
	Why are We Here?
CSCE 488: Performance Evaluation	 Proper experimental technique is essential to system verification
Stephen D. Scott	 Without it, we're just hoping that everything works OK
	 Here I'll focus on timing verification, but will also touch on functional verification
October 3, 2001	
	 Most work under UNIX, but certainly have NT counterparts
1	2
UNIX time Command	
Usage: time <utility>, where utility is any UNIX command with arguments</utility>	
Reports:	time Command Example
 The elapsed (real) time between invocation of utility and its termination (includes I/O, 	
other processes running, etc.)	• Total (user + system) time for run A is 125
 The User CPU time: total time CPU spent running the program while in user mode 	ms, total for run B is 140 ms \Rightarrow B's run time is 12% longer
 The System CPU time: total time CPU spent running the program while in kernel mode 	 But if context switches & preprocessing each take 100 ms, then B's run time really 60% longer
 Total execution time is sum of user, system, (and I/O) (≠ real time) 	RULE 1: Make sure you're measuring the right
 Includes I/O instructions (not I/O itself), con- text switches, and any "preprocessing" of data (e.g. initializing arrays) 	thing
• NT version: timethis from NTresKit	
3	4

More Precise Timing Measurements	ACE's Profile Timer
 Use system calls around blocks of code to grab precise system timing info Times measured from arbitrary point in past 	 Developed by Doug Schmidt in his ACE (Adap- tive Communication Environment) package: http://www.cs.wustl.edu/~schmidt/ACE.html
(e.g. reboot) in number of "clock ticks"	• Timer is just a small part
 Can use to get time stamps at different points in the code and compute difference E.g. #include <sys types.h=""> #include <sys times.h=""> clock_t times(struct tms *buffer);</sys></sys> where struct tms { clock_t tms_utime; /* user time of current proc. */ clock_t tms_stime; /* system time of current proc. */ clock_t tms_cutime; /* child user time of current proc. */ clock_t tms_cutime; /* child user time of current proc. */ clock_t tms_cutime; /* child sys. time of current proc. */ clock_t tms_cutime; /* child sys. time of current proc. */ clock_t tms_cutime; /* child sys. time of current proc. */ clock_t tms_cutime; /* child sys. time of current proc. */ clock_t SVID, X/OPEN, BSD 4.3 and POSIX) 	 Gets up to (down to?) nanosecond precision (not nanosec. accuracy) Requires sys/procfs.h (not in NT?) E.g. <pre>main()</pre>
Caveat • Most system-independent timers are only up- dated every 10 ms • Thus cannot rely on measurements more fine than that, even though they're available • One approach: run same routine multiple times and take average – Can have problems with caches • Workaround: after every run, "flush" the cache, or use new dataset each time	 Application of Timer Example: Merge Sort vs. Insertion Sort For sorting 20 items, IS took 2.0 × 10⁻⁵ sec, made 363 comparisons For sorting 20 items, MS took 5.8 × 10⁻⁵ sec, made 658 comparisons Conclusion: IS is more than twice as fast as MS [FALLACY] RULE 2: Measure trends

Sampling Theory (cont'd) Sampling Theory (cont'd) • Based on Central Limit Theorem, which states that regardless of the data's distribution, \bar{X} 's dist. is approximately Gaussian (normal) with • Mean of X_1, \ldots, X_m (e.g. sort times for m invariance $\approx s/\sqrt{m}$, assuming m large enough puts, each of size n): $\bar{X} = (1/m) \sum_{i=1}^{m} X_i$ • Standard deviation $s = \sqrt{\frac{\sum_{i=1}^{m} (X_i - \bar{X})^2}{m-1}}$ = $\sqrt{\frac{m(\sum_{i=1}^{m} X_i^2) - (\sum_{i=1}^{m} X_i)^2}{m(m-1)}}$ (compute on-line) N% of area (probability) lies in $\mu \pm z_N \sigma$ • If $m \ge 30$, we are 95% confident that the true mean is approximately in 50% 68% 80% 90% 95% 98% 99% N%0.67 1.00 1.28 1.64 1.96 2.33 2.58 z_N $\bar{X} \pm z_{0.025}(s/\sqrt{m}) = \bar{X} \pm 1.96(s/\sqrt{m})$ (1)N% of area lies $<\mu+z_N^\prime\sigma$ or $>\mu-z_N^\prime\sigma$, where and we are 95% confident that the true mean $z'_N = z_{100-(100-N)/2}$ is approximately at most N% 50% 68% 80% 90% 95% 98% 99% $\bar{X} + z_{0.05}(s/\sqrt{m}) = \bar{X} + 1.645(s/\sqrt{m})$ (2) 0.0 0.47 0.84 1.28 1.64 2.05 2.33 (1) is two-sided interval and (2) is one-sided Consult your Statistics text for more info, esp. on z_{α} 's 13 14 **Functional Verification** Hardware Timing • Hardware: CAD tools, e.g. Xilinx Foundation • Software: run directly or use source-level debugger • Several CAD tools (incl. Xilinx Foundation) will perform timing analysis of designs after mapped to implementation technology • For both, test boundary and nominal conditions; go for high % cover of code/data paths – Make sure you use the right technology! • When practicable, compare to hand simulation • An important aspect of this: critical path analysis, (e.g. with smaller inputs) where the longest input-to-output path (in terms of time) is estimated and timed, which bounds • HW/SW testing is active area of research (e.g. the maximum clock rate Prof. Elbaum) • Don't forget about e.g. printed circuit board • Formal methods: one approach used for verification of hw and sw designs, has been used delays, memory access latency, etc. on specific code sets/designs, not yet used in the large - Take max delay between hardware and software components • Extra problems occur with concurrency, e.g. multiple threads 15 16