types of Units

Putting Things



(a)



(b)

Represents some useful functions

- What parameters (w, b) represent
 $g(x_1, x_2; w, b) = AND(x_1, x_2)$?

But some functions not representable

- I.e., those not **linearly separable**
- Therefore, we'll want **networks** of units

Linear Threshold Unit

Non-Numeric Inputs

CSCE
496/896Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Linear Unit

Linear Threshold
UnitPerceptron Training
RuleGradient
DescentNonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things

- What if attributes are not numeric?
- **Encode** them numerically
- E.g., if an attribute *Color* has values *Red*, *Green*, and *Blue*, can encode as **one-hot** vectors $[1, 0, 0]$, $[0, 1, 0]$, $[0, 0, 1]$
- Generally better than using a single integer, e.g., *Red* is 1, *Green* is 2, and *Blue* is 3, since there is no implicit ordering of the values of the attribute

Perceptron Training Rule (Learning Algorithm)

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction
Supervised
Learning
Basic Units
Linear Unit
Linear Threshold
Unit
Perceptron Training
Rule

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things

$$w_j' \leftarrow w_j + \eta (y^t - \hat{y}^t) x_j^t$$

where

- x_j^t is j th attribute of training instance t
- y^t is label of training instance t
- \hat{y}^t is Perceptron output on training instance t
- $\eta > 0$ is small constant (e.g., 0.1) called **learning rate**

I.e., if $(y - \hat{y}) > 0$ then increase w_j w.r.t. x_j , else decrease

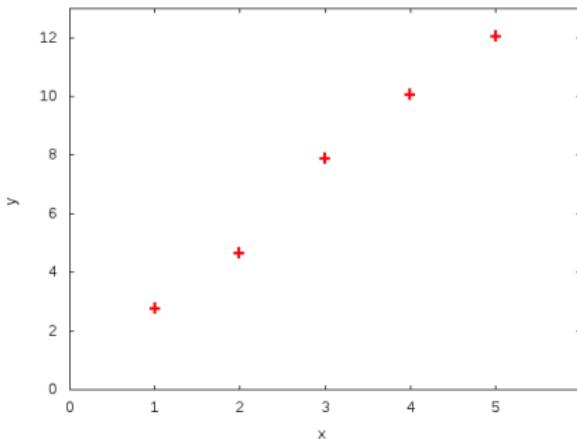
Can prove rule will converge if training data is linearly
separable and η sufficiently small

Where Does the Training Rule Come From?

Linear Regression

- Recall initial *linear unit* (no threshold)
- If only one feature, then this is a **regression** problem
- Find a straight line that best fits the training data
 - For simplicity, let it pass through the origin
 - Slope specified by parameter w_1

x^t	y^t
1	2.8
2	4.65
3	7.9
4	10.1
5	12.1



Where Does the Training Rule Come From?

Linear Regression

- Goal is to find a parameter w_1 to minimize **square loss**:

$$J(w_1) = \sum_{t=1}^m (\hat{y}^t - y^t)^2 = \sum_{t=1}^m (w_1 x^t - y^t)^2$$

$$\begin{aligned} &= (1w_1 - 2.8)^2 + (2w_1 - 4.65)^2 + (3w_1 - 7.9)^2 \\ &\quad + (4w_1 - 10.1)^2 + (5w_1 - 12.1)^2 \\ &= 55w_1^2 - 273.4w_1 + 340.293 \end{aligned}$$

Where Does the Training Rule Come From?

Convex Quadratic Optimization

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

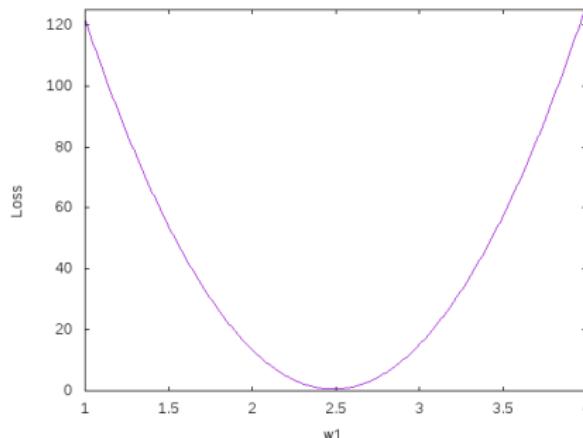
Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

$$J(w_1) = 55w_1^2 - 273.4w_1 + 340.293$$



- Minimum is at $w_1 \approx 2.485$, with loss ≈ 0.53
- What's special about that point?

Where Does the Training Rule Come From?

Gradient Descent

CSCE
496/896Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
DescentNonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

- Recall that a function has a (local) minimum or maximum where the derivative is 0

$$\frac{d}{dw_1} J(w_1) = 110w_1 - 273.4$$

- Setting this = 0 and solving for w_1 yields $w_1 \approx 2.485$
- Motivates the use of **gradient descent** to solve in high-dimensional spaces with nonconvex functions:

$$\mathbf{w}' = \mathbf{w} - \eta \nabla J(\mathbf{w})$$

- η is **learning rate** to moderate updates
- Gradient is a vector of partial derivatives: $\left[\frac{\partial J}{\partial w_i} \right]_{i=1}^n$

Where Does the Training Rule Come From?

Gradient Descent Example

- In our example, initialize w_1 , then repeatedly update

$$w'_1 = w_1 - \eta(110w_1 - 273.4)$$

eta	0.01			
round	w	J	grad	update
0	1	121.893	-163.4	1.634
1	2.634	1.74498	16.34	-0.1634
2	2.4706	0.5434998	-1.634	0.01634
3	2.48694	0.531485	0.1634	-0.001634
4	2.485306	0.53136485	-0.01634	0.0001634
5	2.4854694	0.53136365	0.001634	-1.634E-05
6	2.48545306	0.53136364	-0.0001634	1.634E-06
7	2.48545469	0.53136364	1.634E-05	-1.634E-07
8	2.48545453	0.53136364	-1.634E-06	1.634E-08
9	2.48545455	0.53136364	1.634E-07	-1.634E-09
10	2.48545455	0.53136364	-1.634E-08	1.634E-10
11	2.48545455	0.53136364	1.634E-09	-1.634E-11
12	2.48545455	0.53136364	-1.634E-10	1.6337E-12
13	2.48545455	0.53136364	1.6314E-11	-1.631E-13
14	2.48545455	0.53136364	-1.592E-12	1.5916E-14
15	2.48545455	0.53136364	0	0

- Could also update one at a time: $\frac{\partial J}{\partial w_1} = 2w_1(x^t)^2 - 2x^t y^t$

Where Does the Training Rule Come From?

