

CSCE 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE

Sparse AE

Contractive AF

Variational AE

t-SNE

GAN

# CSCE 479/879 Lecture 5: Autoencoders

Stephen Scott

(Adapted from Eleanor Quint and Ian Goodfellow)

sscott@cse.unl.edu



### Introduction

479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction
Basic Idea

Stacked AE

Stacked A

Transposed Convolutions

Denoising AE

Sparse AE

Contractive AE

Variational AE

. ....

t-SNE GAN

- Autoencoding is training a network to replicate its input to its output
- Applications:
  - Unlabeled pre-training for semi-supervised learning
  - Learning embeddings to support information retrieval
  - Generation of new instances similar to those in the training set
  - Data compression



### Outline

**CSCE** 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction Basic Idea

Stacked AE

Transposed

Convolutions Denoising AE

Sparse AE

Contractive

Variational AE

t-SNE

AF

- Basic idea
- Stacking
- Types of autoencoders
  - Denoising
  - Sparse
  - Contractive
  - Variational
  - Generative adversarial networks



## Basic Idea (Mitchell, 1997)

479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE

Sparse AE

Contractive AF

Variational AE

t-SNE

| Inputs | Outputs |
|--------|---------|
| 9      | P       |
|        |         |
|        |         |
|        |         |
|        |         |
|        | 10      |
| 0      | $\circ$ |

|          |               |     | 200 |     |               |          |  |
|----------|---------------|-----|-----|-----|---------------|----------|--|
| Input    | Hidden        |     |     |     |               | Output   |  |
| Values   |               |     |     |     |               |          |  |
| 10000000 | $\rightarrow$ | .89 | .04 | .08 | $\rightarrow$ | 10000000 |  |
| 01000000 | $\rightarrow$ | .15 | .99 | .99 | $\rightarrow$ | 01000000 |  |
| 00100000 | $\rightarrow$ | .01 | .97 | .27 | $\rightarrow$ | 00100000 |  |
| 00010000 | $\rightarrow$ | .99 | .97 | .71 | $\rightarrow$ | 00010000 |  |
| 00001000 | $\rightarrow$ | .03 | .05 | .02 | $\rightarrow$ | 00001000 |  |
| 00000100 | $\rightarrow$ | .01 | .11 | .88 | $\rightarrow$ | 00000100 |  |
| 00000010 | $\rightarrow$ | .80 | .01 | .98 | $\rightarrow$ | 00000010 |  |
| 00000001 | $\rightarrow$ | .60 | .94 | .01 | $\rightarrow$ | 00000001 |  |
|          |               |     |     |     | 200           |          |  |

- Sigmoid activation functions, 5000 training epochs, square loss, no regularization
- What's special about the hidden layer outputs?



#### Basic Idea

479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE

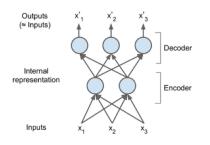
Sparse AE

Contractive AF

Variational AE

t-SNF GAN

 An autoencoder is a network trained to learn the **identity function:** output = input



- Subnetwork called **encoder**  $f(\cdot)$  maps input to an embedded representation
- Subnetwork called **decoder**  $g(\cdot)$  maps back to input space
- Can be thought of as lossy compression of input
- Need to identify the important attributes of inputs to reproduce faithfully





#### Basic Idea

479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE

Sparse AE

Contractive AE

Variational AE

variational / t

t-SNE GAN

- General types of autoencoders based on size of hidden layer
  - Undercomplete autoencoders have hidden layer size smaller than input layer size
    - Dimension of embedded space lower than that of input space
    - ⇒ Cannot simply memorize training instances
  - Overcomplete autoencoders have much larger hidden layer sizes
    - Regularize to avoid overfitting, e.g., enforce a sparsity constraint



#### Basic Idea

Example: Principal Component Analysis

479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed

Convolutions Denoising AE

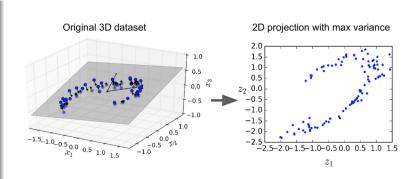
Sparse AE

Contractive AF

Variational AE

t-SNF

GAN



 A 3-2-3 autoencoder with linear units and square loss performs principal component analysis: Find linear transformation of data to maximize variance



