A Introduction

BN Supervised Learning

Nebiaska

Lincoln

CSCE CSCE
496/896 496/896
Lecture 2: Lecture 2:

Nl CSCE 496/896 Lecture 2: Nl
Networks Networks

Stephen Scolt Basic Artificial Neural Networks Stephen Scott @ Supervised learning is most fundamental, “classic”
ntroduction Inirodiction form of machine learning
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Consider humans:

Stephen Scott

oG @ Total number of neurons ~ 10'° nroduction @ Many “neuron-like” switching units

Superand @ Neuron switching time ~ 1073 second (vs. 10719) Supervised @ Many weighted interconnections among units

Basio Units @ Connections per neuron =~ 10*-10° Basio Units @ Highly parallel, distributed process

Gradert @ Scene recognition time ~ 0.1 second Gyt @ Emphasis on tuning weights automatically

Nonlinearl - i ’ i Nonlinearl X

Sty 100 lr.lference steps doesn.t seem like enough S Strong differences between ANNs for ML and ANNSs for
Problems = massive parallel computation Problems biological modeling

Backprop Backprop

Types of Units Types of Units

Putting Things
Together

Putting Things
Together

3/60 4/60

Weeet=l \When to Consider ANNs Rt Introduction

Lincoln E  Histo ry of ANNs

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

CSCE
496/896
Lecture 2:
Basic Artificial
Neural

Networks @ The Beginning: Linear units and the Perceptron

Input is high-dimensional discrete- or real-valued (e.g., Soonon s algorithm (1940s)
tephen Scott

raw sensor input)
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o e Spoiler Alert: stagnated because of inability to handle

o] @ Output is discrete- or real-valued - data not linearly separable
S @ Output is a vector of values o ° Avsﬁre_of usefulness of multi-layer networks, but could
Basic Units B B Basic Units not train

@ Possibly noisy data - . .
Gradient y y o Gradient @ The Comeback: Training of multi-layer networks with
peseell @ Form of target function is unknown Descent Backpropagation (1980s)
Nonlinearl - . . Nonlinearl . . .
S @ Human readability of result is unimportant S o Many applications, but in 1990s replaced by
Problems Problems .

@ Long training times acceptable large-margin approaches such as support vector

Backprop Backprop

machines and boosting
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cture @ The Resurgence: Deep architectures (2000s)
e o Better hardware' and software support allow for deep
Networks (> 5-8 layers) networks
o Still use Backpropagation, but
@ Larger datasets, algorithmic improvements (new loss
and activation functions), and deeper networks improve
performance considerably

o Very impressive applications, e.g., captioning images

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems
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o Oops
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et @ Let C be the target function (or target concept) to be
asic Artificial
Neural learned
etwors @ Think of C as a function that takes as input an example
(or instance) and outputs a label
@ Goal: Given training set X' = {(x',)")}".; where
y' = C(x"), output hypothesis € # that approximates
Cin its classifications of new instances
@ Each instance x represented as a vector of attributes
or features
o E.g., let each x = (x;,x,) be a vector describing
attributes of a car; x; = price and x, = engine power
o In this example, label is binary (positive/negative,
yes/no, 1/0, +1/—1) indicating whether instance x is a
“family car”
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@ Can think of target concept C as a function

o In example, C is an axis-parallel box, equivalent to
upper and lower bounds on each attribute

o Might decide to set H (set of candidate hypotheses) to
the same family that C comes from

o Not required to do so
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Gradient @ Can also think of target concept C as a set of positive
Descent instances

ggsg."aeﬁgy o In example, C the continuous set of all positive points in
Problems the plane

Backprop

. @ Use whichever is convenient at the time
ypes of Units
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Backprop @ Types of activation functions

Types of Units

Putting Things Putting everything together
Together

8/60

Nebiaska

Lincoln

Learning from Examples (cont'd)

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

x,: Engine power

)
)

Introduction

Supervised

Learning (&) D [S)
Basic Units 52}

Gradient
Descent

Nonlinearly Xy
Separable
Problems @ H

Backprop : ©
Types of Units |

Putting Things 1 ‘ -
Together

x,: Price
10/60

Nebiaska

Lincoln

Thinking about C (cont'd)