Gradient Descent

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

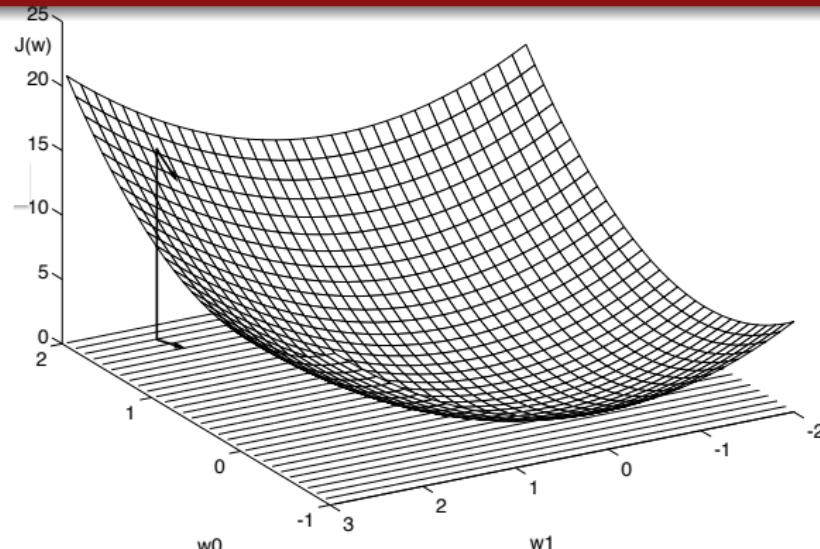
Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together



$$\frac{\partial J}{\partial \mathbf{w}} = \left[\frac{\partial J}{\partial w_0}, \frac{\partial J}{\partial w_1}, \dots, \frac{\partial J}{\partial w_n} \right]$$

In general, define loss function J , compute gradient of J w.r.t. J 's parameters, then apply gradient descent

Handling Nonlinearly Separable Problems

The XOR Problem

CSCE
496/896Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
DescentNonlinearly
Separable
Problems

XOR

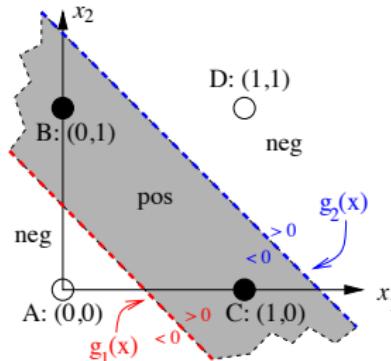
General Nonlinearly
Separable Problems

Backprop

Types of Units

Putting Things
Together
26/60

Using linear threshold units



Represent with **intersection** of two linear separators

$$g_1(\mathbf{x}) = 1 \cdot x_1 + 1 \cdot x_2 - 1/2$$

$$g_2(\mathbf{x}) = 1 \cdot x_1 + 1 \cdot x_2 - 3/2$$

$$\text{pos} = \{\mathbf{x} \in \mathbb{R}^2 : g_1(\mathbf{x}) > 0 \text{ AND } g_2(\mathbf{x}) < 0\}$$

$$\text{neg} = \{\mathbf{x} \in \mathbb{R}^2 : g_1(\mathbf{x}), g_2(\mathbf{x}) < 0 \text{ OR } g_1(\mathbf{x}), g_2(\mathbf{x}) > 0\}$$

Handling Nonlinearly Separable Problems

The XOR Problem (cont'd)

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised Learning

Basic Units

Gradient Descent

Nonlinearly Separable Problems

XOR

General Nonlinearly Separable Problems

Backprop

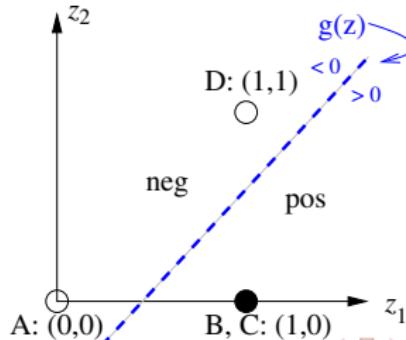
Types of Units

Putting Things Together

Let $z_i = \begin{cases} 0 & \text{if } g_i(x) < 0 \\ 1 & \text{otherwise} \end{cases}$

Class	(x_1, x_2)	$g_1(\mathbf{x})$	z_1	$g_2(\mathbf{x})$	z_2
pos	B: (0, 1)	1/2	1	-1/2	0
pos	C: (1, 0)	1/2	1	-1/2	0
neg	A: (0, 0)	-1/2	0	-3/2	0
neg	D: (1, 1)	3/2	1	1/2	1

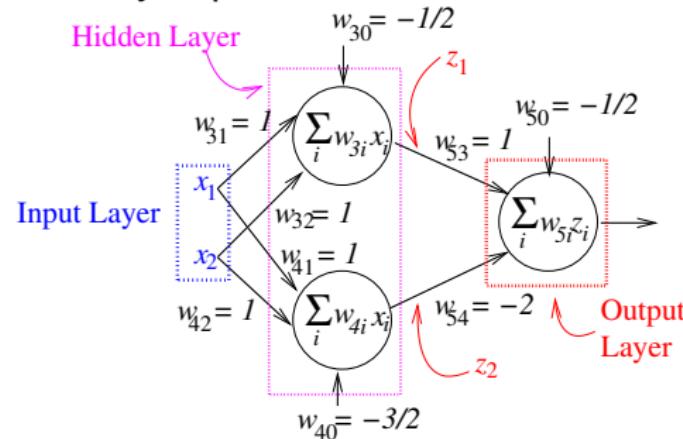
Now feed z_1, z_2 into $g(z) = 1 \cdot z_1 - 2 \cdot z_2 - 1/2$



Handling Nonlinearly Separable Problems

The XOR Problem (cont'd)

In other words, we **remapped** all vectors x to z such that the classes are linearly separable in the new vector space



