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@ An autoencoder is a network trained to learn the

Stphen Seot identity function: output = input
Introduction Qubus Xy Xy X @ Subnetwork called

Basic Idea

encoder f(-) maps input

Stacked AE Decoder to an embedded
Comaniions [T representation

Denoising AE }"“"” @ Subnetwork called

Sparse AE decoder g(-) maps back
Contractive Inputs %, X, X, to input space

Variational AE

+-SNE @ Can be thought of as lossy compression of input

@ Need to identify the important attributes of inputs to
reproduce faithfully
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@ Autoencoding is training a network to replicate its
input to its output

@ Applications:

sy o Unlabeled pre-training for semi-supervised learning

Learning embeddings to support information retrieval

o Generation of new instances similar to those in the
training set

o Data compression
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Basic Idea (Mitchell, 1997)
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e s Input Hidden Output
Values

SEAEER] 10000000 — 89 .04 .08 — 10000000
01000000 — .15 .99 99 — 01000000

fntroducton 00100000 — .01 97 27 — 00100000

Basic ldea 00010000 — .99 .97 .71 — 00010000

Stacked AE 00001000 — .03 .05 02 — 00001000

— 00000100 — .01 .11 .88 — 00000100

S 00000010 — .80 .01 98 — 00000010
00000001 — .60 .94 .01 — 00000001

Denoising AE

Sparse AE

Contractive

@ Sigmoid activation functions, 5000 training epochs,
square loss, no regularization

@ What'’s special about the hidden layer outputs?

Variational AE

t-SNE
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@ General types of autoencoders based on size of hidden
layer
o Undercomplete autoencoders have hidden layer size
smaller than input layer size
= Dimension of embedded space lower than that of input
space

= Cannot simply memorize training instances

o Overcomplete autoencoders have much larger hidden
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Contractive layer sizes
; = Regularize to avoid overfitting, e.g., enforce a sparsity
Variational AE constraint

t-SNE
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Example: Principal Component Analysis

Original 3D dataset

2D projection with max variance

-

-2.5
—2.5-2,0-1.5-1.0-0.50.0 0.5 1.0 1.5

21

@ A 3-2-3 autoencoder with linear units and square loss
performs principal component analysis: Find linear
transformation of data to maximize variance

Stacked Autoencoders

Incremental Training

? = Inputs

?

Copy parameters

[ Outputs

} ‘ 4= Hidden 1 '[ OLIt::uts ]
[ ccenl } """""" -[ Hidden 3 ]
Hidden 2 EE—— Hidden 2

[ Hidden 1 }

[ Hidden 1 ] -[ Hidden 1 ]
I

[ Inputs

] 7777 [ Inputs ]

Phase 1

Train the first autoencoder

Phase 2 Phase 3
Train the second autoencoder Stack the autoencoders

@ Can simplify training by starting with single hidden

layer H,

@ Then, train a second AE to mimic the output of H;
@ Insert this into first network
@ Can build by using H,’s output as training set for

Phase 2

Stacked Autoencoders

Visualization

Input MNIST Digit

Network Output

Weights (features selected) for five nodes from H:
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784 units ~<—— Reconstructions

Stephen Scott (< inpus) @ A stacked
o autoencoder
Introduction 150 units [NALLELLPA <— Codings has muItipIe

Basic Idea 300 units

Hidden 1

hidden layers
Stacked AE 784 units

Transposed
Convolutions

Denoising AE

@ Can share parameters to reduce their number by
exploiting symmetry: Wy = W] and W3 = W,

Sparse AE

Contractive

Variational AE weightsl = tf.Variable (weightsl_init, dtype=tf.float32, name="weightsl")

weights2 = tf.Variable(weights2_init, dtype=tf.float32, name="weights2")
t-SNE weights3 = tf.transpose (weights2, name="weights3") # shared weights
& weights4 = tf.transpose (weightsl, name="weights4") # shared weights

Stacked Autoencoders
Incremental Training (Single TF Graph)
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MSE(Outputs - Inputs) ?

