Nebraska CSCE 496/896 Lecture 6: **Recurrent Architectures** Basic Idea /O Mappings Stephen Scott Fraining (Adapted from Vinod Variyam and Ian Goodfellow) Deep RNNs LSTMs

Introduction

Nebraska

O Mappings

Training Deep RNNs LSTMs

GRUs

All our architectures so far work on fixed-sized inputs

- Recurrent neural networks work on sequences of inputs
- E.g., text, biological sequences, video, audio
- Can also try 1D convolutions, but lose long-term relationships in input
- Especially useful for NLP applications: translation, speech-to-text, sentiment analysis
- Can also create novel output: e.g., Shakespearean text, music

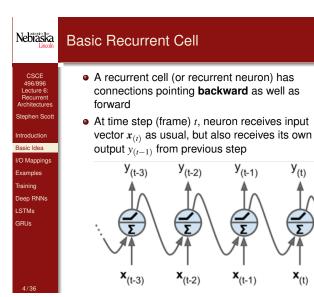
 $\mathbf{y}_{(t)}$

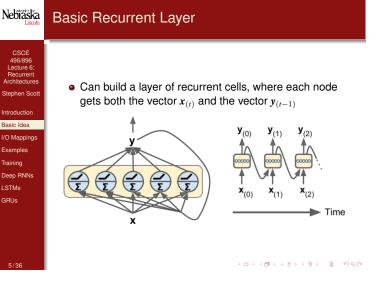
 $\boldsymbol{x}_{(t)}$

Nebraska Outline Basic RNNs Input/Output Mappings I/O Mappings Example Implementations Training Long short-term memory Deep RNNs LSTMs Gated Recurrent Unit GRUs 40 > 40 > 42 > 42 > 2 900

sscott@cse.unl.edu

4日 > 4回 > 4目 > 4目 > 目 り < (で)</p>





Nebraska

Basic Recurrent Layer

Basic Idea

I/O Mappings Examples Fraining Deen RNNs

LSTMs

 Each node in the recurrent layer has independent weights for both $x_{(t)}$ and $y_{(t-1)}$

- For a single recurrent node, denote by w_x and w_y
- For the entire layer, combine into matrices W_x and W_y
- For activation function ϕ and bias vector \boldsymbol{b} , output vector is

$$\mathbf{y}_{(t)} = \phi \left(W_{\mathbf{x}}^{\mathsf{T}} \mathbf{x}_{(t)} + W_{\mathbf{y}}^{\mathsf{T}} \mathbf{y}_{(t-1)} + \mathbf{b} \right)$$

4 D > 4 D > 4 E > 4 E > E 9 9 4 P

Memory and State

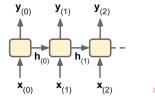
Basic Idea

Training

Deep RNNs LSTMs

• Since a node's output depends on its past, it can be thought of having memory or state

- State at time t is $\mathbf{h}_{(t)} = f(\mathbf{h}_{(t-1)}, \mathbf{x}_{(t)})$ and output $\mathbf{y}_{(t)} = g(\mathbf{h}_{(t-1)}, \mathbf{x}_{(t)})$
- State could be the same as the output, or separate
- Can think of $h_{(t)}$ as storing important information about input sequence
- Analogous to convolutional outputs summarizing important image features



Nebraska

Input/Output Mappings

Sequence to Sequence

Basic Idea I/O Mappings

raining

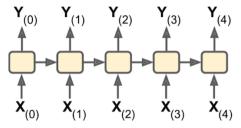
Deep RNNs LSTMs

Sequence to sequence: Input is a sequence and

Many ways to employ this basic architecture:

output is a sequence

E.g., series of stock predictions, one day in advance



Nebraska

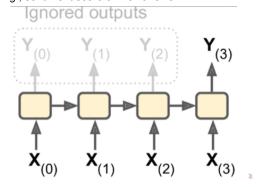
Input/Output Mappings Sequence to Vector

I/O Mappings

Deep RNNs LSTMs GRUs

• Sequence to vector: Input is sequence and output a vector/score/ classification

E.g., sentiment score of movie review



Nebraska

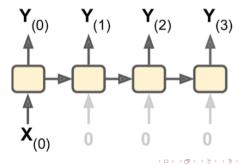
Input/Output Mappings Vector to Sequence