CSCE 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

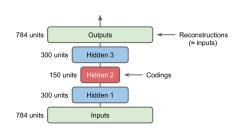
Denoising AE Sparse AE

Contractive AF

Variational AE

t-SNF

GAN



A stacked autoencoder has multiple hidden lavers

 Can share parameters to reduce their number by exploiting symmetry:  $W_4 = W_1^{\top}$  and  $W_3 = W_2^{\top}$ 

```
weights1 = tf.Variable(weights1 init, dtype=tf.float32, name="weights1")
weights2 = tf.Variable(weights2 init, dtype=tf.float32,
                                                        name="weights2")
weights3 = tf.transpose(weights2, name="weights3")
                                                         # shared weights
weights4 = tf.transpose(weights1, name="weights4")
                                                        # shared weights
```



Incremental Training

CSCE 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea Stacked AE

Otdored 71E

Transposed Convolutions Denoising AE

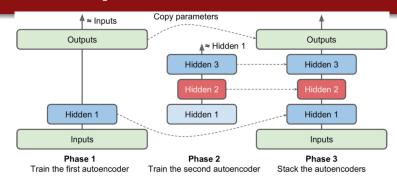
Sparse AE

Contractive

AE

Variational AE

t-SNE



- Can simplify training by starting with single hidden layer  $H_1$
- Then, train a second AE to mimic the output of H<sub>1</sub>
- Insert this into first network
- Can build by using H<sub>1</sub>'s output as training set for Phase 2





Phase 1

Training Op

Incremental Training (Single TF Graph)

CSCE 479/879 Lecture 5: Autoencoders Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

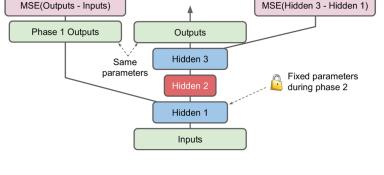
Denoising AE

Sparse AE

Contractive AF

Variational AE

t-SNE GAN



- Previous approach requires multiple TensorFlow graphs
- Can instead train both phases in a single graph: First left side, then right

Phase 2

Training Op



#### Stacked Autoencoders Visualization

**CSCE** 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE

Sparse AE

Contractive AF

Variational AE

t-SNE

**GAN** 









Input MNIST Digit

**Network Output** 





Weights (features selected) for five nodes from  $H_1$ :





Semi-Supervised Learning

479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

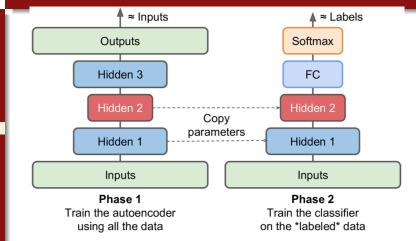
Denoising AE

Sparse AE

Contractive AF

Variational AE

t-SNE GAN



- Can pre-train network with unlabeled data
- ⇒ learn useful features and then train "logic" of dense layer with labeled data



# Transfer Learning from Trained Classifier

CSCE 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE
Sparse AE

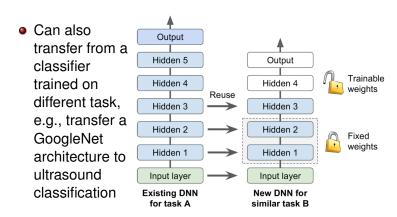
Contractive AF

Variational AE

t-SNE

. . . .