[ Phase 1 Outputs ] [

Outputs
1

Introduction

Basic Idea W
Hidden 3
Stacked AE Same
parameters

A Fixed parameters
L during phase 2
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@ Previous approach requires multiple TensorFlow graphs

@ Can instead train both phases in a single graph: First
left side, then right

GAN

Stacked Autoencoders

EEl  Semi-Supervised Learning

f = Inputs
Outputs ]

* = Labels
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Copy
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Stacked AE
Transposed | MR o (< =4 L
Convolutions

Denoising AE [

Inputs Inputs ]

Phase 2
Train the classifier
on the *labeled* data

Sparse AE

Phase 1
Train the autoencoder
using all the data

Contractive

Variational AE
t-SNE
GAN @ Can pre-train network with unlabeled data

= learn useful features and then train “logic” of dense
layer with labeled data
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Transfer Learning from Trained Classifier

@ Can also
transfer from a
classifier
trained on
different task,
e.g., transfer a
GoogleNet
architecture to
ultrasound
classification

(
(
(
(
(
(

Hidden 5 J [ Output ]
I I .
Hidden4 | ( isgens ) ! Eq Tranable
I Reuse I 9
Hidden3 | —> [ Hidden3 |
I e  E
Hidden2 | —> [ Hidden2 || Fixed
I : I 3 ﬂ «
Hidden1 | —>> ([ Hidden1 || [ weights
I o] -
Input layer ] e [ Input layer ]
Existing DNN New DNN for
for task A similar task B

@ Often choose existing one from a model zoo

Transposed Convolutions (2)

Transposed Convolutions (4)

flattened input:

Consider this example convolution

This representation works with matrix multiplication on

[ 1
D.
1

Output (2. 2)

3

Output (4,1)
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@ What if some encoder layers are convolutional? How to
upsample to original resolution?

@ Can use, e.g., linear interpolation, bilinear
interpolation, etc.

@ Or, transposed convolution, e.g.,
tf.layers.conv2d_transpose
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An alternative way of representing the kernel
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Convolution Matrix (4, 16)

Qe Transposed Convolutions (5

gsio= Transpose kernel, multiply by flat 2 x 2 to get flat 4 x 4
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Denoising Autoencoders
Vincent et al. (2010)

@ Can train an autoencoder to learn to denoise input by
giving input corrupted instance ¥ and targeting
uncorrupted instance x

@ Example noise models:

e Gaussian noise: x = x + z, where z ~ N(0,0?1)

o Masking noise: zero out some fraction v of
components of x

o Salt-and-pepper noise: choose some fraction v of
components of x and set each to its min or max value
(equally likely)

Denoising Autoencoders

Example

Original Images

Noisy Input

Autoencoder Output

7]z]/10]4

Sparse Autoencoders

@ An overcomplete architecture
@ Regularize outputs of hidden layer to enforce sparsity:

T @) = T (xg(f(x) +aQ(h) ,

where 7 is loss function, f is encoder, g is decoder,
h = f(x), and Q penalizes non-sparsity of
@ E.g., canuse Q(h) = 3, |h;| and ReLU activation to
force many zero outputs in hidden layer
@ Can also measure average activation of &; across
mini-batch and compare it to user-specified target
sparsity value p (e.g., 0.1) via square error or
Kullback-Leibler divergence:
plog? +(1-p) log - =2,
q l—q
where ¢ is average activation of #; over mini-batch
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= Inputs

Hidden 3

Hidden 2 Hidden 2

Hidden 1 Hidden 1

Gaussian Noise ] [ Dropout ]

= |nputs

Outputs
Hidden 3
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Denoising Autoencoders

iy @ How does it work?

