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@ word2vec

o Architectures
e Training
e Semantics of embedding

@ node2vec

word2vec word2vec

node2vec node2vec

Word2vec (Mikolov et al.)
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cBoOw Skip-gram

@ CBOW: Predict current word w(r) based on context
@ Skip-gram: Predict context based on w(r)
@ One-hot input, hidden linear activation, softmax output

Introduction

@ To apply recurrent architectures to text (e.g., NLM),
need numeric representation of words

@ The “Embedding lookup” block
@ Where does the embedding come from?
e Could train it along with the rest of the network
e Or, could use “off-the-shelf” embedding
e E.g., word2vec or GloVe
@ Embeddings not limited to words: E.g., biological
sequences, graphs, ...
e Graphs: node2vec

@ The xxxx2vec approach focuses on training
embeddings based on context

Word2vec (Mikolov et al.)

@ Training is a variation of autoencoding
@ Rather than mapping a word to itself, learn to map
between a word and its context
o Context-to-word: Continuous bag-of-words (CBOW)
e Word-to-context: Skip-gram

Word2vec (Mikolov et al.)
CBOW

@ N = vocabulary size, d =
embedding dimension
) @ N X d matrix W is shared
weights from input to hidden

@ d x N matrix W’ is weights
from hidden to output

@ When one-hot context
vectors x,_o,x;—1,. .., X2
input, corresponding rows
from W are summed to v

@ Then get score vector v/
and softmax it

@ Train with cross-entropy

INPUT PROJECTION OUTPUT
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cBOW

@ Use ith column of W’ as embedding



Word2vec (Mikolov et al.)
Skip-gram
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Introduction @ Goal is to maximize / jww
word2vec P(Wi—2, W1, Wes1, Wit2 | Wr)
node2vec @ Same as minimizing
_IOgP(Wt—27Wr—1,Wt+l,W1+2 | Wt)
@ Assume words are independent
given wy:
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Word2vec (Mikolov et al.)
Skip-gr

P @ Speed up evaluation via negative sampling

ot @ Update the weight of each target word and only a small
nodegves number (5-20) of negative words
@ l.e., do not update for all N words

Introduction @ To estimate P(WO ‘ WI), use

word2vec
de2) K
node2vec T T
10g g (vwovw1) + E ]Ew,-NP,,(w) [log o (_vw, le>]
i=1

@ |.e., learn to distinguish target word w¢o from words
drawn from noise distribution
;)34
Pan) = JO
Zj:lf(wj)
where f(w;) is frequency of word w; in corpus
@ le., P,(w;) is a unigram distribution
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Word2vec (Mikolov et al.)
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@ Analogies: aistobascistod

@ Given normalized embeddings x,, x;, and x., compute
Y =Xp —Xq+ X

@ Find d maximizing cosine: x4y " /(||xa||l|)

Word2vec (Mikolov et al.)
Skip-gram
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e @ Softmax output and linear activation imply
node2vec ,
exp (vl;;vw,>
P(WO | W]) = N

Zimiexp (v )

where v,,, is w’s (input word) row from W and vl’- is w;’'s
(output word) column from W’

@ l.e., trying to maximize dot product (similarity) between
words in same context

@ Problem: N is big (=~ 10°-107)

Word2vec (Mikolov et al.)
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Country and Capital Vectors Projected by PCA
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@ Distances between countries and.capitals similar

Node2vec (Grover and Leskovec, 2016)
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I @ Word2vec’s approach generalizes beyond text

word2vec @ All we need to do is represent the context of an instance
node2ves to embed together instances with similar contexts

e E.g., biological sequences, nodes in a graph
@ Node2vec defines its context for a node based on its
local neighborhood, role in the graph, etc.




Node2vec (Grover and Leskovec, 2016)
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e G=(V¢&)
o Aisa|V| x |V| adjacency matrix
@ f:V — R%is a mapping function from individual nodes
to feature representations
o |V| x d matrix
@ Ng(u) C V denotes a neighborhood of node u generated
through a neighborhood sampling strategy §

@ Objective: Preserve local neighborhoods of nodes

Introduction
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Key Contribution: Defining a flexible notion of a node’s
network neighborhood.

Stephen Scott

@ BFS: role of the vertex
o far apart from each other but share similar kind of
vertices
© DFS: community
e reachability/closeness of the two nodes
e my friend’s friend’s friend has a higher chance to belong
to the same community as me

Introduction
word2vec
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Node2vec (Grover and Leskovec, 2016)
Neighborhood Sampling
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Given a source node u, we simulate a random walk of fixed
length ¢:

Stephen Scott
Introducti i

ntroduction % if (V, )C) eé&
0  otherwise

word2vec

node2vec

P(Ci:X\Ci—l _V)_{
@co=u
@ T, is the unnormalized transition probability

@ Z is the normalization constant.
@ 2™ order Markovian

Node2vec (Grover and Leskovec, 2016)

joscel Organization of nodes is based on:
@ Homophily: Nodes that are

Lecture 8:

et highly interconnected and
cluster together should
embed near each other
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word2veo @ Structural roles: Nodes with similar roles in the graph
(e.g., hubs) should embed near each other

@ u and s; belong to the same community of nodes

@ u and s¢ in two distinct communities share same

structural role of a hub node

node2vec

@ Embed nodes from the same network community
closely together

@ Nodes that share similar roles have similar embeddings

node2vec
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Assumptions:
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@ Conditional independence:

P(Ns(u) |f (w) =TI )P(ni |f (u))

node2vec

ni€Ng(u
@ Symmetry in feature space:
Pn — _exp(f(m)f ()
(i | £ () T exe(0) )

Objective function simplifies to:

mdeZ *IOgZqu Z f(}’l,)f(u)

ucy n;€Ns(u)

Node2vec (Grover and Leskovec, 2016)
Neighborhood Sampling

SeeE Search bias a: m,, = a,,(t, x)w,, where
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word2vec

e Return parameter p:
@ Controls the likelihood of immediately revisiting a node
in the walk

@ If p > max(q, 1)
o less likely to sample an already visited node
@ avoids 2-hop redundancy in sampling

@ If p < min(q, 1)
e backtrack a step
o keep the walk local
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Node2vec (Grover and Leskovec, 2016)
Neighborhood Sampling
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In-out parameter ¢:

Introduction

Introduction
word2vec

@ If ¢ > 1 inward exploration

e Local view
o BFS behavior

@ If ¢ < 1 outward exploration

o Global view
o DFS behavior

word2vec

node2vec

node2vec

Node2vec (Grover and Leskovec, 2016)
Algorithm

Algorithm 1 The node2vec alg:
LearnFeatures (Graph G = (V. £, W), Dimensions d, Walks per
node , Walk length [, Conte; k. Return p, In-out q)
7 = PreprocessModifiedWeights(Z, p, q)
G'=(V.E.7)
Initialize walks to Empty
for iter = 1tor do
for all nodes u € V do
walk = node2vecWalk(G', u, 1)
Append walk to walks
| = StochasticGradientDescent(k, d, walks)
return f

@ Implicit bias due to choice
of the start node u

e Simulating r random
walks of fixed length
¢ starting from every
node

node2vecWalk (Graph G’ = (V. E. ), Start node u, Length [)
Inititalize walk to [u]
for walk:

alk{-1]

eurr = GetNeighbors(curr, G')
5 = AliasSample(Veurr, T)
Append s to walk
return walk
Phases:

@ Preprocessing to compute transition probabilities
© Random walks
© Optimization using SGD

Each phase is parallelizable and executed-asynchronously



