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Outline

Types of machine learning problems

Loss functions

Generalization performance vs training set performance
Overfitting

Regularization

Estimating generalization performance

Measuring Performance

Loss

@ In any learning problem, need to be able to quantify
performance of algorithm

@ In supervised learning, we often use loss function (or
error function) 7 for this task

@ Given instance x with true label y, if the learner’s
prediction on x is y, then

T(,9)

is the loss on that instance
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Introduction

@ Machine learning can generally be distilled to an
optimization problem

@ Choose a classifier (function, hypothesis) from a set of
functions that minimizes an objective function

@ Clearly we want part of this function to measure
performance on the training set, but this is insufficient

Machine Learning Problems

@ Supervised Learning: Algorithm given labeled training
data and infers function (hypothesis) from a family of
functions (e.g., set of all ANNSs) that is able to predict
well on new, unseen examples

e Classification: Labels come from a finite, discrete set
o Regression: Labels are real-valued

@ Unsupervised Learning: Algorithm is given data

without labels and is asked to model its structure
o Clustering, density estimation

@ Reinforcement Learning: Algorithm controls an agent
that interacts with its environment and learns good
actions in various situations

Measuring Performance

Examples of Loss Functions

@ 0-1Loss: J(y,y) = 1ify # 3, 0 otherwise
@ Square Loss: J(y,9) = (y — )2

@ Cross-Entropy: J(y,7) = —ylny— (1 —y)In(1 — )
(y and y are considered probabilities of a ‘1’ label)
o Generalizes to k classes (i* = correct class):

k
T.5) ==Y yilny = —Ing
i=1
(v is one-hot vector; y; is predicted prob. of class i)

@ Hinge Loss: J(y,5) = max(0,1 —yy)
(used sometimes for large margin classifiers like SVMs)

All non-negative
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@ Given a loss function 7 and a training set X, the total
loss of the classifier 2 on X is

errory(h) = Z T x> x) s
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@ Sulfficiently sophisticated learners (decision trees,
multi-layer ANNs) can often achieve arbitrarily small (or
zero) loss on a training set

@ A hypothesis (e.g., ANN with specific parameters) &
overfits the training data X if there is an alternative
hypothesis 4’ such that
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@ More importantly, the learner needs to generalize well:
Given a new example drawn iid according to unknown
probability distribution D, we want to minimize ’s
expected loss:

Introduction
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errorp(h) = Exp [T (Vx, Jx)]
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@ Is minimizing training loss the same as minimizing
expected loss?
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@ Generally, if the set of functions # the learner has to
choose from is complex relative to what is required for
correctly predicting the labels of X, there’s a larger
chance of overfitting due to the large number of “wrong
choices in H

e Could be due to an overly sophisticated set of functions
e E.g., canfit any set of n real-valued points with an
(n — 1)-degree polynomial, but perhaps only degree 2 is
needed
@ E.g., using an ANN with 5 hidden layers to solve the
; logical AND problem
e o Could be due to training an ANN too long
@ Over-training an ANN often leads to weights deviating
far from zero
@ Makes the function more non-linear, and more complex

@ Often, a larger data set mitigates the problem
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Number of weight updates

Regularization

Parameter Norm Penalties

@ Still want to minimize training loss, but balance it
against a complexity penalty on the parameters used:

J(0; X,y) = T (6; X,y) + a(6)

@ « € [0,00) weights loss 7 against penalty Q

Regularization

Parameter Norm Penalties: > Norm
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@ w* is optimal for 7, 0 optimal for regularizer

@ 7 less sensitive to wy, so w (optimal for 7) closer to w,
axis than w,

Aven Regularization
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@ Danger of stopping too soon
o “Patience” parameter determines how long to wait
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@ As weights deviate from zero, activation functions
become more nonlinear, which is higher risk of
e overfitting
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@ Q(0) = |01, i.e., sum of absolute values of network’s
weights
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Tw; X,y) =alw|i + T (w; X.y)
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@ As with L? regularization, penalizes large weights
@ Unlike L? regularization, can drive some weights to zero

