CSCE 488: Performance Evaluation

Stephen D. Scott

October 3, 2001

Why are We Here?

Proper experimental technique is essential to
system verification

Without it, we're just hoping that everything
works OK

Here I'll focus on timing verification, but will
also touch on functional verification

Most work under UNIX, but certainly have NT
counterparts

UNIX time Command

Usage: time <utility>, whereutility is any UNIX
command with arguments

e Reports:

— The elapsed (real) time between invocation
of utility and its termination (includes I/O,
other processes running, etc.)

— The User CPU time: total time CPU spent
running the program while in user mode

— The System CPU time: total time CPU
spent running the program while in kernel
mode

e [otal execution time is sum of user, system,
(and I/O) (% real time)

e Includes I/O instructions (not I/O itself), con-
text switches, and any “preprocessing” of data
(e.g. initializing arrays)

e NT version: timethis from NTresKit

time Command Example

e Total (user 4+ system) time for run A is 125
ms, total for run B is 140 ms = B’s run time
is 12% longer

e But if context switches & preprocessing each
take 100 ms, then B’s run time really 60%
longer

RULE 1: Make sure you're measuring the right
thing

More Precise Timing Measurements

e Use system calls around blocks of code to grab

precise system timing info

e [imes measured from arbitrary point in past

(e.g. reboot) in number of “clock ticks”

e Can use to get time stamps at different points

in the code and compute difference

E.g.

#include <sys/types.h>
#include <sys/times.h>

clock_t times(struct tms *buffer);

where

struct tms {
clock_t tms_utime; /*
clock_t tms_stime; /*
clock_t tms_cutime; /x*
clock_t tms_cstime; /x*

};

user time of current proc. */
system time of current proc. */

child user time of current proc.
child sys. time of current proc.

e Can also use clocks() (ANSI C) or times()
(SVr4, SVID, X/OPEN, BSD 4.3 and POSIX)

ACE’s Profile Timer

e Developed by Doug Schmidt in his ACE (Adap-
tive Communication Environment) package:
http://www.cs.wustl.edu/ " schmidt/ACE.html

e [imer is just a small part

e Gets up to (down to?) nanosecond precision
(not nanosec. accuracy)

e Requires sys/procfs.h (not in NT?)

E.g.

main()

{

Profile_Timer timer;
Profile_Timer::Elapsed_Time et;

timer.start () ;
/* run code to be timed here */

timer.stop();

timer.elapsed_time(et) ; /* compute elapsed time */
cout << "time(in secs): " << et.user_time;

Caveat

e Most system-independent timers are only up-
dated every 10 ms

e [hus cannot rely on measurements more fine
than that, even though they’'re available

e One approach: run same routine multiple times
and take average

— Can have problems with caches

— Workaround: after every run, ‘“flush” the
cache, or use new dataset each time

Application of Timer
Example: Merge Sort vs. Insertion Sort

e For sorting 20 items, IS took 2.0 X 10—° sec,
made 363 comparisons

e For sorting 20 items, MS took 5.8 x 102 sec,
made 658 comparisons

e Conclusion: IS is more than twice as fast as
MS [FALLACY]

RULE 2: Measure trends

000.

0009 0005 000Y 000€ 0002 000T
T + 1 + + + £ + ¥+ ¥ £ F T T FFFoFoAFT —t
+ ,9Wli}-sw,,

¢O

¥'0

90

80

¢l

V1

91

OK, Tough Guy, Let’'s Measure Trends

e Choose already sorted inputs to test the
algorithm [INCORRECT TREND]

RULE 3: Take average over several inputs of the
same size

10

000.

0009

00095

000t

000€

000¢

+

+
+ .8Wn-payos-su,

+

¢c00°0

0070

9000

8000

100

¢100

¥10°0

9T0°0

8T0°0

c00

11

Sampling Theory

What inputs should we use to test?

Ideally, what you would see in practice
— Don’'t always know this
Next best thing: all possible inputs (exponen-

tially or infinitely big) or a (uniformly) ran-
domly selected set

Rule of thumb: try at least 30 random sets
and take mean

12

Sampling Theory
(cont'd)

e Mean of Xq,...,X, (e.g. sort times for m in-
puts, each of size n): X = (1/m)>" X;

m _¥)2
e Standard deviation s = \/Zi:l,ffl X)
mox2)_ (S x)2
— \/m(¢:1i¢(7)n_(12)z:1X1) (compute on-line)

e If m > 30, we are 95% confident that the true
mean is approximately in

X £ 20.025(s/vVm) = X £1.96(s/vm) (1)

and we are 959% confident that the true mean
IS approximately at most

X + z0.05(s/v/m) = X +1.645(s/vm) (2)

(1) is two-sided interval and (2) is one-sided

13

Sampling Theory
(cont'd)

e Based on Central Limit Theorem, which states
that regardless of the data’s distribution, X's
dist. is approximately Gaussian (normal) with
variance = s/4/m, assuming m large enough

04 -
0.35
03 [
0.25
02
0.15
01 r
0.05

04 -
0.35
03 [
0.25
02
0.15
01 r
0.05

N% of area (probability) lies in u+ 2y 0o

N%
ZN

50% 68% 80% 90% 95% 98% 99%
0.67¢ 1.00 128 1.64 196 233 2.58

N% of area lies < p+ 2o or > u — 2o, where
!
ZN = ?100—(100—N)/2

N%
N

50% 68% 80% 90% 95% 98% 99%
0.0 047 084 128 1.64 2.05 2.33

Consult your Statistics text for more info, esp. on

ZQ,S

14

Hardware Timing

e Several CAD tools (incl. Xilinx Foundation)
will perform timing analysis of designs after
mapped to implementation technology

— Make sure you use the right technology!

e An important aspect of this: critical path analysis,
where the longest input-to-output path (in terms
of time) is estimated and timed, which bounds
the maximum clock rate

e Don’'t forget about e.g. printed circuit board
delays, memory access latency, etc.

— Take max delay between hardware and soft-
ware components

15

Functional Verification

Hardware: CAD tools, e.g. Xilinx Foundation

Software: run directly or use source-level debugger

For both, test boundary and nominal condi-
tions; go for high % cover of code/data paths

When practicable, compare to hand simulation
(e.g. with smaller inputs)

HW /SW testing is active area of research (e.g.
Prof. Elbaum)

Formal methods: one approach used for veri-
fication of hw and sw designs, has been used
on specific code sets/designs, not yet used in
the large

Extra problems occur with concurrency, e.d.
multiple threads

16

