NeBWERSWV] OF

Lincoln

CSCE
479/879
Lecture 2:

B CSCE 479/879 Lecture 2:

Networks

S Basic Artificial Neural Networks

Introduction
Supervised
Learning Stephen SCOT’[

Basic Units

Gradient (Adapted from Vinod Variyam, Ethem Alpaydin, Tom Mitchell,

Descent lan Goodfellow, and Aurélien Géron)
Nonlinearly

Separable

Problems

Backprop

Types of Units

Putting Things
Together sscott@cse.unl.edu

1/59

mailto:sscott@cse.unl.edu

A Introduction

Bl Supervised Learning

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

Sl Sl @ Supervised learning is most fundamental, “classic”

e form of machine learning

Superviad @ “Supervised” part comes from the part of /abels for
Basic Units examples (instances)

Gradient @ Many ways to do supervised learning; we’ll focus on
Descent agr = . H
Noniinear artificial neural networks, which are the basis for
lonlinearly .

Separable deep learning

Problems

Backprop

Types of Units

Putting Things
Together

2/59

ey Introduction
Lincoln - Y NINES

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

Consider humans:
Stephen Scott

@ Total number of neurons =~ 10!°

Introduction

Supervised @ Neuron switching time ~ 103 second (vs. 10~19)

Learning

Basic Units @ Connections per neuron ~ 10*-10°
Gradient @ Scene recognition time ~ 0.1 second

Descent

Nonlinearly @ 100 inference steps doesn’t seem like enough

Separable

Problems = massive parallel computation
Backprop

Types of Units

Putting Things
Together

3/59

A Introduction

Bl Properties

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

Properties of artificial neural nets (ANNSs):
Stephen Scott

T @ Many “neuron-like” switching units
Supervised @ Many weighted interconnections among units

Learning

BasioUnits @ Highly parallel, distributed process
Gradient @ Emphasis on tuning weights automatically

Descent

Nonlinearly

Separable Strong differences between ANNs for ML and ANNs for

Probl . . .
oo biological modeling
Backprop

Types of Units

Putting Things
Together

4/59

WEve=8 \\hen to Consider ANNs

Lincoln

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

@ Input is high-dimensional discrete- or real-valued (e.g.,
raw sensor input)

@ Output is discrete- or real-valued

Stephen Scott

Introduction

Supervised .

Learning @ Output is a vector of values

sasie Units @ Possibly noisy data

Gradient . .

Descent @ Form of target function is unknown

Nonli | - . .

St @ Human readability of result is unimportant

Problems

s @ Long training times acceptable

Types of Units

Putting Things
Together

5/59

\Beney Introduction
Bl Brief History of ANNs

CSCE
479/879
Lecture 2:
Basic Artificial
Neural

BT @ The Beginning: Linear units and the Perceptron
Stephen Scott algorithm (1940s)

@ Spoiler Alert: stagnated because of inability to handle
data not linearly separable

Introduction

Supervised

Learning e Aware of usefulness of multi-layer networks, but could
Basic Units not train

Gradient @ The Comeback: Training of multi-layer networks with
z:::::;”y Backpropagation (1980s)

Separable e Many applications, but in 1990s replaced by

Problems

large-margin approaches such as support vector

Backprop machines and boosting

Types of Units

Putting Things
Together

6/59

ey Introduction
Rl Brief History of ANNs (cont'd)

CSCE
Lecture 2 @ The Resurgence: Deep architectures (2000s)

Basic Artificial

Neural e Better hardware' and software support allow for deep
Networks (> 5-8 layers) networks
S S e Still use Backpropagation, but

@ Larger datasets, algorithmic improvements (new loss
— and activation functions), and deeper networks improve
Learning performance considerably

Basic Units e Very impressive applications, e.g., captioning images

Gradient
Descent

Introduction

Nonlinearly
Separable

:rol:ems o The IneVitabIe: (TBD)
ackprop e Oops

Types of Units

Putting Things
Together

7759 "Thank a gamer today.