Regularization

Parameter Norm
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Data Augmentation

@ Sparse solution

o Nomalaton e Sometimes used in feature selection (e.g., LASSO
Others algorithm)
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Mutitask Learning
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Staphan Scatt some h € H that fits idiosyncrasies or noise in data Staphan Scatt
and Vinod . and Vinod
Variyam @ Deep ANNs would like to have at least thousands or Variyam
' tens of thousands of data points '
Introduction . . . K i . Introduction
rremE @ In clqs§|f|qat|on of h|gh-d|men3|ongl data (e.g., image i
Reromparee classification), want learned classifier to tolerate Reromparee
Regularization transformations and noise Regularization

c g c g

= Can artificially enlarge data set by duplicating existing
instances and applying transformations
@ Translating, rotating, scaling Multtask Loarning
@ Don’t change the class, e.g., “b” vs “d” or “6” vs “9” e maizaton
@ Don’t let duplicates lie in both training and testing Others

Estimating sets Estimating
Generalization Generalization

Performance = Can also apply noise injection to input or hidden layers Performance

Comparing
Learning
Alddtiths

Comparing
Learning
o

ithhs

Wea Regularization 5 Regularization

ERl  Multitask Learning B Dropout

CSCE CSCE @ Imagine if, for a network,

e @ If multiple tasks share 79878 we could avera |
Regularization generic parameters, Regularization /erage over a QAlalalaq
Stephen Scott initially process inputs Stephen Scott networks with each 3#*3 °‘g :’° o g
o via shared nodes, then e subset of nodes deleted (7 5 Tolola
ntroduction do final processing via roduaton @ Analogous to bagging, 0*0 olo)
M task-specific nodes B where we average over oy, ooe = @@ @
MRl o Backoropagaton works Bl e renedonandom J O
: ; as before with multiple e samples 0 O ccll’c}
output nodes @ In each training iteration, © ®
@ Serves as a regularizer sample a raqdom bit @
since parameter tuning vector i, which e
of shared nodes is based determines which nodes @ When tramlhg done,
e . on backpropagated error Gonemainion areused (6.g., re-scale weights by
Performance from multlple tasks Performance P(/,Ll = 1) = 08 for Inplut P(;ul = 1)
Compaing Comparing unit, 0.5 for hidden unit)

Learning

Learning
Rk ithhs it

2R ithhs

\Emey Regularization 5 Regularization

Batch Normalization (loffe and Szegedy 2015) BRI}  Other Approaches

CSCE @ Addresses internal

CSCE
479/879 H H 479/879
. covariate shift, where — :
Lecture 3: ’ Input: Values of z over a mini-batch: B = {z;_}; Lecture 3: g, H
Fem T changing parameters of B e min e B~ 1) Fem T @ Parameter Tying: If two learners are learning the

Output: {y; = BN, g(z;)}

same task but different scenarios (distributions, etc.),

Stephen Scott . Stephen Scott Y .
are Vs layer i changes S P and vinog can tie their parameters together
d|str|byt|on of inputs to " o If w are weights for task A and w'® are weights for
Introduction layer i+ 1 o} E;(z‘—us)’ // mini-batch variance Introduction task B, then can use regularization term
Measurng o Related to S otz = Qw®, w®) = [w —w®3
. . N ET . . . .
Requlrizato z-normalization, Where | .« 6 :scmae)  /scleadshi Requiarizatio o E.g., Ais supervised and B is unsupervised

@ Parameter Sharing: When detecting objects in an
image, the same recognizer should apply invariant to
translation

one SUbtraCtS sample Algorithm 1: Batch Normalizing Transform, applied to
mean and SCaleS W|th activation = over a mini-batch.
standard deviation ;

task Learning

o Dopou e Train a single detector (subnetwork) for an object (e.g.,
Sr— @ 7, 3 learnable parameters T cat) by training full network on multiple images with
EEmam @ Allows use of higher learning rates, possibly speeding Estimating translated cats, where the cat detector subnets share
Performance convergence e parameters (single copy, used multiple times)