e s @ Even though, e.g., MNIST data are in a
784-dimensional space, they lie on a low-dimensional
manifold that captures their most important features
@ Corruption process moves instance x off of manifold
@ Encoder fy and decoder gy are trained to project x back
onto manifold
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@ Similar to sparse autoencoder, but use

w23 (5)

j=1 i=1

Stephen Scott

Introduction
Basic Idea

Stacked AE
@ l.e., penalize large partial derivatives of encoder

outputs wrt input values
@ This contracts the output space by mapping input
points in a neighborhood near x to a smaller output
neighborhood near f(x)
= Resists perturbations of input x
@ If h has sigmoid activation, encoding near binary and a
CE pushes embeddings to corners of a hypercube

Transposed
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Denoising AE
Sparse AE

Contractive

Variational AE

t-SNE

GAN



Variational Autoencoders

Latent Variables

Lt Variational Autoencoders Netieke
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Autoencoders @ VAE is an autoencoder that is also generative model

Stephen Scoft = Can generate new instances according to a probability
distribution

e E.g., hidden Markov models, Bayesian networks

e Contrast with discriminative models, which predict
classifications

@ Independence of z dimensions makes it easy to
generate instances wrt complex distributions via
decoder g

@ Latent variables can be thought of as values of
attributes describing inputs

e E.g., for MNIST, latent variables might represent

“thickness”, “slant”, “loop closure”

Stephen Scott

Introduction Introduction

Basic Idea Basic Idea

Stacked AE Stacked AE

Transposed
Convolutions

Transposed
Convolutions

BT AR @ Encoder f outputs [u, o] T

Denoising AE

Sparse AE o Pair (u;, 0;) parameterizes Sparse AE z X
2gmracﬂve Gaussian distribution for Contractive
dimensioni=1,...,n digit
" ) " -
Variational AE ° DraW Z NN(H,‘,O’,‘) Variational AE thickness 0 \ ﬂ ') L{.
o Decode this latent variable z slant : S- [0 7 f q

to get g(z) loop closure

Variational Autoencoders

Optimization

Wieael Variational Autoencoders Nebisdka

Lincoln Architecture Lincoln

A = Inputs

Li?%g @ Maximum likelihood (ML) approach for training
Autoencoders generative models: find a model (8) with maximum
SR probability of generating the training set X
Introduction @ Achieve this by minimizing the sum of:

Basic Idea e End-to-end AE loss (e.g., square, cross-entropy)

Stacked AE o Regularizer measuring distance (K-L divergence) from
Transposed latent distribution ¢(z | x) and N (0, 1) (= standard
Convolutions multivariate Gaussian)

@ N(0,1) also considered the prior distribution over z (=
distribution when no x is known)
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Gaussian
Transposed noise
Convolutions

Denoising AE Denoising AE

Sparse AE Sparse AE

Contractive Contractive

Variational AE Variational AE

eps = le-10
latent_loss = 0.5 * tf.reduce_sum(
tf.square (hidden3_sigma) + tf.square (hidden3_mean)
1 tf.log(eps + tf.square (hidden3_sigma)))

Aot Variational Autoencoders \20ky Variational Autoencoders

D8 Reparameterization Trick EEl Example Generated Images: Random

CSCE CSCE

e @ Cannot backpr rror signal through random sampl e ;
R annot backprop error signal through random samples oot © Draw z ~ \(0.1) and display g(z)
S S o Reparameterization trick emulates z ~ N (1, o) with ST )

e~N(0,1),z=€c+p

Introduction Introduction

Basic Idea Basic Idea
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Variational Autoencoders

Example Generated Images: Manifold

@ Uniformly sample points in (2-dimensional) z space and
decode

000009PPLPOLOLL0I9IJI
Q000PPPLOHLDLOIIY
QO0OPPPPINLLOIIY
COPDPPRPIIRDLLODOIY
COPPRPIINOEDDLODOIY
COPPWWWORD D O9IY
DOOLLWWWWOYYD9II
DO MWW WMWY QY999
DO My W QY Y Q99
LNCNDNEEEE L R R R R R
DN NNYYYNIII 9=
H 666N YYYYRUYN ==
B 6 6 & g g Ny g Ny NN e = =
LA R R R R R R -
G Y YNy yNSNSSsSs