WCeted Oytline

Lincoln

CSCE
479/879
Lecture 2:
Basic Artificial

N Supervised learning

Networks @ Basic ANN units
Stephen Scott . .
e Linear unit
Introduction e Linear threshold units
Supervised e Perceptron training rule
Learning .
@ Gradient Descent

Basic Units

Gradient
Descent

Nonlinearly separable problems and multilayer
networks

Nonlinearly
Separable
Problems

Backpropagation
Types of activation functions
Putting everything together

Backprop

Types of Units

Putting Things
Together

8/59

\eetd | earning from Examples

CSCE
479/879

Lecture 2: @ Let C be the target function (or target concept) to be

Basic Artificial

Neural learned
eterks e Think of C as a function that takes as input an example
(or instance) and outputs a label
@ Goal: Given training set X = {(x',y")}", where
y' = C(x"), output hypothesis € # that approximates

Stephen Scott

Introduction

Supervised
Learning

Basic Units C in its classifications of new instances

Gradient @ Each instance x represented as a vector of attributes
_ or features

Nonlinearly .

?ff;ﬁﬁ'f e E.g., leteach x = (x;,x,) be a vector describing

attributes of a car; x; = price and x, = engine power
e In this example, label is binary (positive/negative,
puting Things yes/no, 1/0, +1/—1) indicating whether instance x is a
Together “family car’

Backprop

Types of Units

9/59

NeBWERSWV] OF

Lincoln

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

10/59

Learning from Examples (cont’d)
Alpaydin (2014)

m|
:
8
£
g
|
e

©

S
o D S
@
® S
X o 45 °
©
©
1 H 1 »
@ Xp3,Pricel]

el Thinking about €

CSCE
479/879
Lecture 2:
Basic Artificial
Neural

Networks @ Can think of target concept C as a function

Stephen Scott e In example, C is an axis-parallel box, equivalent to
upper and lower bounds on each attribute

e Might decide to set H (set of candidate hypotheses) to
the same family that C comes from

Basic Units e Not required to do so

Gradient @ Can also think of target concept C as a set of positive
Descent instances

Nonlinearly

Separable e In example, C the continuous set of all positive points in

Problems the plane
Backprop

Introduction

Supervised
Learning

@ Use whichever is convenient at the time

Types of Units

Putting Things
Together

11/59

Ne‘BﬂvERSWV]or

Lincoln

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

12/59

X] Engine power[

i

Thinking about C (cont'd)
Alpaydin (2014)

cO

S
S
©

©

S)

I ! -

PE) PE) X Price]

Weeet=d Hypotheses and Error

CSCE

(TI8TS @ A learning algorithm uses training set X’ and finds a

Sase Artiicil hypothesis i € H that approximates C
Networks H
@ In example, H can be set of all axis-parallel boxes

@ If C guaranteed to come from #H, then we know that a
Introduction perfect hypothesis exists

Stephen Scott

et e In this case, we choose & from the version space =
Basic Units subset of H consistent with &

e What learning algorithm can you think of to learn C?
@ Can think of two types of error (or loss) of
Nonlinearly

Separable e Empirical error is fraction of X’ that & gets wrong

e o Generalization error is probability that a new,

Backprop randomly selected, instance is misclassified by &

Types of Units @ Depends on the probability distribution over instances

e Can further classify error as false positive and false
negative

Gradient
Descent

Putting Things
Together

13/59

Nemeswv]w

Lincoln

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units

Putting Things
Together

14/59

Hypotheses and Error (cont'd)

Alpaydin (2014)

2
2
£
5
S
€ e
B \ SP) o
D
€] k
VIS SS SIS ID,
B o o ©
©

False positive

C False negative

D

©
e
o
. >
2 .
x;: Price

ee Linear Unit (Regression)
Bl Mitchell (1997)

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units
Linear Unit

Linear Threshold
Unit

Pexcopuon T y=f;w,b) =x"w+b=wx;+ -+ wx, +b

ule

Gradient
Descent

Nonlinearly

Separable @ Each weight vector w is different &

Problems

Backprop @ If set wy = b, can simplify above

Types of Units @ Forms the basis for many other activation functions
Puttihcb®hings

\Aened Linear Threshold Unit (Binary Classification)

Lincoln Mitchell (1 997)

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction >
| S
Supervised . i i Lif X w,x:>0
Learning), 0= Pari g
-1 otherwise

Basic Units
Linear Unit
Linear Threshold

ule

if f(x;w,b) >0
otherwise

Gradient

Descent (sometimes use 0 instead of —1)

Nonlinearly
Separable
Problems

Backprop

Types of Units
PuttthcbPhings

A Linear Threshold Unit

Bl Decision Surface (Mitchell 1997)

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Liess nit Represents some useful functions

Linear Threshold
Unit

Perceptron Training

@ What parameters (w, b) represent
Gradient g(x1,x2;w,b) = AND(x1,x,)?