This is a **two-layer perceptron** or **two-layer feedforward neural network**

Can use many **nonlinear** activation functions in hidden layer

Handling Nonlinearly Separable Problems

General Nonlinearly Separable Problems

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

XOR

General Nonlinearly
Separable Problems

Backprop

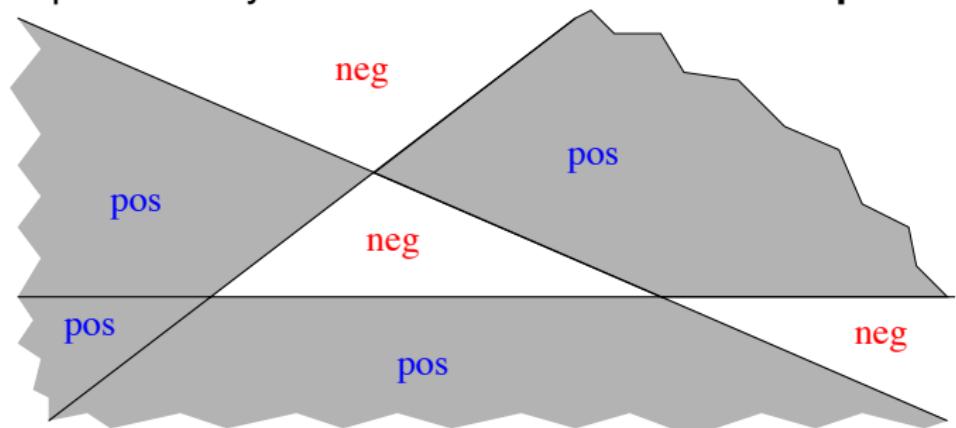
Types of Units

Putting Things

Together

29/60

By adding up to 2 **hidden layers** of linear threshold units,
can represent any **union of intersection of halfspaces**



First hidden layer defines halfspaces, second hidden layer takes intersection (AND), output layer takes union (OR)

Training Multiple Layers

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction
Supervised
Learning

Basic Units
Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Computation Graphs
Sigmoid Unit
Multilayer Networks
Training Multilayer
Networks
Backprop Alg

Types of Units

30/80

- In a multi-layer network, have to tune parameters in all layers
- In order to train, need to know the gradient of the loss function w.r.t. each parameter
- The **Backpropagation** algorithm first **feeds forward** the network's inputs to its outputs, then **propagates back** error via repeated application of **chain rule** for derivatives
- Can be decomposed in a simple, modular way

Computation Graphs

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction
Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Computation Graphs

Sigmoid Unit

Multilayer Networks

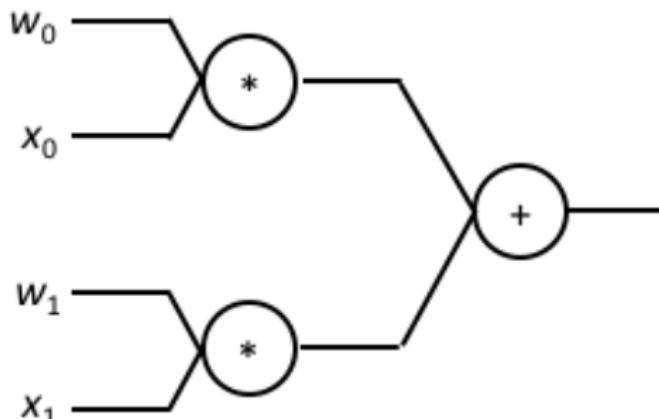
Training Multilayer
Networks

Backprop Alg

Types of Units

31/80

- Given a complicated function $f(\cdot)$, want to know its partial derivatives w.r.t. its parameters
- Will represent f in a modular fashion via a **computation graph**
- E.g., let $f(\mathbf{w}, \mathbf{x}) = w_0x_0 + w_1x_1$



Computation Graphs

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction
Supervised
Learning

Basic Units
Gradient
Descent

Nonlinearly
Separable
Problems

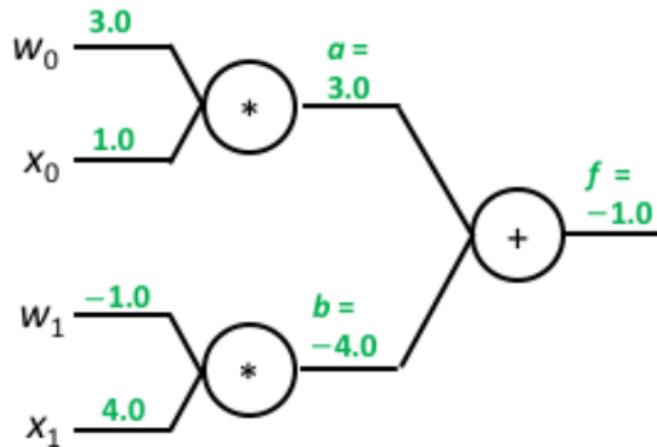
Backprop

Computation Graphs
Sigmoid Unit
Multilayer Networks
Training Multilayer
Networks
Backprop Alg

Types of Units

32/80

E.g., $w_0 = 3.0$, $w_1 = -1.0$, $x_0 = 1.0$, $x_1 = 4.0$



Computation Graphs

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Computation Graphs

Sigmoid Unit

Multilayer Networks

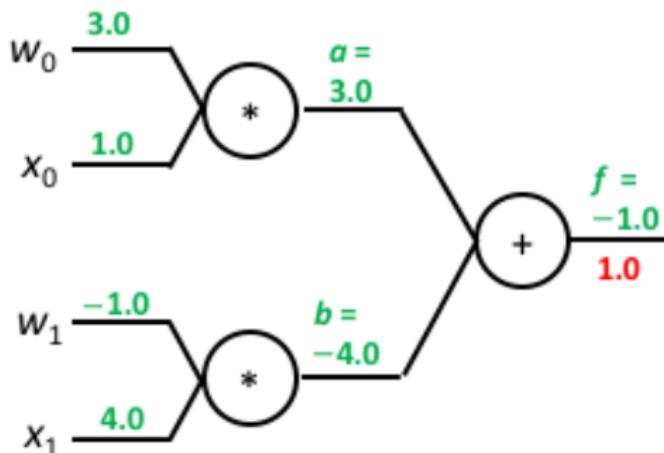
Training Multilayer
Networks

Backprop Alg

Types of Units

33/80

- So what?
- Can now decompose gradient calculation into basic operations
- $\frac{\partial f}{\partial f} = 1$