GAN



Often choose existing one from a model zoo



## **Transposed Convolutions**

479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE

Sparse AE

Contractive AF

Variational AE

variational / t

t-SNE

- What if some encoder layers are convolutional? How to upsample to original resolution?
- Can use, e.g., linear interpolation, bilinear interpolation, etc.
- Or, transposed convolution, e.g., tf.layers.conv2d\_transpose



# Transposed Convolutions (2)

**CSCE** 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE

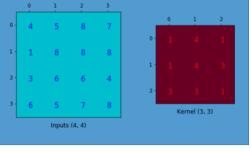
Sparse AE

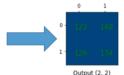
Contractive AF

Variational AE

t-SNE **GAN** 

# Consider this example convolution







# Transposed Convolutions (3)

**CSCE** 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE

Sparse AE

Contractive AF

Variational AE

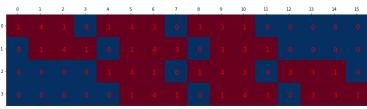
t-SNE

GAN

An alternative way of representing the kernel







Convolution Matrix (4, 16)



# Transposed Convolutions (4)

CSCE 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE

Sparse AE

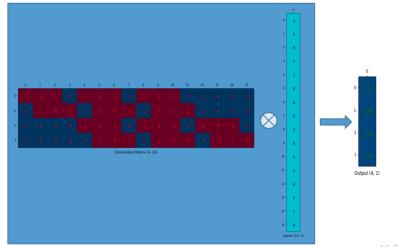
Contractive AF

Variational AE

t-SNE

**GAN** 

This representation works with matrix multiplication on flattened input:





# Transposed Convolutions (5)

CSCE 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE

Sparse AE

Contractive AE

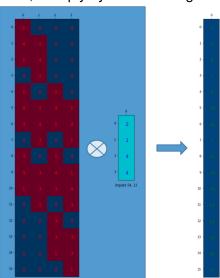
Variational AE

t-SNE

GAN

GAN

Transpose kernel, multiply by flat  $2 \times 2$  to get flat  $4 \times 4$ 





#### Denoising Autoencoders Vincent et al. (2010)

479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE

Sparse AE

Contractive

Variational AE

t-SNE GAN

- Can train an autoencoder to learn to denoise input by giving input **corrupted** instance  $\tilde{x}$  and targeting **uncorrupted** instance x
- Example noise models:
  - Gaussian noise:  $\tilde{x} = x + z$ , where  $z \sim \mathcal{N}(\mathbf{0}, \sigma^2 I)$
  - Masking noise: zero out some fraction  $\nu$  of components of x
  - Salt-and-pepper noise: choose some fraction  $\nu$  of components of x and set each to its min or max value (equally likely)



# **Denoising Autoencoders**

CSCE 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE

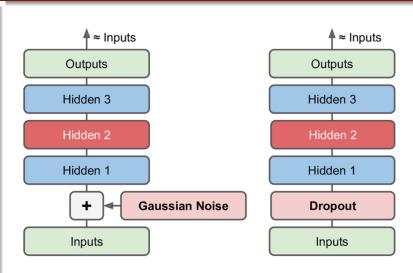
Sparse AE

Contractive AE

Variational AE

variational / L

t-SNE





### **Denoising Autoencoders** Example

**CSCE** 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

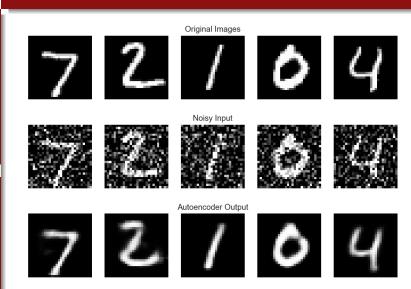
Denoising AE

Sparse AE

Contractive ΑE

Variational AE

t-SNE





# **Denoising Autoencoders**

479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE

Sparse AE

Contractive

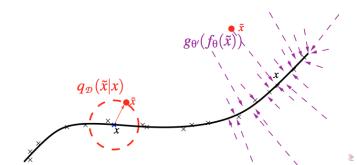
Variational AE

GAN

t-SNE

How does it work?

