
CSCE 488: Performance Evaluation

Stephen D. Scott

October 3, 2001

1

Why are We Here?

• Proper experimental technique is essential to

system verification

• Without it, we’re just hoping that everything

works OK

• Here I’ll focus on timing verification, but will

also touch on functional verification

• Most work under UNIX, but certainly have NT

counterparts

2

UNIX time Command

Usage: time <utility>, where utility is any UNIX
command with arguments

• Reports:

– The elapsed (real) time between invocation
of utility and its termination (includes I/O,
other processes running, etc.)

– The User CPU time: total time CPU spent
running the program while in user mode

– The System CPU time: total time CPU
spent running the program while in kernel
mode

• Total execution time is sum of user, system,
(and I/O) (6= real time)

• Includes I/O instructions (not I/O itself), con-
text switches, and any “preprocessing” of data
(e.g. initializing arrays)

• NT version: timethis from NTresKit

3

time Command Example

• Total (user + system) time for run A is 125

ms, total for run B is 140 ms ⇒ B’s run time

is 12% longer

• But if context switches & preprocessing each

take 100 ms, then B’s run time really 60%

longer

RULE 1: Make sure you’re measuring the right

thing

4



More Precise Timing Measurements

• Use system calls around blocks of code to grab

precise system timing info

• Times measured from arbitrary point in past

(e.g. reboot) in number of “clock ticks”

• Can use to get time stamps at different points

in the code and compute difference

E.g.

#include <sys/types.h>
#include <sys/times.h>

clock_t times(struct tms *buffer);

where

struct tms {
clock_t tms_utime; /* user time of current proc. */
clock_t tms_stime; /* system time of current proc. */
clock_t tms_cutime; /* child user time of current proc. */
clock_t tms_cstime; /* child sys. time of current proc. */
};

• Can also use clocks() (ANSI C) or times()

(SVr4, SVID, X/OPEN, BSD 4.3 and POSIX)

5

ACE’s Profile Timer

• Developed by Doug Schmidt in his ACE (Adap-

tive Communication Environment) package:

http://www.cs.wustl.edu/~schmidt/ACE.html

• Timer is just a small part

• Gets up to (down to?) nanosecond precision

(not nanosec. accuracy)

• Requires sys/procfs.h (not in NT?)

E.g.

main()
{

Profile_Timer timer;
Profile_Timer::Elapsed_Time et;

timer.start();
/* run code to be timed here */
timer.stop();
timer.elapsed_time(et); /* compute elapsed time */
cout << "time(in secs): " << et.user_time;

}

6

Caveat

• Most system-independent timers are only up-

dated every 10 ms

• Thus cannot rely on measurements more fine

than that, even though they’re available

• One approach: run same routine multiple times

and take average

– Can have problems with caches

– Workaround: after every run, “flush” the

cache, or use new dataset each time

7

Application of Timer

Example: Merge Sort vs. Insertion Sort

• For sorting 20 items, IS took 2.0 × 10−5 sec,

made 363 comparisons

• For sorting 20 items, MS took 5.8× 10−5 sec,

made 658 comparisons

• Conclusion: IS is more than twice as fast as

MS [FALLACY]

RULE 2: Measure trends

8



0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

1.
6

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

"is
-t

im
e"

"m
s-

tim
e"

9

OK, Tough Guy, Let’s Measure Trends

• Choose already sorted inputs to test the

algorithm [INCORRECT TREND]

RULE 3: Take average over several inputs of the

same size

10

0

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

0.
01

2

0.
01

4

0.
01

6

0.
01

8

0.
02

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

"is
-s

or
te

d-
tim

e"
"m

s-
so

rt
ed

-t
im

e"

11

Sampling Theory

• What inputs should we use to test?

• Ideally, what you would see in practice

– Don’t always know this

• Next best thing: all possible inputs (exponen-

tially or infinitely big) or a (uniformly) ran-

domly selected set

• Rule of thumb: try at least 30 random sets

and take mean

12



Sampling Theory

(cont’d)

• Mean of X1, . . . , Xm (e.g. sort times for m in-

puts, each of size n): X̄ = (1/m)
∑m

i=1 Xi

• Standard deviation s =

√

∑

m

i=1
(Xi−X̄)2

m−1

=

√

m
(
∑

m

i=1
X2

i

)

−(
∑

m

i=1
Xi)

2

m(m−1)
(compute on-line)

• If m ≥ 30, we are 95% confident that the true

mean is approximately in

X̄ ± z0.025(s/
√

m) = X̄ ± 1.96(s/
√

m) (1)

and we are 95% confident that the true mean

is approximately at most

X̄ + z0.05(s/
√

m) = X̄ + 1.645(s/
√

m) (2)

(1) is two-sided interval and (2) is one-sided

13

Sampling Theory

(cont’d)

• Based on Central Limit Theorem, which states

that regardless of the data’s distribution, X̄’s

dist. is approximately Gaussian (normal) with

variance ≈ s/
√

m, assuming m large enough

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-3 -2 -1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-3 -2 -1 0 1 2 3

N% of area (probability) lies in µ± zN σ

N% 50% 68% 80% 90% 95% 98% 99%
zN 0.67 1.00 1.28 1.64 1.96 2.33 2.58

N% of area lies < µ + z′N σ or > µ − z′Nσ, where

z′N = z100−(100−N)/2

N% 50% 68% 80% 90% 95% 98% 99%
z′N 0.0 0.47 0.84 1.28 1.64 2.05 2.33

Consult your Statistics text for more info, esp. on

zα’s

14

Hardware Timing

• Several CAD tools (incl. Xilinx Foundation)

will perform timing analysis of designs after

mapped to implementation technology

– Make sure you use the right technology!

• An important aspect of this: critical path analysis,

where the longest input-to-output path (in terms

of time) is estimated and timed, which bounds

the maximum clock rate

• Don’t forget about e.g. printed circuit board

delays, memory access latency, etc.

– Take max delay between hardware and soft-

ware components

15

Functional Verification

• Hardware: CAD tools, e.g. Xilinx Foundation

• Software: run directly or use source-level debugger

• For both, test boundary and nominal condi-

tions; go for high % cover of code/data paths

• When practicable, compare to hand simulation

(e.g. with smaller inputs)

• HW/SW testing is active area of research (e.g.

Prof. Elbaum)

• Formal methods: one approach used for veri-

fication of hw and sw designs, has been used

on specific code sets/designs, not yet used in

the large

• Extra problems occur with concurrency, e.g.

multiple threads

16