Aside: Visualizing with t-SNE

van der Maaten and Hinton (2008)

@ Visualize high-dimensional data, e.g., embedded
representations

@ Want low-dimensional representation to have similar
neighborhoods as high-dimensional one

@ Map each high-dimensional xy, ..., xy to
low-dimensional y, . ..,yy via matching pairwise
distributions based on distance

= Probability p; pair (x;,x;) chosen similar to probability g;;
pair (y;,y;) chosen

@ Set p; = (pj; + pi;)/ (2N) where
exp (—|lxi — x>/ (207))

Dz exp (=i — xi]2/(207))

and o; chosen to control density of the distribution

@ l.e, pj; is probability of x; choosing x; as its neighbor if
chosen in proportion of Gaussian density centered at x;

Pjli =

Generative Adversarial Network

@ GANs are also generative models, like VAEs
@ Models a game between two players
o Generator creates samples intended to come from
training distribution
o Discriminator attempts to discern the “real” (original
training) samples from the “fake” (generated) ones
@ Discriminator trains as a binary classifier, generator
trains to fool the discriminator

Realworld — Sample
images N\ Rea
\
=
> Discriminator B 2
A
/‘ Fake
Generator *

Latent random variable
OO0

vy Jos

Variational Autoencoders
2D Cluster Analysis
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@ Cluster analysis by digit (2D latent space)
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Aside: Visualizing with t-SNE (2)

van der Maaten and Hinton (2008)
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@ Also, define ¢ via student’s r distribution:

Stephen Scott o
(1 + llyi = yil1*)
=
ke (L+ [y = yel®)

Introduction

qij =

Basic Idea
Stacked AE X X X
@ Using student’s ¢ instead of Gaussian helps address

crowding problem where distant clusters in x space
squeeze together in y space

@ Now choose y values to match distributions p and ¢ via
Kullback-Leibler divergence:

Zpij 10g IL

ij
i 4y
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Variational AE

(il Generative Adversarial Network

BRI How the Game Works
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@ Let D(x) be discriminator parameterized by 6(°)
e Goal: Find 6% minimizing J®) (6),0(9)
@ Let G(z) be generator parameterized by 6(%)
e Goal: Find 6(© minimizing J(©) (§(), 0(®)
@ A Nash equilibrium of this game is (8, 8(%)) such
that each 80, i € {D, G} yields a local minimum of its
corresponding J
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Generative Adversarial Network

Training

@ Each training step:
o Draw a minibatch of x values from dataset
e Draw a minibatch of z values from prior (e.g., N(0,1))
e Simultaneously update 09 to reduce J(©) and 8 to
reduce J), via, e.g., Adam
@ For J®), common to use cross-entropy where label is 1
for real and 0 for fake
@ Since generator wants to trick discriminator, can use
JG) = _

o Others exist that are generally better in practice, e.g.,
based on ML

Generative Adversarial Network
DCGAN Generated Images: Bedrooms

Trained from LU dataset, sampled z space

Generative Adversarial Network
DCGAN Generated Images: Latent Space Arithmetic

Performed semantic arithmetic in z space!

(Non-center images have noise added in z space; center is
noise-free)

Generative Adversarial Network
DCGAN: Radford et al. (2015)
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@ “Deep, convolution GAN”

@ Generator uses transposed convolutions (e.g.,
tf.layers.conv2d_transpose) without pooling to
upsample images for input to discriminator

512layers of RGB layers of a
T 1024 1ayers of s e single 64x64 image.
ist of random P ; =
(Fomzrr] Gl | -
] — . L

b
S

Stephen Scott
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Beiel Generative Adversarial Network

BRI DCGAN Generated Images: Adele Facial Expressions
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Trained from frame gral
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»

bs of interview, sampled z space
~ o o -
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