Loarming @ In some cases, reduces/eliminates need for dropout Loarmng ”

i ithhs

R ithhs
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@ Sparse Representations: Instead of penalizing large
weights, penalize large outputs of hidden nodes:
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J(O;X,y) =T(0;X,y) +aQh) ,
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where h is the vector of hidden unit outputs
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@ Need to note that, in addition to statistical variations,
what we determine is limited to the application that we
are studying

e E.g., if ANN; better than ANN, on speech recognition,
that means nothing about video analysis

@ In planning experiments, need to ensure that training
data not used for evaluation
e l.e., don’t test on the training set!
Estimating . . .
Generalization o Will bias the performance estimator
EE o If using data augmentation, don’t let duplicates lie in
3 both training and testing sets
Comparing e Also holds for validation set used for early stopping,

Stephen Scott
and Vinod
Variyam
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Algorithms tuning parameters, etc.
Other @ Validation set serves as part of training set, but not used
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Confidence Intervals (cont’d)

sk Let errorp(h) be 0-1 loss of i on instances drawn according
to distribution D. If
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o Test set V contains N examples, drawn independently
of h and each other

@ N >30

Introduction

Measuring
Performance

Then with approximately c% probability, errorp(h) lies in

Regularization

Estimating

e errory(h) + 2 \/ermm(h)(l — errory ()

Coiidonco | N

Comp‘aring

;?;g;:;;?m N%: | 50% 68% 80% 90% 95% 98% 99%
- z: | 067 1.00 1.28 1.64 1.96 233 258
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Measures

Why?
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@ Before setting up an experiment, need to understand
exactly what the goal is

S S o Estimate the generalization performance of a
an {lale] .
Variyam hypothesis
; e Tuning a learning algorithm’s parameters
Iniroduction e Comparing two learning algorithms on a specific task
Measuring ° EtC
Performance .
Regularization @ Will never be able to answer the question with 100%
Estimating Cel’talnty

Generalization
Performance
Setiing Goals

Confidence Intervals

o Due to variances in training set selection, test set
selection, etc.

e Will choose an estimator for the quantity in question,
determine the probability distribution of the estimator,
and bound the probability that the estimator is way off

o Estimator needs to work regardless of distribution of
training/testing data

Comparing
Learning
Algorithms

Other
Performance
Measures
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Confidence Intervals

joscel Let errorp(h) be 0-1 loss of hypothesis % on instances drawn
according to distribution D. If
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@ Test set V contains N examples, drawn independently
of  and each other

@ N >30

Introduction

Measuring
il  Then with approximately 95% probability, errorp(h) lies in

Regularization

Estimating
Generalization
Performance

s als
Confidence Inervals

errory(h)(1 — errory(h))
N

errory(h) = 1.96\/

Gomparing E.g. hypothesis i misclassifies 12 of the 40 examples in test
Algorithms set V: 12

et errory(h) = — = 0.30

V\P/ISZSLII'GS V( ) 40

Then with approx. 95% confidence, errorp(h) € [0.158,0.442]

28/53

errory(h) is a Random Variable

ey Repeatedly run the experiment, each with different
randomly drawn V' (each of size N)

Lecture 3:
Regularization

bihakilll  Probability of observing r misclassified examples:
Variyam 014 Binomial distribution for n =40, p =0.3

Introduction 0.12

Measuring 0.1

Performance = 0.08

Regularization ~ 0.06

Estimating 0.04

Generalization

Performance 002

s 0

Confidence Intervals 0 5 10 15 20 25 30 35 40

Comparing N —

Learning P(r)= errorp(h)" (1 — errorp(h))N ="

Algorithms r

Other

Performance
Measures

l.e., let errorp(h) be probability of heads in biased coin, then
P(r) = prob. of getting r heads out of N flips

30/53
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Binomial Probability Distribution

