

Nebraska	Basic Idea	Nebiaska Linoin Basic Idea
CSCE 479/879 Lecture 5: Autoencoders Stephen Scott	 An autoencoder is a network trained to learn the identity function: output = input 	CSCE 479/879 Lecture 5: Autoencoders Stephen Scott General types of autoencoders based on size of hidden
Introduction Basic Idea Stacked AE Transposed Convolutions	Outputs (* Inputs) Internal representation	Introduction Iayer Basic Idea Undercomplete autoencoders have hidden layer size Stacked AE smaller than input layer size Transposed ⇒ Dimension of embedded space lower than that of input space
Denoising AE Sparse AE Contractive AE Variational AE	Inputs x_1 x_2 x_3 x_3 x_1 x_2 x_3 x_3 x_3 x_3 x_3 x_3 x_1 x_2 x_3	Denoising AE ⇒ Cannot simply memorize training instances Sparse AE ● Overcomplete autoencoders have much larger hidden layer sizes Contractive AE ⇒ Regularize to avoid overfitting, e.g., enforce a sparsity contractive contractive interview
-SNE GAN	 Can be thought of as lossy compression of input Need to identify the important attributes of inputs to reproduce faithfully 	Kanadona AL constraint I-SNE GAN
5/41	・ - - - - - - - - - - - - - - - - - - -	6/41 《□〉〈理〉〈혼〉〉 환 위

Nebiaska Transposed Convolutions

479/87

Lecture 5

Basic Idea

noising A

SNE

GAN

Denoising Autoencoders Vincent et al. (2010)

 Can train an autoencoder to learn to denoise input by giving input corrupted instance x and targeting uncorrupted instance x

Example noise models:

- Gaussian noise: $\tilde{x} = x + z$, where $z \sim \mathcal{N}(0, \sigma^2 I)$
- Masking noise: zero out some fraction ν of components of x
- Salt-and-pepper noise: choose some fraction ν of components of x and set each to its min or max value (equally likely)

Nebiaska Denoising Autoencoders

CSCE Synther Subtractions Stephen Scott

Stephen Scott

Torysonal Tractions

Torysonal Tractions

Stephen Scott

Nebraska Denoising Autoencoders

How does it work? Even though, e.g., MNIST data are in a 784-dimensional space, they lie on a low-dimensional manifold that captures their most important features troduction • Corruption process moves instance x off of manifold asic Idea • Encoder f_{θ} and decoder $g_{\theta'}$ are trained to project \tilde{x} back tacked AF onto manifold Denoising AF $g_{\theta'}(f_{\theta}(\tilde{x}))$ arse AE $q_{\mathcal{D}}(\tilde{x}|x)$ -SNE GAN

Nebraska	Sparse Autoencoders	Nebraska Lincoln	Contract
CSCE 479/879 Lecture 5: Autoencoders Stephen Scott	 An overcomplete architecture Regularize outputs of hidden layer to enforce sparsity: <i><i>J</i>(x) = <i>J</i>(x, g(f(x))) + α Ω(h) , </i> 	CSCE 479/879 Lecture 5: Autoencoders Stephen Scott	 Simila
Introduction Basic Idea Stacked AE Transposed Convolutions Denoising AE Sparse AE Contractive AE	 where <i>J</i> is loss function, <i>f</i> is encoder, <i>g</i> is decoder, <i>h</i> = <i>f</i>(<i>x</i>), and Ω penalizes non-sparsity of <i>h</i> E.g., can use Ω(<i>h</i>) = ∑_i <i>h_i</i> and ReLU activation to force many zero outputs in hidden layer Can also measure average activation of <i>h_i</i> across mini-batch and compare it to user-specified target sparsity value <i>p</i> (e.g., 0.1) via square error or 	Introduction Basic Idea Stacked AE Transposed Convolutions Denoising AE Sparse AE Contractive AE	 I.e., p outpu This point neight
Variational AE t-SNE GAN	Kullback-Leibler divergence: $p \log \frac{p}{q} + (1-p) \log \frac{1-p}{1-q}$,	Variational AE t-SNE GAN	⇒ F ● If <i>h</i> h CE p
23/41	where q is average activation of h_i over mini-batch	24/41	

Contractive Autoencoders Contractive Autoencoders Contractive Autoencoders Contractive Autoencoder Signary Research Signary Research Signary Research Contractive Contractive

- \Rightarrow Resists perturbations of input x
- If *h* has sigmoid activation, encoding near binary and a CE pushes embeddings to corners of a hypercube

Nebraska Variational Autoencoders 479/879 Lecture 5 • VAE is an autoencoder that is also generative model Stephen Sc ⇒ Can generate new instances according to a probability distribution • E.g., hidden Markov models, Bayesian networks Basic Idea