Descent

Nonlinearly .
Separable But some functions not representable

Problems
Backeied @ l.e., those not linearly separable
Types ornis @ Therefore, we’ll want networks of units

Putticb®hings

A Linear Threshold Unit

B Non-Numeric Inputs

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

@ What if attributes are not numeric?
nirodustion @ Encode them numerically

Supervised e E.g., if an attribute Color has values Red, Green, and
eerne Blue, can encode as one-hot vectors [1,0,0], [0, 1,0],
o 0,0, 1]

Linear Threshold

Stephen Scott

@ Generally better than using a single integer, e.g., Red is
G“‘ed. t 1, Greenis 2, and Blue is 3, since there is no implicit
e ordering of the values of the attribute

Nonlinearly
Separable
Problems

Backprop

Types of Units
Putt®cbPhings

Ne‘BﬂvERSWV]or

Lincoln

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units
Linear Unit

Linear Threshold
Unit

Perceptron Training
Gradient
Descent

Nonlinearly
Separable
Problems

Backprop

Types of Units
PuttthcbPhings

Perceptron Training Rule (Learning Algorithm)

wi = wi+ 10 =3

where

@ x} is jth attribute of training instance ¢

@)’ is label of training instance ¢

@ ' is Perceptron output on training instance ¢

@ 1 > 0is small constant (e.g., 0.1) called learning rate

l.e., if (y —9) > 0 then increase w; w.r.t. x;, else decrease

Can prove rule will converge if training data is linearly
separable and n sufficiently small

Bee] Where Does the Training Rule Come From?

Bl Linear Regression

CSCE T . .
479/879 @ Recall initial /inear unit (no threshold)

Lecture 2:

Basc A @ If only one feature, then this is a regression problem
I P
i erts @ Find a straight line that best fits the training data
Stephen Scott e For simplicity, let it pass through the origin
e Slope specified by parameter w,
Introduction
Supervised
Learning
Basic Units b *
! t

Gradient X Yy 1o *
Desent 1 2 8) .
Separable 2465 .
Problems 3 7 9 .
Back 4
. 4 |10.1 .

es of Units)
e 5| 12.1
Putting Things
Together 0 o 1 2 3 4 5 6

20/59

Bee] Where Does the Training Rule Come From?

Bl Linear Regression

o859 @ If we use hypothesis w; = 1,

Lecture 2:

|
Basic Artificial then square loss is ’
Neural . 3’

Networks

Stephen Scott J(l) _ i (j\)[. yt)Z

Introduction =1

Supervised
Learning

Basi Units => (¥ - Y) = (1-28)>+ (2— 4652+ (3 —7.9)

Gradient
Descent

Nonlinearly +(4 _ 101)2 + (5 — 121)2 = 121.8925

Separable
Problems

Backprop @ If we use wy = 2, then we get J(2) = 13.4925
puting Things @ Can plot J(w;) versus w;
fogether @ Goalis to find w; to minimize J(w)

Types of Units

21/59

Bee] Where Does the Training Rule Come From?

Bl Linear Regression

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

@ Can write J(w;) in general:
Stephen Scott

Introduction

m m
Supervised J(Wl) = E ()Ait — y[)Z = E (W])Ct _ yl)2
Learning —1 p—

Basic Units

Gradient

Gradin = (1w; —2.8)% + (2w; — 4.65)> + (3w — 7.9)?
Noninearly +(4wy — 10.1)% + (Swy — 12.1)?
eparable

= 55w} — 273.4w; + 340.293

Problems

Backprop

Types of Units

Putting Things
Together

22/59

Bee] Where Does the Training Rule Come From?

gl Convex Quadratic Optimization

CSCE
479/879
: 2
Lecture 2: . .
Basic Artfcial J(wi) = 55wy — 273.4w; + 340.293
Neural
Networks

Stephen Scott
100

Introduction
80

Supervised
Learning

Loss

60
Basic Units

40
Gradient

Descent 20

Nonlinearly
Separable 0
Problems

wl

Backprop

Types of Units

C T i @ Minimum is at w; ~ 2.485, with loss ~ 0.53

@ What'’s special about that point?
23/59

Bee] Where Does the Training Rule Come From?