Normal Probability Distribution

Normal Probability Distribution (cont'd)

po) = (V) oo = P

Probability P(r) of r heads in N coin flips, if p = Pr(heads)
@ Expected, or mean value of X, E[X] (= # heads on N
flips = # mistakes on N test exs), is

N
EX] = ZiP(i) = Np =N -errorp(h)
i=0

@ Variance of X is
Var(X) = E[(X — E[X])?] = Np(1 — p)
@ Standard deviation of X, oy, is

ox = \/E[(X — E[X])?] = v/Np(1 —p)

Normal distribution with mean 0, standard deviation |

P = s oxp (; (";“)2>

@ The probability that X will fall into the interval (a,b) is
given by f:p(x)dx

@ Expected, or mean value of X, E[X], is E[X] = 11

@ Variance is Var(X) = o2, standard deviation is ox = o

04
035 -
03+
025 -
02
015 -
01+
005 -
0

2 3

% of area lies < p+ z, 0 or > p — zZ.o, where
7 = 2100—(100—c) /2

c%: | 50% 68% 80% 90% 95% 98% 99%
z: | 0.0 047 084 128 1.64 2.05 233
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Approximate Binomial Dist. with Normal

errory(h) = r/N is binomially distributed, with
@ MEAN Lierypr, sy = errorp(h) (i.e., unbiased est.)
@ standard deviation .o, (1)

errorp(h)(1 — errorp(h))
Oerrory,(h) = N

(increasing N decreases variance)

Want to compute confidence interval = interval centered at
errorp(h) containing ¢% of the weight under the distribution

Approximate binomial by normal (Gaussian) dist:
© MeAN Lieryor, () = errorp(h)

@ standard deviation a,,,o,, (i)

N errory(h)(1 — errory(h))
Oerrory, (h) ~ N

Normal Probability Distribution (cont'd)

-3 -2 0 1

80% of area (probability) lies in u £+ 1.28¢

¢% of area (probability) lies in u + z. o

c%: | 50% 68% 80% 90% 95% 98% 99%
z: | 067 1.00 128 1.64 1.96 233 258

Confidence Intervals Revisited

If V contains N > 30 examples, indep. of » and each other

Then with approximately 95% probability, errory (h) lies in

errorp(h)(1 — errorp(h))
N

errorp(h) £ 1.96\/

Equivalently, errorp(h) lies in

errorp(h)(1 — errorp(h))
N

errory(h) £ 1 .96\/

which is approximately

errory(h)(1 — errory(h))
N

errory(h) = 1.96\/

(One-sided bounds yield upper or lower error bounds)
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Comparing Learning Algorithms

K-Fold Cross Validation (cont’d)

Central Limit Theorem

How can we justify approximation?

Consider set of iid random variables Yy, ..., Yy, all from
arbitrary probability distribution with mean p and finite
variance o?. Define sample mean ¥ = (1/N) 31, ¥;

Y is itself a random variable, i.e., result of an experiment
(e.g., errors(h) = r/N)

Central Limit Theorem: As N — oo, the distribution
governing Y approaches normal distribution with mean p
and variance o2 /N

Thus the distribution of errors(h) is approximately normal for
large N, and its expected value is errorp(h)

(Rule of thumb: N > 30 when estimator’s distribution is
binomial; might need to be larger for other distributions)

@ What if we want to compare two learning algorithms L!
and L? (e.g., two ANN architectures, two regularizers,
etc.) on a specific application?