Computation Graphs

CSCE
496/896Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
DescentNonlinearly
Separable
Problems

Backprop

Computation Graphs

Sigmoid Unit

Multilayer Networks

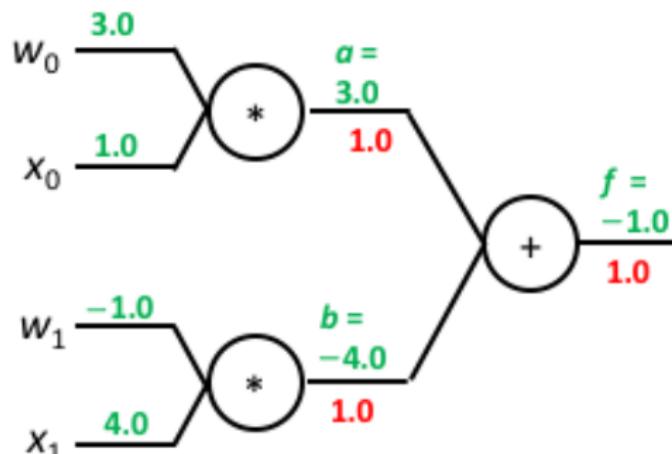
Training Multilayer
Networks

Backprop Alg

Types of Units

34/80

- If $g(y, z) = y + z$ then $\frac{\partial g}{\partial y} = \frac{\partial g}{\partial z} = 1$
- Via chain rule, $\frac{\partial f}{\partial a} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial a} = (1.0)(1.0) = 1.0$
- Same with $\frac{\partial f}{\partial b}$



Computation Graphs

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

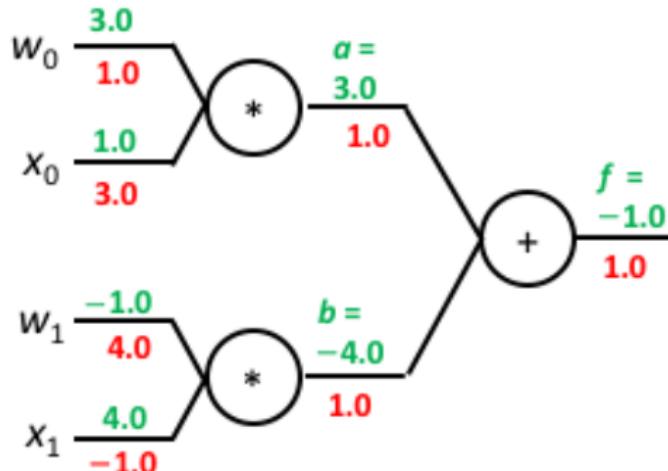
Stephen Scott

Introduction
Supervised
Learning
Basic Units
Gradient
Descent
Nonlinearly
Separable
Problems
Backprop

Computation Graphs
Sigmoid Unit
Multilayer Networks
Training Multilayer
Networks
Backprop Alg

Types of Units

- If $h(y, z) = yz$ then $\frac{\partial h}{\partial y} = z$
- Via chain rule, $\frac{\partial f}{\partial x_0} = \frac{\partial f}{\partial a} \frac{\partial a}{\partial x_0} = 1.0w_0 = 3.0$



So for $\mathbf{x} = [1.0, 4.0]^\top$, $\nabla f(\mathbf{w}) = [1.0, 4.0]^\top$

The Sigmoid Unit

Basics

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Computation Graphs

Sigmoid Unit

Multilayer Networks

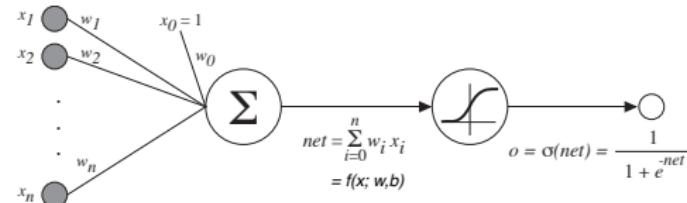
Training Multilayer
Networks

Backprop Alg

Types of Units

38/80

- How does this help us with multi-layer ANNs?
- First, let's replace the threshold function with a continuous approximation



$\sigma(net)$ is the **logistic function**

$$\sigma(net) = \frac{1}{1 + e^{-net}}$$

(a type of **sigmoid** function)

Squashes net into $[0, 1]$ range

The Sigmoid Unit

Computation Graph

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Computation Graphs

Sigmoid Unit

Multilayer Networks

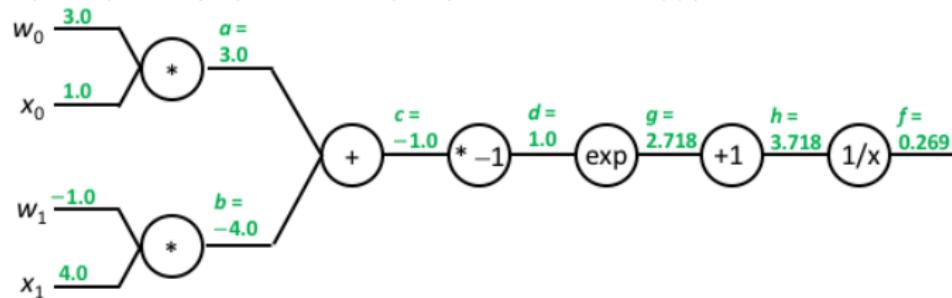
Training Multilayer
Networks

Backprop Alg

Types of Units

37/80

Let $f(\mathbf{w}, \mathbf{x}) = 1 / (1 + \exp(-(w_0x_0 + w_1x_1)))$



The Sigmoid Unit

CSCE
496/896Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
DescentNonlinearly
Separable
Problems

Backprop

Computation Graphs

Sigmoid Unit

Multilayer Networks

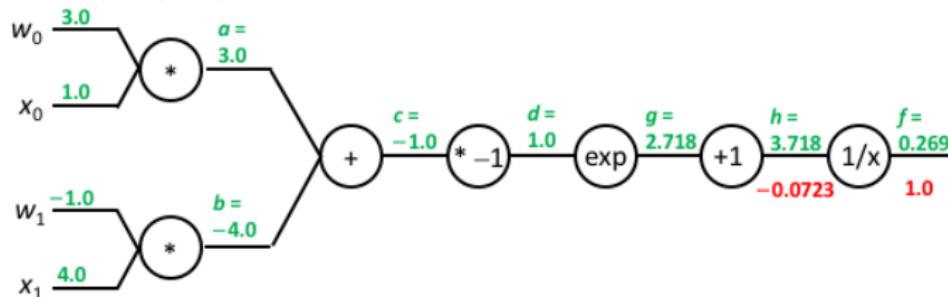
Training Multilayer
Networks

Backprop Alg

Types of Units

38/80

$$\frac{\partial f}{\partial h} = 1.0(-1/h^2) = -0.0723$$



The Sigmoid Unit

Gradient

CSCE
496/896Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
DescentNonlinearly
Separable
Problems