- Even though, e.g., MNIST data are in a 784-dimensional space, they lie on a low-dimensional manifold that captures their most important features
- Corruption process moves instance x off of manifold
- Encoder  $f_{\theta}$  and decoder  $g_{\theta'}$  are trained to project  $\tilde{x}$  back onto manifold





## Sparse Autoencoders

479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed

Convolutions Denoising AE

Sparse AE

Contractive

Variational AE

t-SNF

GAN

An overcomplete architecture

Regularize outputs of hidden layer to enforce sparsity:

$$\tilde{\mathcal{J}}(\mathbf{x}) = \mathcal{J}(\mathbf{x}, g(f(\mathbf{x}))) + \alpha \Omega(\mathbf{h})$$
,

where  $\mathcal{J}$  is loss function, f is encoder, g is decoder, h = f(x), and  $\Omega$  penalizes non-sparsity of h

- E.g., can use  $\Omega(\mathbf{h}) = \sum_{i} |h_i|$  and ReLU activation to force many zero outputs in hidden layer
- Can also measure average activation of h<sub>i</sub> across mini-batch and compare it to user-specified target **sparsity** value p (e.g., 0.1) via square error or Kullback-Leibler divergence:

$$p\log\frac{p}{q} + (1-p)\log\frac{1-p}{1-q}$$
,

where q is average activation of  $h_i$  over mini-batch



#### Contractive Autoencoders

479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE

Sparse AE

Contractive

Variational AE

GAN

t-SNE

Similar to sparse autoencoder, but use

$$\Omega(\mathbf{h}) = \sum_{j=1}^{m} \sum_{i=1}^{n} \left( \frac{\partial h_i}{\partial x_j} \right)^2$$

- I.e., penalize large partial derivatives of encoder outputs wrt input values
- This contracts the output space by mapping input points in a neighborhood near x to a smaller output neighborhood near f(x)
  - $\Rightarrow$  Resists perturbations of input x
- If h has sigmoid activation, encoding near binary and a CE pushes embeddings to corners of a hypercube



479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea Stacked AE

Transposed

Convolutions

Denoising AE Sparse AE

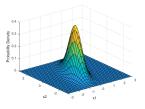
Contractive

Variational AE

t-SNE GAN

VAE is an autoencoder that is also generative model

- ⇒ Can generate new instances according to a probability distribution
  - E.g., hidden Markov models, Bayesian networks
  - Contrast with discriminative models, which predict classifications
- Encoder f outputs  $[\mu, \sigma]^{\top}$ 
  - Pair  $(\mu_i, \sigma_i)$  parameterizes Gaussian distribution for dimension  $i = 1, \ldots, n$
  - Draw  $z_i \sim \mathcal{N}(\mu_i, \sigma_i)$
  - Decode this latent variable z to get g(z)





Latent Variables

479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction Basic Idea

Stacked AE

Transposed

Convolutions Denoising AE

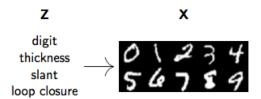
Sparse AE

Contractive

Variational AE

t-SNE GAN

- Independence of z dimensions makes it easy to generate instances wrt complex distributions via decoder g
- Latent variables can be thought of as values of attributes describing inputs
  - E.g., for MNIST, latent variables might represent "thickness", "slant", "loop closure"





#### Variational Autoencoders Architecture

**CSCE** 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

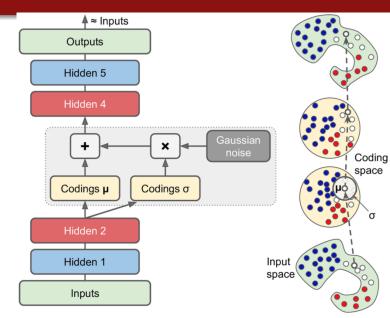
Denoising AE

Sparse AE

Contractive AF

Variational AE

t-SNE





#### Variational Autoencoders Optimization

479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction Basic Idea

Stacked AE

Transposed Convolutions Denoising AE

Sparse AE

Contractive

Variational AE

t-SNE GAN

- Maximum likelihood (ML) approach for training generative models: find a model ( $\theta$ ) with maximum probability of generating the training set  $\mathcal{X}$
- Achieve this by minimizing the sum of:
  - End-to-end AE loss (e.g., square, cross-entropy)
  - Regularizer measuring distance (K-L divergence) from latent distribution  $q(z \mid x)$  and  $\mathcal{N}(\mathbf{0}, I)$  (= standard multivariate Gaussian)
- $\mathcal{N}(\mathbf{0}, I)$  also considered the **prior distribution** over z (= distribution when no x is known)

```
eps = 1e-10
latent loss = 0.5 * tf.reduce sum(
        tf.square(hidden3_sigma) + tf.square(hidden3_mean)
        - 1 - tf.log(eps + tf.square(hidden3_sigma)))
```