@ Insufficient to simply compare error rates on a single
test set

@ Use K-fold cross validation and a paired r test

@ Now estimate confidence that true expected error
difference < 0

= Confidence that L! is better than L? on learning task

@ Use one-sided test, with confidence derived from
student’s  distribution with K — 1 degrees of
freedom

@ With approximately ¢% probability, true difference of
expected error between L' and L? is at most

P + tcyK—l Sp

where

Sp

1 K 5
mZ(Pi*P)

i=1

Lincoln

Calculating Confidence Intervals

CSCE
479/879
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@ Pick parameter to estimate: errorp(h)
(0-1 loss on distribution D)

Choose an estimator: errory(h)
(0-1 loss on independent test set V)

@ Determine probability distribution that governs
estimator: errory,(h) governed by binomial distribution,
approximated by normal when N > 30

© Find interval (L, U) such that ¢% of probability mass

» falls in the interval
Comae® e Could have L = —co or U = oo
Sesiins e Use table of z. or 7. values (if distribution normal)

Stephen Scott
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K-Fold Cross Validation
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@ Partition data set X into K equal-sized subsets
Xy, X, ..., Xk, where |.)(',| > 30

@ Forifrom1to K, do
(Use AX; for testing, and rest for training)

Stephen Scott
and Vinod
Variyam

Introduction

Measuring
Performance Q Vi = )(z
Regularization @ Ti=4x \ &

@ Train learning algorithm L' on 7; to get A/
@ Train learning algorithm L* on 7; to get /;
Comparing @ Let p) be error of I, on test set V;

Learning e pi= pxl 7]7,2

Algorithms
@ Error difference estimate p = (1/K) >-X p;

Estimating
Generalization
Performance

K-Fold CV.

E
Other

Performance
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Student’s ¢ Distribution (One-Sided Test)

CSCE df 0.600 0700 _ 0.800 _ 0.900 _ 0.950 _ 0.975 _ 0.990 _ 0.995
479/879 1 0325 | 0727 37 3078 | 6314 ] 12706 | 31821 | 63657
Lecture 3: 2 0289 | 0617 06 1886 | 2920 | 4303 | 6965 | 9.925
IR BN 3 0277 | 0584 | 097 1638 | 2353 | 3182 | 4541 5.841
3 0271 | 0569 | 0941 533 132 776 747 _|_4.604
el 5 0.267 | 0.559 | 0520 | 1aze | 2015 | 2571 | 3365 | 4032
et Ve 6 0265 | 0553 | 0906 440 943 447 143 707
7 0263 | 0549 | 08% 15 895 365 998 99
8 0262 | 0.54 0.889 397 860 306 896 355

Intreduction 9 0.261 054 0883 383 833 262 821 250 |
10 0260 | 054 087 372 312 228 764 169
Sy 11 0260 | 0540 | 087 363 796 201 718 106
12 0259 | 0539 | 08 356 762 179 681 055
Regularization 3 0259 | 0538 | 0870 350 771 160 650 012

Estimating
Generalization
Performance

If p+t.x—15, < 0 our assertion that L' has less error than
L? is supported with confidence ¢

Comparing
Learning
Algorithms

So if K-fold CV used, compute p, look up 7. x— and check if
Dienbuton p<—tek—15p

Other
Performance

One-sided test; says nothing about > over L!

Measures
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Caveat

performs better than algorithms L%, L3, L*, I°

If you use K-fold CV to show superior performance of
L' over each of L2, ..., L’ at 95% confidence, there’s a
5% chance each one is wrong

There’s an over 18.5% chance that at least one is

wrong

Our overall confidence is only just over 81%
Need to account for this, or use more appropriate test

Confusion Matrices

Break down error into type: true positive, etc.

@ Say you want to show that learning algorithm L!

Predicted Class
True Class Positive \ Negative | Total
Positive tp : true positive | fn : false negative | p
Negative fp : false positive | m : true negative n
Total r n N

@ Generalizes to multiple

classes

@ Allows one to quickly
assess which classes

are missed the most, and

into what other

ROC Curves

Plotting #p versus fp

class

Prediction values.

Confusion Matrix

5 10 15
True values

@ Consider the “always —” hyp. What is fp? What is p?

What about the “always +” hyp?

