

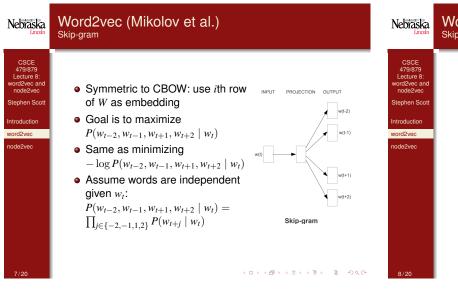
Nebraska

CBOW

INPUT

479/879 Lecture • $N \times d$ matrix W is shared w(t-2) weights from input to hidden Stephen Sco • $d \times N$ matrix W' is weights w(t-1) SUM from hidden to output word2vec ode2vec When one-hot context vectors $x_{t-2}, x_{t-1}, ..., x_{t+2}$ w(t+1) input, corresponding rows from W are summed to \hat{v} w(t+2 • Then get score vector v' and softmax it CBOW Train with cross-entropy • Use *i*th column of *W*' as embedding

Word2vec (Mikolov et al.)


OUTPUT

PROJECTION

- One-hot input, hidden linear activation, softmax output

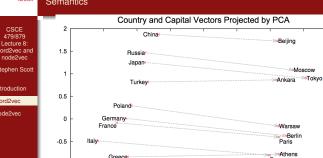
• N = vocabulary size, d =

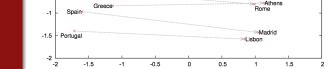
embedding dimension

Word2vec (Mikolov et al.) Skip-gram

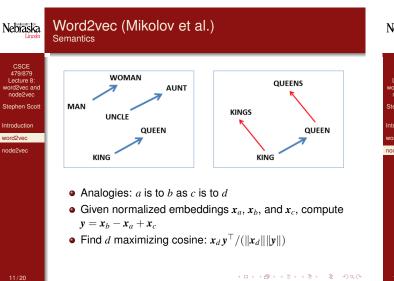
Equivalent to maximizing log probability

$$\sum_{j \in \{-c, -(c-1), \dots, (c-1), c\}, j \neq 0} \log P(w_{t+j} \mid w_t)$$

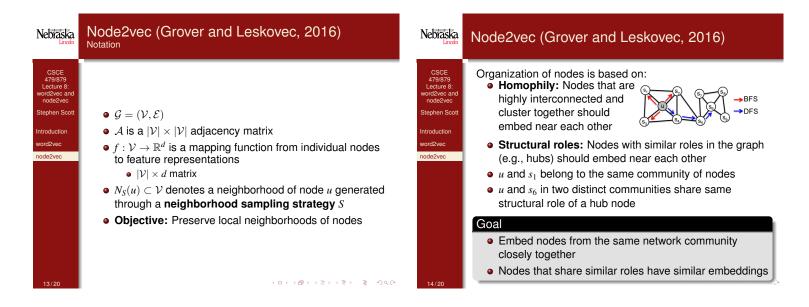

Softmax output and linear activation imply

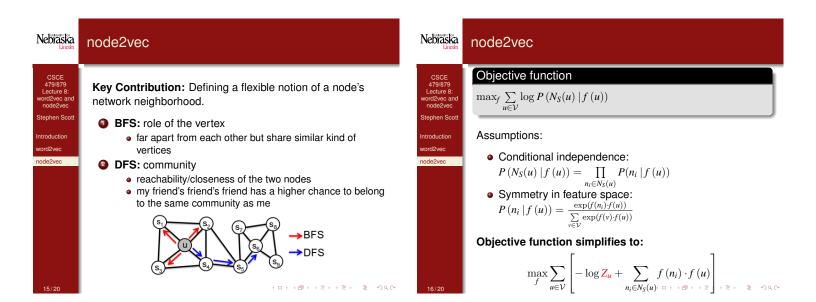

$$P(w_O \mid w_I) = \frac{\exp\left(\boldsymbol{v}_{w_O}^{\prime \top} \boldsymbol{v}_{w_I}\right)}{\sum_{i=1}^{N} \exp\left(\boldsymbol{v}_i^{\prime \top} \boldsymbol{v}_{w_I}\right)}$$

where v_{w_i} is w_i 's (input word) row from W and v'_i is w_i 's (output word) column from W'


- I.e., trying to maximize dot product (similarity) between words in same context
- **Problem:** N is big ($\approx 10^5 10^7$)