LSTMs GRUs

I/O Mappings

 Vector to sequence: Input is a single vector (zeroes for other times) and output is a sequence

E.g., image to caption



Nebraska

Input/Output Mappings

Encoder-Decoder Architectu

Basic Idea

I/O Mappings LSTMs

 $\boldsymbol{c} = f(\boldsymbol{h}_1, \dots, \boldsymbol{h}_T)$ Decoder output y_{t'} depends on previously output $(y_1,\ldots,y_{t'-1})$ and c

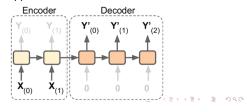
• Encoder-decoder: Sequence-to-vector (encoder)

• Input sequence (x_1, \dots, x_T) yields hidden outputs

 (h_1, \ldots, h_T) , then mapped to **context vector**

followed by vector-to-sequence (decoder)

Example application: neural machine translation



Nebraska

Input/Output Mappings

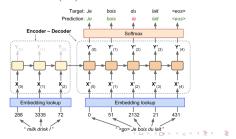
Encoder-Decoder Architecture: NMT Example

I/O Mappings raining LSTMs

Pre-trained word embeddings fed into input

 Encoder maps word sequence to vector, decoder maps to translation via softmax distribution

 After training, do translation by feeding previous translated word $y'_{(t-1)}$ to decoder



Input/Output Mappings Encoder-Decoder Architecture

Basic Idea

I/O Mappings

Examples Fraining Deep RNNs LSTMs

GRUs

• Works through an embedded space like an autoencoder, so can represent the entire input as an embedded vector prior to decoding

- Issue: Need to ensure that the context vector fed into decoder is sufficiently large in dimension to represent context required
- Can address this representation problem via attention mechanism mechanism
 - Encodes input sequence into a vector sequence rather than single vector
 - As it decodes translation, decoder focuses on relevant subset of the vectors

the curopean Economic Area was signed in August 1992

Nebraska

Input/Output Mappings

forward and backward

and following inputs

 $c_i = \sum_{j=1}^T \alpha_{ij} h_j$, where

simultaneously

ith context vector

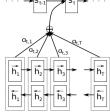
E-D Architecture: Attention Mechanism (Bahdanau et al., 2015)

Basic Idea I/O Mappings

Examples

Fraining Deep RNNs LSTMs





 $lpha_{ij} = rac{\exp(e_{ij})}{\sum_{t=1}^T \exp(e_{ik})}$ x_1 x_2 x_3 x_5 and e_{ij} is an **alignment score** between inputs around j and outputs around i

Nebraska

Input/Output Mappings
E-D Architecture: Attention Mechanism (Bahdanau et al., 2015)

I/O Mappings

Deep RNNs LSTMs GRUs

- The ith element of attention vector α_i tells us the probability that target output y_i is aligned to (or translated from) input x_i
- Then c_i is expected annotation over all annotations with probabilities α_i
- ullet Alignment score e_{ij} indicates how much we should
- focus on word encoding h_i when generating output y_i (in decoder state s_{i-1})
- Can compute e_{ii} via dot product $h_i^{\top} s_{i-1}$, bilinear function $m{h}_i^ op W s_{i-1},$ or nonlinear activation $m{h}_i^ op W s_{i-1}$, or nonlinear activation

Nebraska

Example Implementation

Static Unrolling for Two Time Steps

Examples Deep RNNs LSTMs GRUs

X0 = tf.placeholder(tf.float32, [None, n_inputs])
X1 = tf.placeholder(tf.float32, [None, n_inputs])
Wx = tf.Variable(tf.random_normal(shape=[n_inputs, n_neurons],dtype=tf.float32))
Wy = tf.Variable(tf.random_normal(shape=[n_neurons, n_neurons],dtype=tf.float32))
b = tf.Variable(tf.zeros([1, n_neurons], dtype=tf.float32))
Y0 = tf.tanh(tf.matmul(X0, Wx) + b)
Y1 = tf.tanh(tf.matmul(Y0, Wy) + tf.matmul(X1, Wx) + b)

Input:

instance 0, instance 1, instance 2, instance 3 $XO_{batch} = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 0, 1]]) # t = 0$ $XI_{batch} = np.array([[9, 8, 7], [0, 0, 0], [6, 5, 4], [3, 2, 1]]) # t = 1$