Backprop

Computation Graphs

Sigmoid Unit

Multilayer Networks

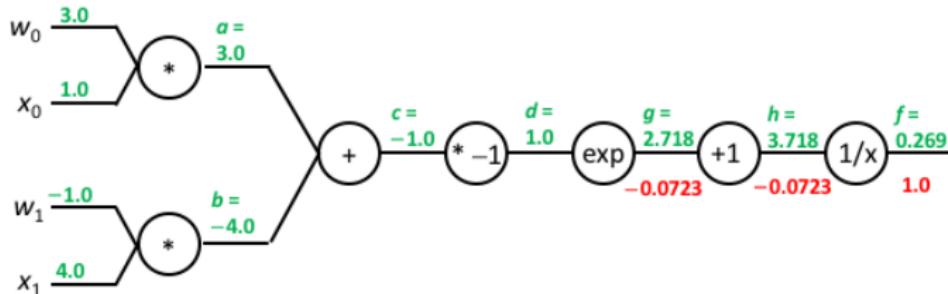
Training Multilayer
Networks

Backprop Alg

Types of Units

39/80

$$\frac{\partial f}{\partial g} = \frac{\partial f}{\partial h} \frac{\partial h}{\partial g} = -0.0723(1) = -0.0723$$



The Sigmoid Unit Gradient

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Computation Graphs

Sigmoid Unit

Multilayer Networks

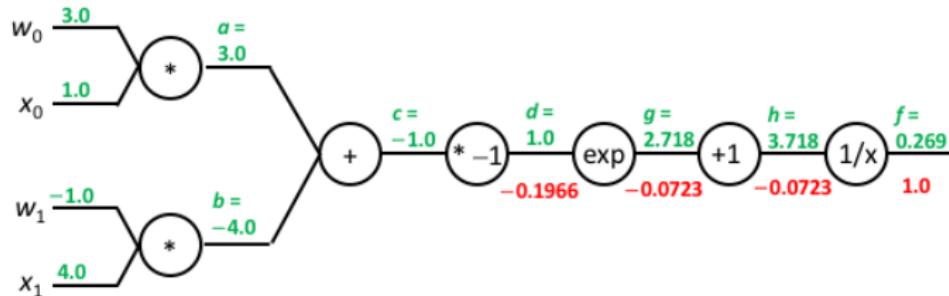
Training Multilayer
Networks

Backprop Alg

Types of Units

40/80

$$\frac{\partial f}{\partial d} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial d} = -0.0723 \exp(d) = -0.1966$$



The Sigmoid Unit

Gradient

CSCE
496/896Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
DescentNonlinearly
Separable
Problems

Backprop

Computation Graphs

Sigmoid Unit

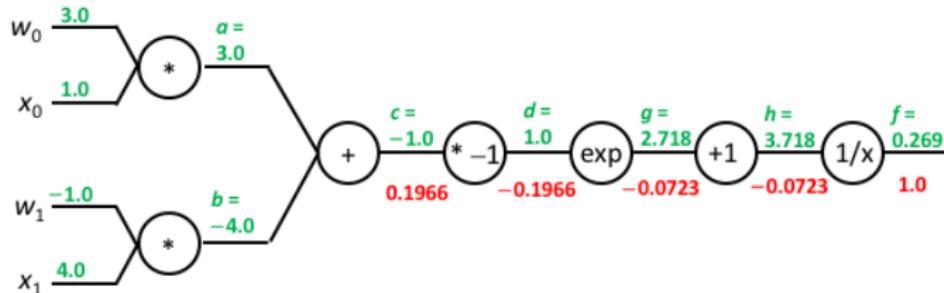
Multilayer Networks

Training Multilayer
Networks

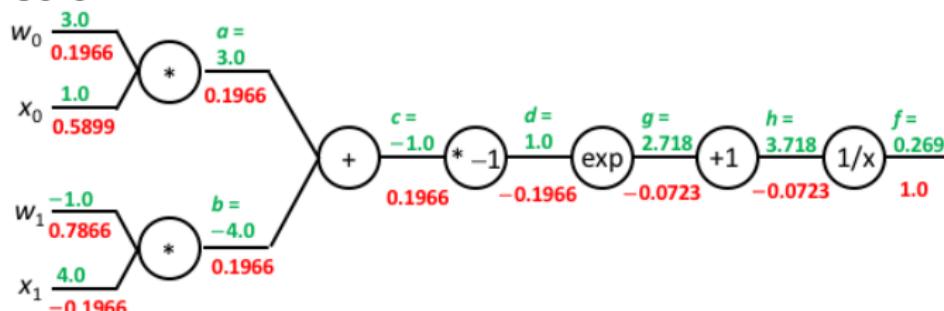
Backprop Alg

Types of Units

$$\frac{\partial f}{\partial c} = \frac{\partial f}{\partial d} \frac{\partial d}{\partial c} = -0.1966(-1) = 0.1966$$



and so on:



So for $\mathbf{x} = [1.0, 4.0]^\top$, $\nabla f(\mathbf{w}) = [0.1966, 0.7866]^\top$

The Sigmoid Unit

Gradient

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Computation Graphs

Sigmoid Unit

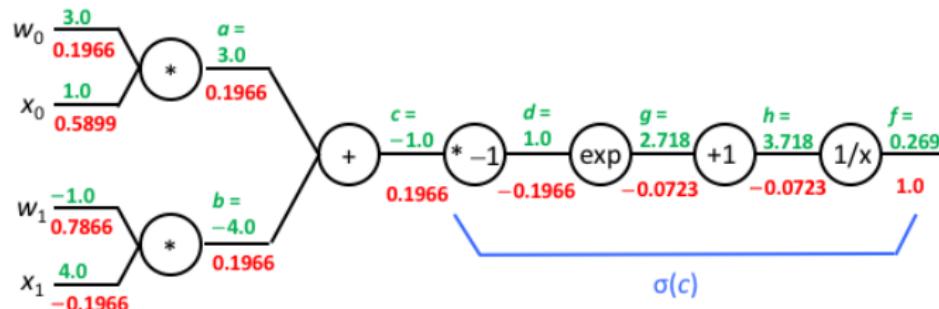
Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