Nebraska Lincoln	Word2vec (Mikolov et al.) _{Skip-gram}	Nebraska Lincoln	Word2vec (Mikolov et al.) Semantics	
CSCE 479/879 Lecture 8: word2vec and node2vec Stephen Scott Introduction word2vec node2vec	 Speed up evaluation via negative sampling Update the weight of each target word and only a small number (5–20) of negative words I.e., do not update for all N words To estimate P(w₀ w_I), use log σ (v[']_{w₀}v_{w_I}) + ∑^k_{i=1} E_{w_i~P_n(w)} [log σ (-v[']_{w_i}v_{w_I})] 	CSCE 479/879 Lecture 8: word2vec and node2vec Stephen Scott Introduction word2vec node2vec	Country and Capital Vector	
	• I.e., learn to distinguish target word w_0 from words drawn from noise distribution $P_n(w_i) = \frac{f(w_i)^{3/4}}{\sum_{j=1}^N f(w_j)^{3/4}} ,$ where $f(w_i)$ is frequency of word w_i in corpus • I.e., $P_n(w_i)$ is a unigram distribution		-1 -1 - Spain -1.5 - Portugal -2 -2 -1.5 -1 -0.5 0	
9/20	· · · · · · · · · · · · · · · · · · ·	10/20	 Distances between countries 	





Distances between countries and capitals similar = oscer

Nebraska Lincoln	Node2vec (Grover and Leskovec, 2016)
CSCE 479/879 Lecture 8: word2vec and node2vec Stephen Scott Introduction word2vec node2vec	 Word2vec's approach generalizes beyond text All we need to do is represent the context of an instance to embed together instances with similar contexts E.g., biological sequences, nodes in a graph Node2vec defines its context for a node based on its local neighborhood, role in the graph, etc.

Node2vec (Grover and Leskovec, 2016) Neighborhood Sampling

Given a source node *u*, we simulate a random walk of fixed length ℓ :

$$P(c_{i} = x \mid c_{i-1} = v) = \begin{cases} \frac{\pi_{vx}}{Z} & \text{if } (v, x) \in \mathcal{E} \\ 0 & \text{otherwise} \end{cases}$$

• $c_0 = u$

P

- π_{vx} is the unnormalized transition probability
- Z is the normalization constant.
- 2nd order Markovian

Node2vec (Grover and Leskovec, 2016) Nebraska Neighborhood Sampling CSCE 479/879 Lecture 8 Search bias α : $\pi_{vx} = \alpha_{pq}(t, x) w_{vx}$ where $\alpha_{pq}(t,x) = \begin{cases} \frac{1}{p} & \text{if } d_{tx} = 0\\ 1 & \text{if } d_{tx} = 1\\ \frac{1}{a} & \text{if } d_{tx} = 2 \end{cases}$ rd2vec de2vec Return parameter p: Controls the likelihood of immediately revisiting a node in the walk • If $p > \max(q, 1)$ • less likely to sample an already visited node avoids 2-hop redundancy in sampling • If $p < \min(q, 1)$ backtrack a step keep the walk local

Nebraska Lincoln	Node2vec (Grover and Leskovec, 2016)	Nebraska Lincoln	Node2vec (Grover and Leskovec, 2016)	
CSCE 479/879 Lecture 8: word2vec and node2vec Stephen Scott Introduction word2vec node2vec	 In-out parameter q: If q > 1 inward exploration Local view BFS behavior If q < 1 outward exploration Global view DFS behavior 	CSCE 479/876 Lecture 8: word2vec Stephen Scott Introduction word2vec node2vec	Algorithm 1 The node2vec algorithm. LargerTeatures (Graph $G = (V, E, W)$. Dimensions d . Walks per node r , Walk length I . Constative k . Return p . In-out q) π = PreprocessModifiedWeights(G , p , q) $G' = (V, E, \pi)$ Initialize walks to Empty for <i>i</i> (<i>t</i> = 1 to <i>t</i> of for all nodes $u \in V$ (de) u = 1 ($u = 1$ ($u = 1$) f = u = 0 ($u = 1$ ($u = 1$) f = u = 0 ($u = 1$) u = 1 ($u = 1$) node2vecWalk (Graph $G' = (V, E, \pi)$. Start node u . Length 1) Initialize walks $u = 1$ ($u = 1$) u = 0 ($u = 1$ ($u = 1$) u = 0 ($u =$	 Implicit bias due to choice of the start node u Simulating r random walks of fixed length ℓ starting from every node
19/20	<□><♂→<२><२> ३ √२(৮	20/20	 Preprocessing to compute transition probabilities Random walks Optimization using SGD Each phase is parallelizable and executed asynchronously one 	