40 > 40 > 45 > 45 > 5 900

Nebraska

Example Implementation Static Unrolling for Two Time Steps

Basic Idea

I/O Mappings Examples **Fraining**

Deen RNNs LSTMs

GRUs

Can achieve the same thing more compactly via static_rnn()

X0 = tf.placeholder(tf.float32, [None, n_inputs])
X1 = tf.placeholder(tf.float32, [None, n_inputs])
basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)
output_seqs, states = tf.contrib.rnn.static.rnn(basic_cell, [X0, X1],
dtype=tf.float32)
Y0, Y1 = output_seqs

Automatically unrolls into length-2 sequence RNN

Nebraska

Example Implementation

Automatic Static Unrolling

Basic Idea I/O Mappings

Examples Training Deep RNNs LSTMs

Can avoid specifying one placeholder per time step via tf.stack and tf.unstack

- Uses static_rnn() again, but on all time steps folded into a single tensor
- Still forms a large, static graph (possible memory issues)

4日 > 4回 > 4 差 > 4 差 > 一差 の 9 (P)

4日 > 4回 > 4 直 > 4 直 > 一直 9 9 0 0

Example Implementation Dynamic Unrolling

Basic Idea O Mappings

Examples **Fraining** Deep RNNs

LSTMs GRUs

Even better: Let TensorFlow unroll dynamically via a while_loop() in dynamic_rnn()

X = tf.placeholder(tf.float32, [None, n_steps, n_inputs]) basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)
outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32)

Can also set swap_memory=True to reduce memory problems

Nebraska

Example Implementation

Variable-Length Sequences

Basic Idea

Examples

Fraining

LSTMs

GRUs

May need to handle variable-length inputs

• Use 1D tensor sequence_length to set length of each input (and maybe output) sequence

Pad smaller inputs with zeroes to fit input tensor

Use "end-of-sequence" symbol at end of each output

seq_length = tf.placeholder(tf.int32, [None]) I/O Mappings outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32, Deep RNNs seq_length_batch = np.array([2, 1, 2, 2])

Nebraska

Training

Backpropagation Through Time (BPTT)

I/O Mannings

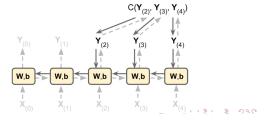
Training Deep RNNs LSTMs GRUs

Unroll through time and use BPTT

• Forward pass mini-batch of sequences through unrolled network yields output sequence $Y_{(t_{\min})}, \dots, Y_{(t_{\max})}$

 Output sequence evaluated using cost $C\left(Y_{(t_{\min})},\ldots,Y_{(t_{\max})}\right)$

 Gradients propagated backward through unrolled network (summing over all time steps), and parameters



Nebraska

Training Issues

I/O Mappings

Training Deep RNNs LSTMs

Examples

 When comparing two sequences, can use squence loss: tf.contrib.seq2seq.sequence_loss

• Weighted average of cross entropy across sequence

• Weights can emphasize parts of target sequence, e.g., more on nouns than articles

 BPTT means that gradient is flowing through longer paths in graph ⇒ exploding or vanishing gradients

 Can happen with any network, but RNNs very susceptible

ullet Clipping gradients to range [-1,+1] can mitigate explosions: tf.clip_by_value

• Batch normalization useful as well

40 × 40 × 40 × 40 × 00 × 00 × 00

Nebraska

Training

Example: Training on MNIST as a Vector Sequence

inputs of 28-dimensional vectors

Basic Idea I/O Mapping: Examples

Fraining LSTMs GRUs

 Feed in input as usual, then compute loss between target and softmax output after 28th input Softmax **Fully Connected** 10 units **X**₍₂₆₎ $\mathbf{X}_{(0)}$ **X**₍₂₇₎