CSCE
496/896
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

x,: Engine power

o
a

Introduction

’ g

Supervised

Learning (&) @D )
Basic Units D

Gradient
Descent €,

Nonlinearly = S} ©
Separable [S)
Problems 22}

Backprop S]

Types of Units

Putting Things 1 | -
Together 1’/ P

12/60



Nebiaska

Lincoln

Hypotheses and Error

CSCE
496/896

ey @ A learning algorithm uses training set A and finds a
Basic Artfcial hypothesis € # that approximates C
Networks i
@ In example, H can be set of all axis-parallel boxes
@ If C guaranteed to come from #, then we know that a
perfect hypothesis exists
o In this case, we choose & from the version space =
subset of H consistent with X
e What learning algorithm can you think of to learn C?
@ Can think of two types of error (or loss) of &
o Empirical error is fraction of X that i gets wrong
o Generalization error is probability that a new,
randomly selected, instance is misclassified by &
@ Depends on the probability distribution over instances
o Can further classify error as false positive and false
negative
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Gradient
Descent

Nonlinearly

Separable @ Each weight vector w is different
@ If set wy = b, can simplify above
@ Forms the basis for many other activation functions
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Represents some useful functions

Linear Threshold
Unit

n @ What parameters (w, b) represent
e g(x1,x2;w,b) = AND(x1,%2)7?

Descent
Nonlinearly
Separable
Problems

But some functions not representable

Backprop

@ l.e., those not linearly separable
@ Therefore, we’ll want networks of units
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Lif X w. x:>0
0= i=0 171

-1 otherwise

o [ 41 iffew,b) >0
y=olx;w,b) = { —1 otherwise

(sometimes use 0 instead of —1)
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@ What if attributes are not numeric?
@ Encode them numerically

Stephen Scott

Introduction

@ E.g., if an attribute Color has values Red, Green, and
Blue, can encode as one-hot vectors [1,0,0], [0, 1,0],
[0,0,1]

@ Generally better than using a single integer, e.g., Red is
1, Green'is 2, and Blue is 3, since there is no implicit
ordering of the values of the attribute
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Perceptron Training Rule (Learning Algorithm)

Wi wy (= 3
where

@ x}is jth attribute of training instance ¢

@ ' is label of training instance ¢

@ ' is Perceptron output on training instance ¢

@ 7 > 0is small constant (e.g., 0.1) called learning rate
le., if (y —y) > 0 then increase w; w.r.t. x;, else decrease

Can prove rule will converge if training data is linearly
separable and 7 sufficiently small

Where Does the Training Rule Come From?

Linear Regression

m

Son) = 30 () = 3 (e )’

=1 =1
= (1w; —2.8)% + (2w, — 4.65)* + (3w; — 7.9)*
+(4wy — 10.1)% 4 (5wy — 12.1)2
= 55w% — 273.4w; + 340.293

Where Does the Training Rule Come From?

Gradient Descent

@ Recall that a function has a (local) minimum or
maximum where the derivative is 0

@ Goal is to find a parameter w; to minimize square loss:

@ Setting this = 0 and solving for w; yields w; ~ 2.485

@ Motivates the use of gradient descent to solve in
high-dimensional spaces with nonconvex functions:

@ 7 is learning rate to moderate updates

@ Gradient is a vector of partial derivatives: [

J(Wl) = 110W1 —273.4

dwy

w =w—nVJ(w)

aJ

ow;

]n
i=1
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Where Does the Training Rule Come From?

Linear Regression

@ Recall initial /inear unit (no threshold)
@ If only one feature, then this is a regression problem
@ Find a straight line that best fits the training data

e For simplicity, let it pass through the origin

o Slope specified by parameter w,

12 +
10 +

8 +

6

+
4
+
2
0
o 1 2 3 4 5 6

Where Does the Training Rule Come From?

Convex Quadratic Optimization

J(wi) = 55w — 273.4w; + 340.293
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@ Minimum is at wy ~ 2.485, with loss ~ 0.53
@ What'’s special about that point?

Where Does the Training Rule Come From?