 Contrast with discriminative models, which predict classifications

• Encoder *f* outputs $[\boldsymbol{\mu}, \boldsymbol{\sigma}]^{\top}$

• Draw $z_i \sim \mathcal{N}(\mu_i, \sigma_i)$

to get g(z)

• Pair (μ_i, σ_i) parameterizes Gaussian distribution for dimension $i = 1, \ldots, n$

Variational Autoencoders Nebraska Latent Variables

Basic Idea

tacked AE

enoising A

narse AF

Variational AF

SNE

GAN

• Independence of z dimensions makes it easy to generate instances wrt complex distributions via decoder g

- Latent variables can be thought of as values of attributes describing inputs
 - E.g., for MNIST, latent variables might represent "thickness", "slant", "loop closure"

Variational Autoencoders Nebraska Optimization • Maximum likelihood (ML) approach for training generative models: find a model (θ) with maximum tephen Sc probability of generating the training set $\ensuremath{\mathcal{X}}$ Achieve this by minimizing the sum of: ntroductior asic Idea • End-to-end AE loss (e.g., square, cross-entropy) • Regularizer measuring distance (K-L divergence) from stacked AF ransposed latent distribution $q(z \mid x)$ and $\mathcal{N}(\mathbf{0}, I)$ (= standard multivariate Gaussian) Denoising AE • $\mathcal{N}(\mathbf{0}, I)$ also considered the **prior distribution** over z (= parse AE distribution when no *x* is known) Contractive Variational AE

eps = 1e-10 latent_loss = 0.5 * tf.reduce_sum(tf.square(hidden3_sigma) + tf.square(hidden3_mean) - 1 - tf.log(eps + tf.square(hidden3_sigma)))

Variational Autoencoders Nebraska **Reparameterization Trick**

> • Cannot backprop error signal through random samples • **Reparameterization trick** emulates $z \sim \mathcal{N}(\mu, \sigma)$ with

Nebraska	Variational Autoencoders Example Generated Images: Random
CSCE 479/879 Lecture 5: Autoencoders	• Draw $z \sim \mathcal{N}(0, I)$ and display $g(z)$
Stephen Scott	9363828365
Basic Idea	649111020
Stacked AE	07001940000
Transposed Convolutions	9648034099
Sparse AE	004100000000
Contractive AE	8006935494
Variational AE	11419923334
t-SNE	01101100
GAN	8860870233
30/41	< □ > < @ > < 注 > < 注 > 三 = のへの

ransposed Convolutions

enoising AE

narse AF

ontractive

Variational AF

479/879 Lecture 5

Basic Idea

tacked AE

ransposed Convolutions

parse AE

-SNE

GAN

-SNE

GAN

Variational Autoencoders Example Generated Images: Manifold

Nebiaska

• Uniformly sample points in (2-dimensional) z space and 479/87 Lecture 5 decode tenhen Sr asic Idea noising A e AF riational AF SNE GAN 00000000 \bigcirc 0 000000666 0000000000

Nebraska Lixola 2D Cluster Analysis

Nebraska Lincoln	Aside: Visuali van der Maaten and H
CSCE 479/879 Lecture 5: Autoencoders Stephen Scott Introduction Basic Idea Stacked AE Transposed Convolutions Denoising AE Sparse AE Contractive	 Visualize hig representatio Want low-din neighborhoo Map each hig low-dimensiod distributions ⇒ Probabili pair (y_i, y_j Set p_{ij} = (p_{j i}
AE Variational AE -SNE GAN 33/41	 <i>p_{j i}</i> and σ_i chose I.e., <i>p_{j i}</i> is proceed on the procession of the procesion of the

side: Visualizing with t-SNE n der Maaten and Hinton (2008)

- Visualize high-dimensional data, e.g., embedded representations
- Want low-dimensional representation to have similar neighborhoods as high-dimensional one
- Map each high-dimensional x_1, \ldots, x_N to low-dimensional y_1, \ldots, y_N via matching **pairwise distributions** based on distance
 - ⇒ Probability p_{ij} pair (x_i, x_j) chosen similar to probability q_{ij} pair (y_i, y_j) chosen
- Set $p_{ij} = (p_{j|i} + p_{i|j})/(2N)$ where

$$\mathbf{y}_{j|i} = \frac{\exp\left(-\|\mathbf{x}_i - \mathbf{x}_j\|^2 / (2\sigma_i^2)\right)}{\sum_{k \neq i} \exp\left(-\|\mathbf{x}_i - \mathbf{x}_k\|^2 / (2\sigma_i^2)\right)}$$

and σ_i chosen to control density of the distribution

 I.e., p_{j|i} is probability of x_i choosing x_j as its neighbor if chosen in proportion of Gaussian density centered at x_j

Nebraska Linon Aside: Visualizing with t-SNE (2) van der Maaten and Hinton (2008)