In between the extremes, we plot TP versus FP by
sorting the test examples by the confidence values

Ex | Confidence | label | Ex | Confidence | label
X1 169.752 + X6 —12.640 -
X 109.200 + X7 —29.124 -
X3 19.210 — Xg —83.222 —
X4 1.905 + X9 —91.554 +
X5 —2.75 + X10 —128.212 —

Lincoln

More Specific Performance Measures
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@ So far, we've looked at a single error rate to compare

hypotheses/learning algorithms/etc.
@ This may not tell the whole story:
1000 test examples: 20 positive, 980 negative
Measuring e h' gets 2/20 pos correct, 965/980 neg correct, for
Performance accuracy of (2 + 965)/(20 + 980) = 0.967

o Pretty impressive, except that always predicting

T negative yields accuracy = 0.980
etioimance o Would we rather have #2, which gets 19/20 pos correct
and 930/980 neg, for accuracy = 0.949?
Depends on how important the positives are, i.e.,
frequency in practice and/or cost (e.g., cancer
diagnosis)
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@ Consider classification via ANN + linear threshold unit

@ Normally threshold f(x; w,b) at 0, but what if we
changed it?

@ Keeping w fixed while changing threshold = fixing
hyperplane’s slope while moving along its normal vector

Stephen Scott
and Vinod
Variyam

Introduction

Measuring .
Performance [N _predall +
Regularization

Estimating
Generalization
Performance

Comparing
Learning
Algorithms

[

pred all = O
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Confusion Matrices

@ Get a set of classifiers, one per labeling of test set

@ Similar situation with any classifier with confidence
value, e.g., probability-based

Brney ROC Curves

BRIl Plotting 7p versus fp (cont'd)
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Brney ROC Curves

Bl Convex Hull

Lecture 3: ID3 e o
Regularization ./

Stephen Scott o o o

and Vinod

Variyam @naive Bayes

Introduction

Measuring
Performance FP

Regularization
Estimating

Generalization
Performance

@ The convex hull of the ROC curve yields a collection of
classifiers, each optimal under different conditions
e If FP cost = FN cost, then draw a line with slope [N|/|P|
at (0,1) and drag it towards convex hull until you touch

Performance it; that's your operating point
Measures . .
o e Can use as a classifier any part of the hull since can
randomly select between two classifiers

Comparing
Learning
Algorithms

Other

Brney ROC Curves

BN Miscellany
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@ What is the worst possible ROC curve?
@ One metric for measuring a curve’s goodness: area
under curve (AUC):

2oviep 2 enl(h(xy) > h(x-))
Pl IN]

i.e., rank all examples by confidence in “+” prediction,
count the number of times a positively-labeled example
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Introduction
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Performance
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Eetigating (from P) is ranked above a negatively-labeled one (from
eneralization N

Performance N), then normalize

Comparing e What is the best value?

earnin . . . . .

Algorthms o Distribution approximately normal if |P|, [N| > 10, so can
Other find confidence intervals

Nerformance e Catching on as a better scalar measure of performance
Con than error rate

@ Possible (though tricky) with multi-class problems
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Precision-Recall Curves (cont’d)
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@ As with ROC, vary
threshold to trade
precision and recall

@ Can compare curves
based on containment

@ More suitable than ROC
for large numbers of
negatives
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@ Use Fg-measure to combine at a specific point, where
B weights precision vs recall:

Comparing
Learning
Algorithms

Oth .. .
Performance Fs=(1+ ,82) precision - recall

Measures

(B2 - precision) + recall

Brney ROC Curves

Bl Convex Hull
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Comparing

@ Can also compare curves against “single-point”
T i
o classifiers when no curves
Other o In plot, ID3 better than our SVM iff negatives scarce; nB
Performance never better

Measures

Confusion Matrices
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Precision-Recall Curves
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Consider information retrieval task, e.g., web search
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frue . fdse
v positive v ; positive

Measuring
Performance

Regularization
Estimating

Generalization
Performance
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Other precision = 1p/p’ = fraction of retrieved that are positive
Performance
Measures

Q Alldocuments v relevant X not relevant Q retrieved

recall = ip/p = fraction of positives retrieved

Precision-Recall