Gradient Descent Example

@ In our example, initialize wy, then repeatedly update

wi = w; —n(110w; — 273.4)

eta

0.01

round

0
1
2
k]
4

w ]
1 121893

2634 174498
24706 05434998
248694 0531485
2.485306 0.53136485

5 24854694 053136365
6 248545306 053136364
7 248545469 053136364
8 2.48545453 0.53136364
9 248545455 0.53136364
10 2.48545455 0.53136364
11 2.48545455 0.53136364
12 248545455 0.53136364
13 2.48545455 0.53136364
14 248545455 0.53136364
15 2.48545455 0.53136364

@ Could also update one at a time:

grad
-163.4
1634
-1.634
0.1634
-0.01634
0001634
-0.0001634
1.634E-05
-1.634E-06
1.634€-07
-1.634E-08
1.634E-09
-1.634E-10
16314E-11
-1.592E-12
[}

Ow

update
1634
0.1634
001634
-0.001634
00001634
-1634E-05
1634606
-1634E.07
1634608
-1634E-09
1634610
-1634E-11
16337612
1631613
1.5916E-14
[

DL _ 9y (x)? — 241y
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Handling Nonlinearly Separable Problems
The XOR Problem (contd)

Handling Nonlinearly Separable Problems

General Nonlinearly Separable Problems

Where Does the Training Rule Come From?

Gradient Descent
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In general, define loss function J, compute gradient of J

w.r.t. J's parameters, then apply gradient descent

Lotz — 0 Ifg,-(x).<0
1 otherwise
Class  (x1,x) | g1(x) z1 | 2(x) =
pos B:(0,1)| 1/2 1|-1/2 0
pos C:(1,0)| 1/2 1]-1/2 0
neg A:(0,0)| -1/2 0| -3/2 0
neg D:(1,1)| 3/2 1] 1/2 1
Now feed z;, o into g(z) = 1-21 — 220 — 1/2
@ 2(2)
<0 7

D:él,]) et

By adding up to 2 hidden layers of linear threshold units,
can represent any union of intersection of halfspaces

pos neg
pos

First hidden layer defines halfspaces, second hidden layer
takes intersection (AND), output layer takes union (OR)
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Handling Nonlinearly Separable Problems
The XOR Problem

Using linear threshold units

a2

A:00) ,/”\“eo C:(10
<N

g0 <IN

Represent with intersection of two linear separators
gix)=1-x1+1-x0—1/2
ox)=1-x+1-x-3/2

pos = {x € R?: gi(x) > 0 AND g5(x) < 0}

neg = {x e R? 1 21(x), 22(x) <0 OR gi(x), g2(x) > O}

Handling Nonlinearly Separable Problems
The XOR Problem (contd)

In other words, we remapped all vectors x to z such that the

classes are linearly separable in the new vector space
wy= —1/2

Hidden Layer

This is a two-layer perceptron or two-layer feedforward
neural network

Can use many nonlinear activation functions in hidden layer

Training Multiple Layers

@ In a multi-layer network, have to tune parameters in all
layers

@ In order to train, need to know the gradient of the loss
function w.r.t. each parameter

@ The Backpropagation algorithm first feeds forward
the network’s inputs to its outputs, then propagates
back error via repeated application of chain rule for
derivatives

@ Can be decomposed in a simple, modular way
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Computation Graphs

@ Given a complicated function f(-), want to know its
partial derivatives w.r.t. its parameters

@ Will represent 1 in a modular fashion via a
computation graph

e E.g, Ietf(w,x) = WoxXo + WiX]

Wo

Xo

X1

Computation Graphs

@ So what?
@ Can now decompose gradient calculation into basic
operations
of _
® 5 = 1
3.0
Wo
1.0
X
~1.0
Wy
4.0
X1

Computation Graphs

@ If h(y,z) = yz then 5=z

@ Via chain rule, a%fo =% 04 _ gy =30

Da Oxy

. 39
0 10
X 10
0 30

~1.0
w

1 40

4.0
X
10

So forx = [1.0.4.0 ", Vf(w) = [1.0,4.0]"
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Computation Graphs

E.g., wo=3.0,w; =—-1.0,x0=1.0,x; =4.0

3.0
Wy a=
3.0
1.0
Xp
Wy —1.0
X 4.0

Computation Graphs

o Ifg(y,z) = y+zthen 3¢ = 9¢ —

@ Via chain rule, . = 9£9¢ = (1.0)(1.0) = 1.0
o Same with &

3.0
Wo

1.0
Xo
w, —1.0
X 4.0

The Sigmoid Unit

Basics

@ How does this help us with multi-layer ANNs?