Reparameterization Trick

CSCE 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed

Convolutions

Denoising AE

Sparse AE

Contractive AF

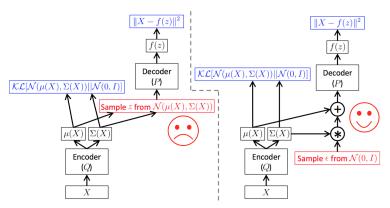
Variational AE

t-SNE

**GAN** 

Cannot backprop error signal through random samples

• Reparameterization trick emulates  $z \sim \mathcal{N}(\mu, \sigma)$  with  $\epsilon \sim \mathcal{N}(0, 1), z = \epsilon \sigma + \mu$ 



Example Generated Images: Random

CSCE 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE

Sparse AE

Contractive AF

Variational AE

t-SNE GAN

• Draw  $z \sim \mathcal{N}(\mathbf{0}, I)$  and display g(z)





Example Generated Images: Manifold

CSCE 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE

Sparse AE

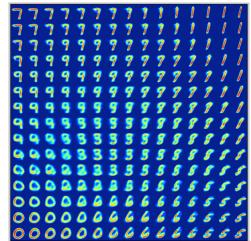
Contractive AF

Variational AE

t-SNE

GAN

 Uniformly sample points in (2-dimensional) z space and decode







#### Variational Autoencoders 2D Cluster Analysis

**CSCE** 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE

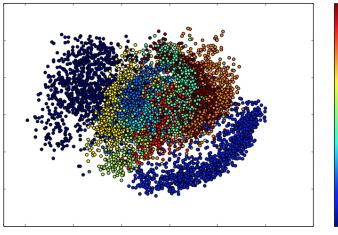
Sparse AE

Contractive

Variational AE

t-SNE GAN

Cluster analysis by digit (2D latent space)





# Aside: Visualizing with t-SNE van der Maaten and Hinton (2008)

CSCE 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction
Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE Sparse AE

Contractive AF

Variational AE

t-SNE

GAN

 Visualize high-dimensional data, e.g., embedded representations

 Want low-dimensional representation to have similar neighborhoods as high-dimensional one

• Map each high-dimensional  $x_1, \ldots, x_N$  to low-dimensional  $y_1, \ldots, y_N$  via matching **pairwise distributions** based on distance

 $\Rightarrow$  Probability  $p_{ij}$  pair  $(x_i, x_j)$  chosen similar to probability  $q_{ij}$  pair  $(y_i, y_i)$  chosen

• Set  $p_{ij} = (p_{i|i} + p_{i|j})/(2N)$  where

$$p_{j|i} = \frac{\exp\left(-\|\boldsymbol{x}_i - \boldsymbol{x}_j\|^2/(2\sigma_i^2)\right)}{\sum_{k \neq i} \exp\left(-\|\boldsymbol{x}_i - \boldsymbol{x}_k\|^2/(2\sigma_i^2)\right)}$$

and  $\sigma_i$  chosen to control density of the distribution

• I.e.,  $p_{j|i}$  is probability of  $x_i$  choosing  $x_j$  as its neighbor if chosen in proportion of Gaussian density centered at  $x_i$ 

# Aside: Visualizing with t-SNE (2) van der Maaten and Hinton (2008)

CSCE 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE

Sparse AE

Contractive AE

Variational AE

t-SNE

GAN

• Also, define *q* via student's *t* distribution:

$$q_{ij} = \frac{\left(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2\right)^{-1}}{\sum_{k \neq \ell} \left(1 + \|\mathbf{y}_k - \mathbf{y}_\ell\|^2\right)^{-1}}$$