42/80



Note that $\frac{\partial f}{\partial c} = \sigma(c)(1 - \sigma(c))$, so

$$\frac{\partial f}{\partial w_1} = \frac{\partial f}{\partial c} \frac{\partial c}{\partial b} \frac{\partial b}{\partial w_1} = \sigma(c)(1 - \sigma(c))(1)x_1$$

Sigmoid Unit

Weight Update

CSCE
496/896Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
DescentNonlinearly
Separable
Problems

Backprop

Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

45/80

- If $\hat{y}^t = \sigma(\mathbf{w} \cdot \mathbf{x}^t)$ is prediction on training instance \mathbf{x}^t with label y^t , let loss be $J(\mathbf{w}) = \frac{1}{2} (\hat{y}^t - y^t)^2$, so

$$\begin{aligned}\frac{\partial J(\mathbf{w})}{\partial w_1} &= (\hat{y}^t - y^t) \left(\frac{\partial}{\partial w_1} (\hat{y}^t - y^t) \right) \\ &= (\hat{y}^t - y^t) \left(\frac{\partial}{\partial w_1} \hat{y}^t \right) \\ &= (\hat{y}^t - y^t) (\hat{y}^t (1 - \hat{y}^t) x_1^t)\end{aligned}$$

- So update rule is

$$w'_1 = w_1 - \eta \hat{y}^t (1 - \hat{y}^t) (\hat{y}^t - y^t) x_1^t$$

- In general,

$$\mathbf{w}' = \mathbf{w} - \eta \hat{y}^t (1 - \hat{y}^t) (\hat{y}^t - y^t) \mathbf{x}^t$$

Multilayer Networks

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
DescentNonlinearly
Separable
Problems

Backprop

Computation Graphs
Sigmoid Unit

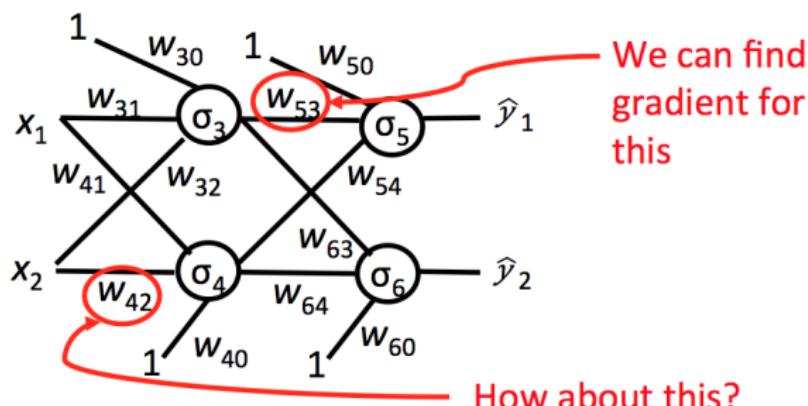
Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

- That update formula works for **output units** when we know the target labels y^t (here, a vector to encode **multi-class** labels)
- But for a **hidden unit**, we don't know its target output!

 w_{ji} = weight from node i to node j

Training Multilayer Networks

Output Units

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

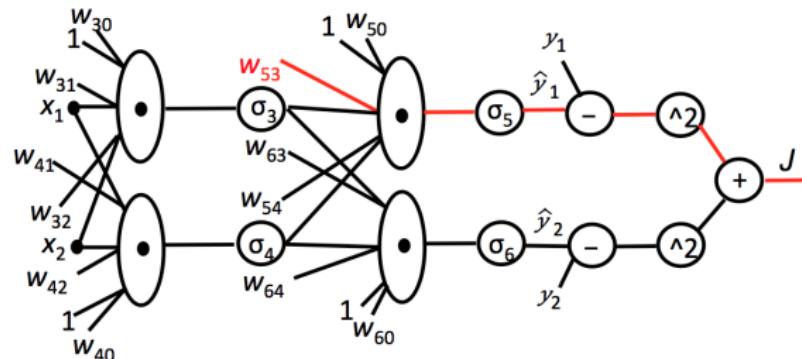
Backprop

Computation Graphs
Sigmoid Unit
Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units



- Let loss on instance $(\mathbf{x}^t, \mathbf{y}^t)$ be $J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^n (\hat{y}_i^t - y_i^t)^2$
- Weights w_{5*} and w_{6*} tie to output units
- Gradients and weight updates done as before
- E.g., $w'_{53} = w_{53} - \eta \frac{\partial J}{\partial w_{53}} = w_{53} - \eta \hat{y}_1(1 - \hat{y}_1)(\hat{y}_1 - y_1)\sigma_3$

Training Multilayer Networks

Hidden Units

CSCE 496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

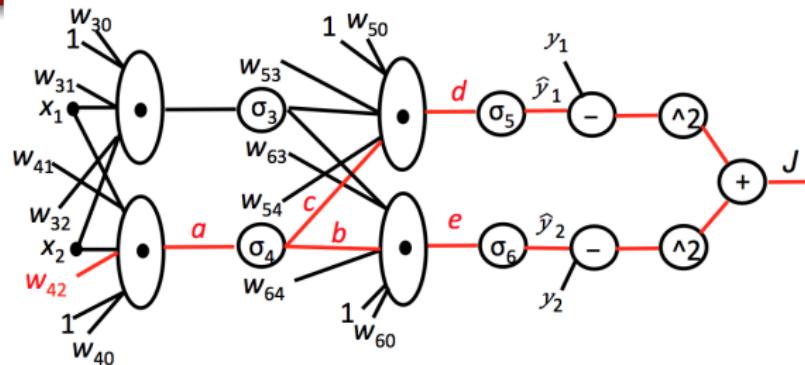
Computation Graphs
Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units