o First, let’s replace the threshold function with a
continuous approximation

O

1
et
1+

net =2 wix; 0= ofney) =

&

=1(x; wb)

o(net) is the logistic function

1
o(net) = Trea

(a type of sigmoid function)

Squashes rer into [0, 1] range
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The Sigmoid Unit

Computation Graph

Let f(w,x) = 1/ (1 + exp (— (woxo + wix1)))

w, 22
Xo

a
3.0

The Sigmoid Unit

Gradient

of _ Of Oh __

o = 5o = —0.0723(1) = —0.0723
3.0

wy a=
10
Xo

The Sigmoid Unit

Gradient

So for x = [1.0.4.0] ", Vf(w) = [0.1966,0.7866] "

WEEEEY The Sigmoid Unit
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Gradient 9

Sree Note that (TZ = o(c)(1 - o(c)), s0

Nonlinearly a a 8 8b

Separable c

Problems 7f — lii = O'(C)(l _O—(C))(l)xl

ow, ~ Oc Ob Ow,

Backprop
Computation Graphs
Sigmoid Unit

TYW@ ebUmts
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496/896 o If 3 = o(w - x') is prediction on training instance x’ with

Lecture 2: label ¥, let loss be J(w) = L (5 — y')2, so Lecture 2: @ That update formula works for output units when we
Basic Artificial W)= 3 — Basic Artificial
ol v AR e know the target labels y' (here, a vector to encode
Networks Networks -
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Multivariate chain rule says we sum paths from J to wy,:

Gradient Gradient

E:T::a”y o Let loss on instance (x',y’) be J(w) =} Y0 (3 — )’ E::C::a”y o7 _ 0] 0a _ (Q@ Q@) 9a
S @ Weights ws. and we. tie to output units SR iz Oa waz OcOa ~ Obda) Ows
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49o/a06 Analytical solution is messy, but we don’t need the

Lecture 2: . Lecture 2:
Basic Artifcial formula; only need to compute gradient Basic Artifcial
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e @ The modular form of a computation graph means that N @ We are propagating back error terms § from output
Stephen Scolt once we've computed % and %, we can plug those Stephen Scott layer toward input layers, scaling with the weights
oduaton values in and compute gradients for earlier layers oduton @ Scaling with the weights characterizes how much of the
Supervsed ° |[r)1 ge?irr:ii Taéteriluayr/gr is output, or farther back; can run — error term each hidden unit is “responsible for”
Learning [$] ely ‘ ackwal . Learning ° PI’OCGSS:
Basic Units @ Backpropagation of error from outputs to inputs EEsElnis @ Submit inputs x
Descent @ Define error term of hidden node 4 as Donront @ Feed forward signal to outputs
Nonlinearly R R Nonlinearly e Comptue network loss
SaEEih O <= In (1 — ) Z Wi O SaEEih © Propagate error back to compute loss gradient w.r.t.

kedown(h) e each weight
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where . is output of node k and down(h) is set of nodes © Update weights

immediately downstream of
Note that this formula is specific to sigmoid units
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Initialize weights
Until termination condition satisfied do

@ For each training example (x*,y’) do
@ Input x’ to the network and compute the outputs 3’
@ For each output unit k
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O = 3 (1 =30 Ok — 31)
@ For each hidden unit i
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© Update each network weight w!;

igmoid Unit ! ! !
y Wii € Wi+ Awj
where Aw!; = ndx}; and x{; is signal sent from node i
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Given hidden layer outputs i

o Linearunit: y=w'h+b
e Minimizing square loss with this output unit maximizes
log likelihood when labels from normal distribution

@ l.e., find a set of parameters 6 that is most likely to
generate the labels of the training data

o Works well with GD training
@ Sigmoid: 5 = o(w h + b)
o Approximates non-differentiable threshold function
@ More common in older, shallower networks
o Can be used to predict probabilities
@ Softmax unit: Start withz = WTh + b
o Predict probability of label i to be
softmax(z); = exp(zi)/ (E] exp(z;))
o Continuous, differentiable approximation to argmax
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@ How many layers to use?