Consider MNIST inputs provided as sequence of 28

Nebraska

Basic Idea I/O Mappings

Training

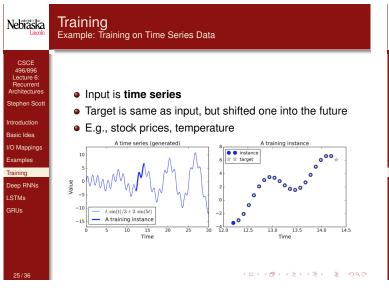
LSTMs GRUs

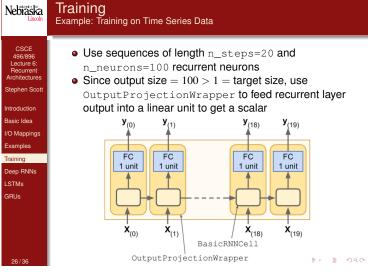
Deep RNNs

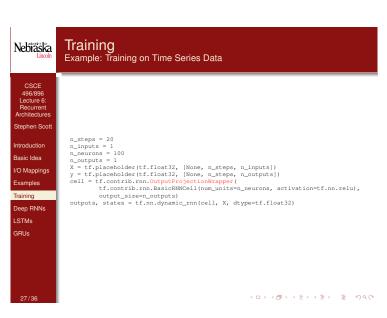
Training

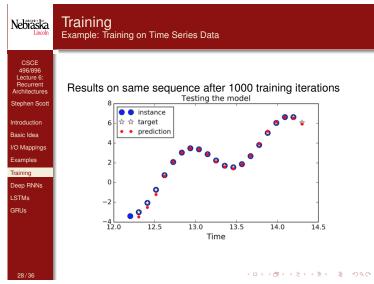
Example: Training on MNIST as a Vector Sequence

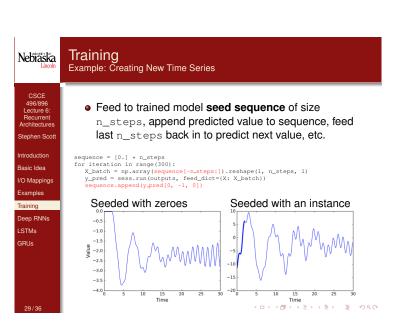
X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.int32, [None])
basic_cell = tf.contrib.rnn.Basic_RNNCell(num_units=n_neurons)
outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32)
logits = tf.layers.dense(states, n.outputs)
xentropy = tf.nn.sparse.softmax.cross_entropy.with.logits(labels=y, logits=logits) loss = tf.reduce.mean(xentropy)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)
correct = tf.nn.in_top_k(logits, y, 1)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
init = tf.global_variables_initializer()

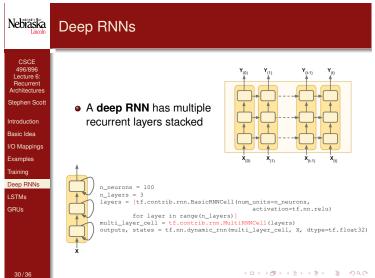












Training over Many Time Steps

ep RNNs LSTMs

 Vanishing and exploding gradients can be a problem with RNNs, like with other deep networks

- Can as usual address with, e.g., ReLU, batch normalization, gradient clipping, etc.
- Can still suffer from long training times with long input sequences
 - Truncated backpropagation through time addresses this by limiting n_steps
 - Lose ability to learn long-term patterns
- In general, also have problem of first inputs of sequence have diminishing impact as sequence grows
 - E.g., first few words of long text sequence
- Goal: Introduce long-term memory to RNNs
- Allow a network to accumulate information about the past, but also decide when to forget information

Nebraska

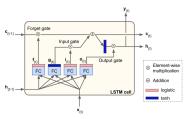
Long Short-Term Memory Hochreiter and Schmidhuber (1997)

O Mappings Examples

Fraining Deep RNNs LSTMs

• Vector $h_{(t)} =$ short-term state, $c_{(t)} =$ long-term state

At time t, some memories from $oldsymbol{c}_{(t-1)}$ are forgotten in the forget gate and new ones (from input gate) added



- Result sent out as $c_{(t)}$
- $h_{(t)}$ (and $y_{(t)}$) comes from processing long-term state in output gate

lstm_cell = tf.contrib.rnn.BasicLSTMCell(num_units=n_neurons)

Nebraska

LSTMs

Long Short-Term Memory Hochreiter and Schmidhuber (1997)

- \bullet $g_{(t)}$ combines input $x_{(t)}$ with state $h_{(t-1)}$
- $m{o}$ $f_{(t)}, i_{(t)}, o_{(t)}$ are gate controllers
- \bullet $f_{(t)} \in [0,1]^n$ controls forgetting of $c_{(t-1)}$
- ullet $oldsymbol{i}_{(t)}$ controls remembering of $g_{(t)}$
- $oldsymbol{o}$ $oldsymbol{o}_{(t)}$ controls what of $oldsymbol{c}_{(t)}$ goes to output and $oldsymbol{h}_{(t)}$
- Output depends on long- and short-term memory
- Network learns what to remember long-term based on $\boldsymbol{x}_{(t)}$ and $\boldsymbol{h}_{(t-1)}$