Multivariate chain rule says we sum paths from J to w_{42} :

$$\begin{aligned}
 \frac{\partial J}{\partial w_{42}} &= \frac{\partial J}{\partial a} \frac{\partial a}{\partial w_{42}} = \left(\frac{\partial J}{\partial c} \frac{\partial c}{\partial a} + \frac{\partial J}{\partial b} \frac{\partial b}{\partial a} \right) \frac{\partial a}{\partial w_{42}} \\
 &= \left(\frac{\partial J}{\partial d} \frac{\partial d}{\partial c} \frac{\partial c}{\partial a} + \frac{\partial J}{\partial e} \frac{\partial e}{\partial b} \frac{\partial b}{\partial a} \right) \frac{\partial a}{\partial w_{42}} \\
 &= ([\hat{y}_1(1 - \hat{y}_1)(\hat{y}_1 - y_1)] [w_{54}] [\sigma_4(a)(1 - \sigma_4(a))]) \\
 &+ [\hat{y}_2(1 - \hat{y}_2)(\hat{y}_2 - y_2)] [w_{64}] [\sigma_4(a)(1 - \sigma_4(a))] x_2
 \end{aligned}$$

Training Multilayer Networks

Hidden Units

CSCE
496/896Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
DescentNonlinearly
Separable
Problems

Backprop

Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

- Analytical solution is messy, but we don't need the formula; only need to **compute** gradient
- The modular form of a computation graph means that once we've computed $\frac{\partial J}{\partial d}$ and $\frac{\partial J}{\partial e}$, we can plug those values in and compute gradients for earlier layers
 - Doesn't matter if layer is output, or farther back; can run indefinitely backward
- **Backpropagation** of error from outputs to inputs
- Define **error term** of hidden node h as

$$\delta_h \leftarrow \hat{y}_h (1 - \hat{y}_h) \sum_{k \in \text{down}(h)} w_{k,h} \delta_k ,$$

where \hat{y}_k is output of node k and $\text{down}(h)$ is set of nodes immediately downstream of h

- Note that this formula is specific to sigmoid units

Training Multilayer Networks

Hidden Units

CSCE
496/896Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
DescentNonlinearly
Separable
Problems

Backprop

Computation Graphs
Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

46/80

- We are **propagating back** error terms δ from output layer toward input layers, scaling with the weights
- Scaling with the weights characterizes how much of the error term each hidden unit is “responsible for”
- Process:
 - 1 Submit inputs \mathbf{x}
 - 2 **Feed forward** signal to outputs
 - 3 Compute network loss
 - 4 Propagate error back to compute loss gradient w.r.t. each weight
 - 5 Update weights

Backpropagation Algorithm

Sigmoid Activation Units and Square Loss

CSCE
496/896Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
DescentNonlinearly
Separable
Problems

Backprop

Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

Initialize weights

Until termination condition satisfied do

- For each training example (x^t, y^t) do
 - 1 Input x^t to the network and compute the outputs \hat{y}^t
 - 2 For each output unit k

$$\delta_k^t \leftarrow \hat{y}_k^t (1 - \hat{y}_k^t) (y_k^t - \hat{y}_k^t)$$

- 3 For each hidden unit h

$$\delta_h^t \leftarrow \hat{y}_h^t (1 - \hat{y}_h^t) \sum_{k \in \text{down}(h)} w_{k,h}^t \delta_k^t$$

- 4 Update each network weight $w_{j,i}^t$

$$w_{j,i}^t \leftarrow w_{j,i}^t + \Delta w_{j,i}^t$$

where $\Delta w_{j,i}^t = \eta \delta_j^t x_{j,i}^t$ and $x_{j,i}^t$ is signal sent from node i to node j

Backpropagation Algorithm

Notes

CSCE
496/896Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
DescentNonlinearly
Separable
Problems

Backprop

Computation Graphs

Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types of Units

50/80

- Formula for δ assumes sigmoid activation function
 - Straightforward to change to new activation function via computation graph
- Initialization used to be via random numbers near zero, e.g., from $\mathcal{N}(0, 1)$
 - More refined methods available (later)
- Algorithm as presented updates weights after each instance
 - Can also accumulate $\Delta w_{j,i}^t$ across multiple training instances in the same **mini-batch** and do a single update per mini-batch
 - ⇒ **Stochastic gradient descent (SGD)**
- Extreme case: Entire training set is a single batch **(batch gradient descent)**

Types of Output Units

CSCE
496/896Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
DescentNonlinearly
Separable
Problems

Backprop

Types of Units

Types of Output
UnitsTypes of Hidden
UnitsPutting Things
Together

Given hidden layer outputs \mathbf{h}

- Linear unit: $\hat{y} = \mathbf{w}^\top \mathbf{h} + b$
 - Minimizing square loss with this output unit maximizes **log likelihood** when labels from normal distribution
 - I.e., find a set of parameters θ that is most likely to generate the labels of the training data
 - Works well with GD training
- Sigmoid: $\hat{y} = \sigma(\mathbf{w}^\top \mathbf{h} + b)$
 - Approximates non-differentiable threshold function
 - More common in older, shallower networks
 - Can be used to predict probabilities
- Softmax unit: Start with $z = \mathbf{W}^\top \mathbf{h} + b$
 - Predict probability of label i to be
$$\text{softmax}(z)_i = \exp(z_i) / \left(\sum_j \exp(z_j) \right)$$
 - Continuous, differentiable approximation to argmax

Types of Hidden Units

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

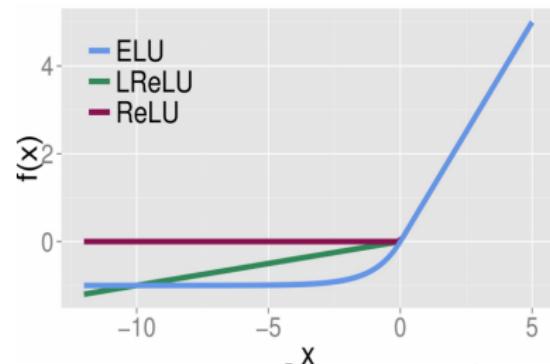
Types of Output
Units

Types of Hidden
Units

Putting Things
Together

Rectified linear unit (ReLU): $\max\{0, W^\top \mathbf{x} + b\}$

- Good default choice
- In general, GD works well when functions nearly linear
- Variations: **leaky ReLU** and **exponential ReLU** replace $z < 0$ side with $0.01z$ and $\alpha(\exp(z) - 1)$, respectively



Logistic sigmoid (done already) and tanh

- Nice approximation to threshold, but don't train well in deep networks since they saturate