o Deep networks build potentially useful representations
of data via composition of simple functions

o Performance improvement not simply from more
complex network (number of parameters)

o Increasing number of layers still increases chances of
overfitting, so need significant amount of training data
with deep network; training time increases as well
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~—= 3, convolutional

+—+ 3, fully connected
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@ Formula for 6 assumes sigmoid activation function
e Straightforward to change to new activation function via
computation graph
@ Initialization used to be via random numbers near zero,
e.g., from A (0, 1)
o More refined methods available (later)
@ Algorithm as presented updates weights after each
instance
e Can also accumulate Aw}; across multiple training
instances in the same mini-batch and do a single
update per mini-batch
= Stochastic gradient descent (SGD)
o Extreme case: Entire training set is a single batch
(batch gradient descent)
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Rectified linear unit (ReLU): max{0, Wx + b}
@ Good default choice

Neural
Networks @ In general, GD works —
SR well when functions 4 _[RelU
Introduction nearly linear ) =ReLU
o @ Variations: leaky ReLU =
BrerslUts and exponential ReLU o
Gradient replace z < 0 side with ‘ ‘ ‘
Descent OOIZ and a(exp(z) . 1), -10 75,X 0 5
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respectively
Backprop Logistic sigmoid (done already) and tanh
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@ Nice approximation to threshold, but don't train well in

e " deep networks since they saturate
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@ Any boolean function can be represented with two
layers

@ Any bounded, continuous function can be represented
with arbitrarily small error with two layers

@ Any function can be represented with arbitrarily small
error with three layers
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@ Could need exponentially many nodes in a layer
@ May not be able to find the right weights
@ Highlights risk of overfitting and need for regularization
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Momentum Optimization

Putting Everything Together

Initialization

@ Previously, initialized weights to random numbers near
0 (from A/(0, 1))
e Sigmoid nearly linear there, so GD expected to work
better
o But in deep networks, this increases variance per layer,
resulting in vanishing gradients and poor optimization
@ Glorot initialization controls variance per layer: If layer
has n;, inputs and n,,, outputs, initialize via uniform
over [—r,r] or N(0,0)
6

Nin+Nou

2
Nin+Tow

er=a ando =a

Activation | a
Logistic 1
tanh 4
ReLU V2

Putting Everything Together

@ Use a momentum term 3 to keep updates moving in
same direction as previous trials

@ Replace original GD update w' = w — nVJ(w) with

w=w-m,

where
m = Sm+nVJ(w)
@ Using sigmoid activation and square loss, replace
Awl; = 1 6; x}; with

Aw}i =7 6} x;-,- + 8 Aw}fl

@ Can help move through small local minima to better
ones & move along flat surfaces

Putting Everything Together

RMSProp

@ AdaGrad tends to stop too early for neural networks
due to over-aggressive downscaling

@ RMSProp exponentially decays old gradients to
address this

w=w-—nVJ(woVste,
where

s=pBs+ (1 —B)VJ(w)® VJ(w)
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Variations on gradient descent optimization:

Introduction

Supervised @ Momentum optimization
Learning
Basic Units. ° AdaGI’ad
Gradient o RMSProp
Descent
@ Adam

Nonlinearly
Separable
Problems
Backprop
Types of Units

Putting Things
Together

56/60

Vaeaey Putting Everything Together

Lincoln AdaGrad

o5 @ Standard GD can too quickly descend steepest slope,

Basis Arfcal then slowly crawl through a valley
Nohworks o AdaGrad adapts learning rate by scaling it down in
steepest dimensions:
w =w—nVJ(w)©+/s+ e, where
Supervised S=s+ V](W) ® VJ(W) k)
HEEig ® and © are element-wise multiplication and division
Basic Unis and e = 10~1° prevents division by 0
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8, (steep dimension)

s accumulates AdaGrad

squares of gradient,

and learning rate for

each dimension
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Q@ m=p5im+ (1-p)VJ(w)
@ s= s+ (1 — B)VI(w) ® VJ(W)
S O m-m/(-4)
S O s=s/(- %)
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@ lteration counter r used in 3 and 4 to prevent m and s
from vanishing

@ Canset 3 =0.9, 5, =0.999, ¢ = 108
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