Nebraska

Long Short-Term Memory

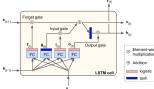
Hochreiter and Schmidhuber (1997)

eep RNNs

LSTMs

 $\bullet \ \mathbf{i}_{(t)} = \sigma \left(W_{\mathbf{x}i}^{\top} \mathbf{x}_{(t)} + W_{\mathbf{h}i}^{\top} \mathbf{h}_{(t-1)} + \mathbf{b}_{i} \right)$

- $\bullet \ f_{(t)} = \sigma \left(W_{xf}^{\top} x_{(t)} + W_{hf}^{\top} h_{(t-1)} + b_f \right)$
- $\bullet \ \boldsymbol{o}_{(t)} = \sigma \left(W_{\boldsymbol{xo}}^{\top} \boldsymbol{x}_{(t)} + W_{\boldsymbol{ho}}^{\top} \boldsymbol{h}_{(t-1)} + \boldsymbol{b_o} \right)$ $\bullet \ \boldsymbol{g}_{(t)} = \tanh \left(W_{\boldsymbol{x}\boldsymbol{g}}^{\top} \boldsymbol{x}_{(t)} + W_{\boldsymbol{h}\boldsymbol{g}}^{\top} \boldsymbol{h}_{(t-1)} + \boldsymbol{b}_{\boldsymbol{g}} \right)$
- $c_{(t)} =$
- $f_{(t)} \otimes c_{(t-1)} + i_{(t)} \otimes g_{(t)}$ $y_{(t)} = h_{(t)} =$ $o_{(t)} \otimes \tanh(c_{(t)})$



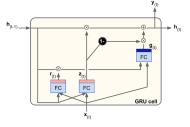
• Can add **peephole connection:** Let $c_{(t-1)}$ affect $f_{(t)}$ and $i_{(t)}$ and $c_{(t-1)}$ affect $o_{(t)}$ 4 D > 4 D > 4 E > 4 E > E 9 Q C

Nebraska

Gated Recurrent Unit

STMs

- Simplified LSTM
- Merge c_(t) into $\boldsymbol{h}_{(t)}$
- Merge $f_{(t)}$ and $i_{(t)}$ into $z_{(t)}$
 - $z_{(t),i} = 0 \Rightarrow$ forget $\boldsymbol{h}_{(t-1),i}$ and add in $\mathbf{g}_{(t),i}$



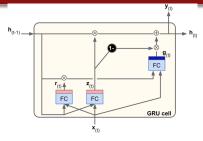
ullet $o_{(t)}$ replaced by $r_{(t)} \Rightarrow$ forget part of $h_{(t-1)}$ when computing $g_{(t)}$

gru_cell = tf.contrib.rnn.GRUCell(num_units=n_neurons)

Nebraska

Gated Recurrent Unit

LSTMs



- $\bullet \ z_{(t)} = \sigma \left(W_{xz}^{\top} x_{(t)} + W_{hz}^{\top} h_{(t-1)} + b_z \right)$
- $\bullet \ \mathbf{r}_{(t)} = \sigma \left(W_{\mathbf{xr}}^{\top} \mathbf{x}_{(t)} + W_{\mathbf{hr}}^{\top} \mathbf{h}_{(t-1)} + \mathbf{b}_{\mathbf{r}} \right)$
- $\bullet \ \boldsymbol{g}_{(t)} = \tanh \left(W_{\boldsymbol{x}\boldsymbol{g}}^{\top} \boldsymbol{x}_{(t)} + W_{\boldsymbol{h}\boldsymbol{g}}^{\top} \left(\boldsymbol{r}_{(t)} \otimes \boldsymbol{h}_{(t-1)} \right) + \boldsymbol{b}_{\boldsymbol{g}} \right)$
- $\mathbf{v}_{(t)} = \mathbf{h}_{(t)} = \mathbf{z}_{(t)} \otimes \mathbf{h}_{(t-1)} + (\mathbf{1} \mathbf{z}_{(t)}) \otimes \mathbf{g}_{(t)}$