479/879

tacked AF

enoising AE

Contractive

Variational Al

ariational Al

GAN

AN

• Also, define q via student's t distribution:

$$u_{ij} = \frac{\left(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2\right)^{-1}}{\sum_{k \neq \ell} \left(1 + \|\mathbf{y}_k - \mathbf{y}_\ell\|^2\right)^{-1}}$$

- Using student's *i* instead of Gaussian helps address **crowding problem** where distant clusters in *x* space squeeze together in *y* space
- Now choose y values to match distributions p and q via Kullback-Leibler divergence:

$$\sum_{i\neq j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

Nebraska Generative Adversarial Network GANs are also generative models, like VAEs Lecture 5 • Models a game between two players • Generator creates samples intended to come from tephen Sc training distribution • Discriminator attempts to discern the "real" (original asic Idea training) samples from the "fake" (generated) ones acked AE • Discriminator trains as a binary classifier, generator ansposed privolution trains to fool the discriminator enoising A arse AE Sample Contractive 0 Discrimina Loss ariational AF SNE GAN Sample

Nebraska Lincoln	• Let $D(\mathbf{x})$ be discriminator parameterized by $\theta^{(D)}$ • Goal: Find $\theta^{(D)}$ minimizing $J^{(D)}(\theta^{(D)}, \theta^{(G)})$ • Let $G(z)$ be generator parameterized by $\theta^{(G)}$ • Goal: Find $\theta^{(G)}$ minimizing $J^{(G)}(\theta^{(D)}, \theta^{(G)})$ • A Nash equilibrium of this game is $(\theta^{(D)}, \theta^{(G)})$ su
CSCE 479/879 Lecture 5: Autoencoders	
Stephen Scott	
Introduction	• Let $D(\mathbf{x})$ be discriminator parameterized by $\theta^{(D)}$ a Goal: Find $\theta^{(D)}$ minimizing $I^{(D)}(\theta^{(D)}, \theta^{(G)})$
Basic Idea	
Stacked AE	• Let $G(z)$ be generator parameterized by $\theta^{(G)}$
Transposed Convolutions	• Goal: Find $oldsymbol{ heta}^{(G)}$ minimizing $J^{(G)}\left(oldsymbol{ heta}^{(D)},oldsymbol{ heta}^{(G)} ight)$
Denoising AE	• A Nash equilibrium of this game is $(\theta^{(D)}, \theta^{(G)})$ su

• A Nash equilibrium of this game is $(\theta^{(D)}, \theta^{(G)})$ such that each $\theta^{(i)}, i \in \{D, G\}$ yields a local minimum of its corresponding J

Nebraska

479/879 Lecture 5

Stephen Sco

Basic Idea

ransposed Convolutions

enoising AE

arse AF

Contractive

riational AF

Training

Generative Adversarial Network

- Each training step:
 - Draw a minibatch of *x* values from dataset
 - Draw a minibatch of z values from prior (e.g., $\mathcal{N}(\mathbf{0}, I)$)
 - Simultaneously update $\theta^{(G)}$ to reduce $J^{(G)}$ and $\theta^{(D)}$ to reduce $J^{(D)}$, via, e.g., Adam
- For $J^{(D)}$, common to use cross-entropy where label is 1 for real and 0 for fake
- Since generator wants to trick discriminator, can use $J^{(G)} = -J^{(D)}$
 - Others exist that are generally better in practice, e.g., based on ML

Generative Adversarial Network Nebraska DCGAN: Radford et al. (2015)

Stenhen Sco

Basic Idea

GAN

- "Deep, convolution GAN"
- Generator uses transposed convolutions (e.g., tf.layers.conv2d_transpose) without pooling to upsample images for input to discriminator

Lecture 5

Stephen Sco

Basic Idea tacked AE ransposed Convolutions enoising AE Sparse AE Contractive Variational AF

SNE

GAN

Nebraska

Nebraska Lincoln	Genera DCGAN G	ative A	Adve I Image	ersa es: Ad	rial ele Fa	Net cial E>	vork (pressi	(ions				
CSCE 479/879 Lecture 5: Autoencoders Stephen Scott Introduction Basic Idea Stacked AE Transposed Convolutions Denoising AE Sparse AE Contractive AE Variational AE I-SNE GAN	Trained	from fr	ame	grabs	of in	tervice Bielen Bielen Bielen Bielen Bielen	ew, sa	ample an an an an an an an an	ed z sp	ace		
40/41							Image:	< ∰ ≻	◆ 置 ▶ →	ヨトー	Ξ.	3

Generative Adversarial Network Nebraska DCGAN Generated Images: Latent Space Arithmetic

Performed semantic arithmetic in z space!

(Non-center images have noise added in z space; center is noise-free)

イロト イロト イモト イモト ヨー わへで