Putting Everything Together

Hidden Layers

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction
Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

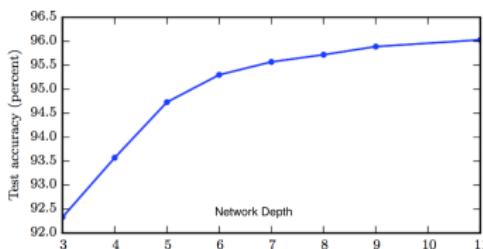
Types of Units

Putting Things
Together

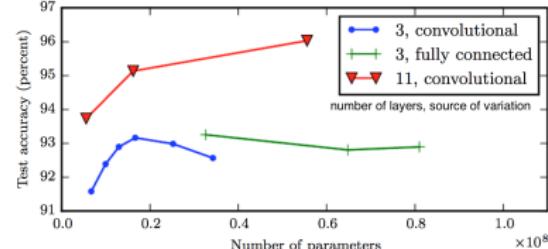
How many layers to use?

- Deep networks build potentially useful representations of data via composition of simple functions
- Performance improvement not simply from more complex network (number of parameters)
- Increasing number of layers still increases chances of overfitting, so need significant amount of training data with deep network; training time increases as well

Accuracy vs Depth



Accuracy vs Complexity



Putting Everything Together

Universal Approximation Theorem

CSCE
496/896Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
DescentNonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

- Any boolean function can be represented with two layers
- Any bounded, continuous function can be represented with arbitrarily small error with two layers
- Any function can be represented with arbitrarily small error with three layers

Only an **EXISTENCE PROOF**

- Could need exponentially many nodes in a layer
- May not be able to find the right weights
- Highlights risk of overfitting and need for **regularization**

Putting Everything Together

Initialization

CSCE
496/896Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
DescentNonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

- Previously, initialized weights to random numbers near 0 (from $\mathcal{N}(0, 1)$)
 - Sigmoid nearly linear there, so GD expected to work better
 - But in deep networks, this increases variance per layer, resulting in **vanishing gradients** and poor optimization
- Glorot initialization** controls variance per layer: If layer has n_{in} inputs and n_{out} outputs, initialize via uniform over $[-r, r]$ or $\mathcal{N}(0, \sigma)$
 - $r = a\sqrt{\frac{6}{n_{in} + n_{out}}}$ and $\sigma = a\sqrt{\frac{2}{n_{in} + n_{out}}}$

Activation	a
Logistic	1
tanh	4
ReLU	$\sqrt{2}$

Putting Everything Together

Optimizers

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

Putting Everything Together

Momentum Optimization

- Use a **momentum** term β to keep updates moving in same direction as previous trials
- Replace original GD update $\mathbf{w}' = \mathbf{w} - \eta \nabla J(\mathbf{w})$ with

$$\mathbf{w}' = \mathbf{w} - \mathbf{m} ,$$

where

$$\mathbf{m} = \beta \mathbf{m} + \eta \nabla J(\mathbf{w})$$

- Using sigmoid activation and square loss, replace $\Delta w_{ji}^t = \eta \delta_j^t x_{ji}^t$ with

$$\Delta w_{ji}^t = \eta \delta_j^t x_{ji}^t + \beta \Delta w_{ji}^{t-1}$$

- Can help move through small local minima to better ones & move along flat surfaces

Putting Everything Together

AdaGrad

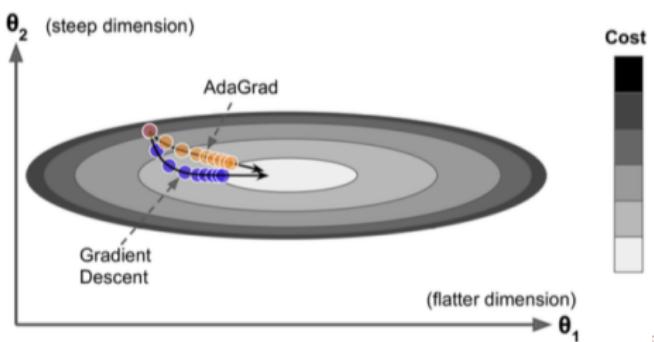
- Standard GD can too quickly descend steepest slope, then slowly crawl through a valley
- AdaGrad** adapts learning rate by scaling it down in steepest dimensions:

$$\mathbf{w}' = \mathbf{w} - \eta \nabla J(\mathbf{w}) \oslash \sqrt{\mathbf{s} + \epsilon}, \text{ where}$$

$$\mathbf{s} = \mathbf{s} + \nabla J(\mathbf{w}) \otimes \nabla J(\mathbf{w})$$

\otimes and \oslash are element-wise multiplication and division and $\epsilon = 10^{-10}$ prevents division by 0

\mathbf{s} accumulates squares of gradient, and learning rate for each dimension scaled down



Putting Everything Together

RMSProp

CSCE
496/896Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
DescentNonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

- AdaGrad tends to stop too early for neural networks due to over-aggressive downscaling
- RMSProp** exponentially decays old gradients to address this

$$\mathbf{w}' = \mathbf{w} - \eta \nabla J(\mathbf{w}) \oslash \sqrt{\mathbf{s} + \epsilon} \ ,$$

where

$$\mathbf{s} = \beta \mathbf{s} + (1 - \beta) \nabla J(\mathbf{w}) \otimes \nabla J(\mathbf{w})$$

Putting Everything Together

Adam

Adam (adaptive moment estimation) combines Momentum optimization and RMSProp

$$① \quad \mathbf{m} = \beta_1 \mathbf{m} + (1 - \beta_1) \nabla J(\mathbf{w})$$

$$② \quad \mathbf{s} = \beta_2 \mathbf{s} + (1 - \beta_2) \nabla J(\mathbf{w}) \otimes \nabla J(\mathbf{w})$$

$$③ \quad \mathbf{m} = \mathbf{m} / (1 - \beta_1^t)$$

$$④ \quad \mathbf{s} = \mathbf{s} / (1 - \beta_2^t)$$

$$⑤ \quad \mathbf{w}' = \mathbf{w} - \eta \mathbf{m} \oslash \sqrt{\mathbf{s} + \epsilon}$$

- Iteration counter t used in 3 and 4 to prevent \mathbf{m} and \mathbf{s} from vanishing
- Can set $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 10^{-8}$