- Using student's t instead of Gaussian helps address crowding problem where distant clusters in x space squeeze together in y space
- Now choose y values to match distributions p and q via
   Kullback-Leibler divergence:

$$\sum_{i \neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$



#### Generative Adversarial Network

479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction Basic Idea

Stacked AE

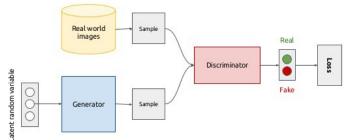
Transposed Convolutions

Denoising AE Sparse AE

Contractive AF

Variational AE t-SNF

- GANs are also generative models, like VAEs
- Models a game between two players
  - Generator creates samples intended to come from training distribution
  - Discriminator attempts to discern the "real" (original training) samples from the "fake" (generated) ones
- Discriminator trains as a binary classifier, generator trains to fool the discriminator





# Generative Adversarial Network How the Game Works

479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction
Basic Idea

Stacked AE

Transpaged

Transposed Convolutions

Denoising AE Sparse AE

Contractive AF

Variational AE

t-SNE

- Let D(x) be discriminator parameterized by  $\theta^{(D)}$ 
  - Goal: Find  $\theta^{(D)}$  minimizing  $J^{(D)}$   $(\theta^{(D)}, \theta^{(G)})$
- Let G(z) be generator parameterized by  $\theta^{(G)}$ 
  - ullet Goal: Find  $oldsymbol{ heta}^{(G)}$  minimizing  $J^{(G)}\left(oldsymbol{ heta}^{(D)},oldsymbol{ heta}^{(G)}
    ight)$
- A Nash equilibrium of this game is  $(\theta^{(D)}, \theta^{(G)})$  such that each  $\theta^{(i)}$ ,  $i \in \{D, G\}$  yields a local minimum of its corresponding J



# Generative Adversarial Network Training

CSCE 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction
Basic Idea

Stacked AE

Transposed

Convolutions

Denoising AE

Sparse AE

Contractive AE

Variational AE t-SNE

. . . .

- Each training step:
  - Draw a minibatch of x values from dataset
  - Draw a minibatch of z values from prior (e.g.,  $\mathcal{N}(\mathbf{0}, I)$ )
  - Simultaneously update  $\theta^{(G)}$  to reduce  $J^{(G)}$  and  $\theta^{(D)}$  to reduce  $J^{(D)}$ , via, e.g., Adam
- For  $J^{(D)}$ , common to use cross-entropy where label is 1 for real and 0 for fake
- Since generator wants to trick discriminator, can use  $J^{(G)} = -J^{(D)}$ 
  - Others exist that are generally better in practice, e.g., based on ML



# Generative Adversarial Network DCGAN: Radford et al. (2015)

CSCE 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE Sparse AE

Contractive AF

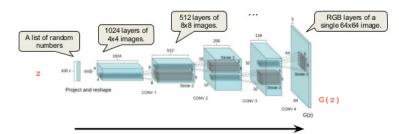
Variational AE

t-SNF

GAN

"Deep, convolution GAN"

 Generator uses transposed convolutions (e.g., tf.layers.conv2d\_transpose) without pooling to upsample images for input to discriminator





# Generative Adversarial Network

DCGAN Generated Images: Bedrooms

CSCE 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE

Sparse AE

Contractive AE

Variational AE

t-SNE

GAN

Trained from LSUN dataset, sampled *z* space





# Generative Adversarial Network DCGAN Generated Images: Adele Facial Expressions

Trained from frame grabs of interview, sampled z space

CSCE 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction
Basic Idea

. . . .

Stacked AE

Transposed Convolutions

Denoising AE

Sparse AE

Contractive AE

Variational AE

t-SNE





# Generative Adversarial Network DCGAN Generated Images: Latent Space Arithmetic

CSCE 479/879 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Transposed Convolutions

Denoising AE

Sparse AE

Contractive AE

Variational AE

t-SNE

GAN

Performed semantic arithmetic in *z* space!











(Non-center images have noise added in z space; center is noise-free)