B Gradient Descent

CSCE . L.
479/879 @ Recall that a function has a (local) minimum or

Lecture 2:
Baslc Ariica maximum where the derivative is 0
eural
Networks

d
Stephen Scott 7_] = 110 - 2734
i dW1 (Wl) Wi
Introduction
Supervised @ Setting this = 0 and solving for w; yields w; ~ 2.485

Learning

@ Motivates the use of gradient descent to solve in
high-dimensional spaces with nonconvex functions:

Basic Units

Gradient
Descent

Nonlinearly / — —
Separable w w nVJ(W)
Problems

Backprop @ 7 is learning rate to moderate updates

Types of Units

n
B @ Gradient is a vector of partial derivatives: [%}
Putting Things Wili—1

Together 8
@ $Z is how much a change in w; changes J

24/59

Bee] Where Does the Training Rule Come From?

el Gradient Descent Example

CSCE
dTol679. @ In our example, initialize wy, then repeatedly update
Basic Artificial

Neural /
Networks wp = w1 — 77(110 w1 — 2734)
Stephen Scott
eta 0.01
. round w] grad update
Introduction 0 1 121893 -163.4 1634
: 1 2634 174498 1634 -0.1634
Super_vused 2 2.4706 0.5434208 1634 001634
Learning 3 248694 0531485 01634 -0.001634
o 4 2485306 0.53136485 -0.01634 0.0001634
Basic Units 5 24854694 053136365 0.001634 -1634E-05
Gradient 6 248545306 053136364 -0.0001634 1.634E-06
5 ; 7 248545469 053136364 L634E-05 -LG34E07
ESCell 8 248545453 053136364 -1.634E-06 1.634E-08
: 9 248545155 0.53136364 1634E-07 -1634E-03
gonl'”e;”y 10 2.48545455 0.53136364 -1.634E-0B 1.634E-10
ghalane 11 248545855 053136364 1634E-09 -LGME-11

Problems 12 248545455 0.53136364 -1634E-10 16337612
13 248545455 0.53136364 1.6314E-11 -1631E-13
14 248545455 0.53136364 -1.592E-12 15916E-14
15 2.48545455 0.53136364 o 0

Backprop

B

Types of Units
Puting Things @ Could also update one at a time: 22 = 2w; (x')> — 2x'y’

Together
= Stochastic gradient descent (SGD)

25/59

Bee] Where Does the Training Rule Come From?
Bl Gradient Descent (Mitchell 1997)

CSCE
479/879
Lecture 2:
Basic Artificial N
Neural \\\Q

Networks

7
iz

17

Z
erase
=

2
=
T}
1
!
s
!
!
!’
8!
5

77
7

£
77,
I
i
T
ﬂ"ﬁi E’
g
g2eees
50e5e!
geees
s “4
o
S
s

7

Stephen Scott

7

7

7

%
1

17
7
7

Introduction

Y,
Y

7

|

Rt uwy <X
S ONSIRESSSSOSS SIS
RSSO

= e
——

Supervised
Learning

Basic Units 2

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop a] 8.] 8.] 1

Types of Units

Putting Things % a 67‘4}0’ 67‘4}17 o awn
TR In general, define loss function J, compute gradient of J
w.r.t. J's parameters, then apply gradient descent

26/59

ey Handling Nonlinearly Separable Problems

Bl The XOR Problem

479/879
Lecture 2:
Basic Artificial
Neural
Networks

CSCE Using linear threshold units

Stephen Scott

Introduction

Supervised
Learning

@ X
A(OO)K\>oc(10) ‘ !
Basic Units g(x) = <0N N

Gradient

Descent Represent with intersection of two linear separators

Sontreoe gilx) =1-xi+1-x0—1/2

Problems

General Nonlinearly g2 (x) =1- X1 + 1- Xy — 3/2

Separable Problems

Backprop

Types of Units pos = {x S Rz : gl(x) >0 AND g2 < O}

EME neg = {x € R”: g1(x). 92(x) < 0 OR g(x), 2(x) > 0}

NeBWERSWV] OF

Lincoln

The XOR Problem (cont’d)

Handling Nonlinearly Separable Problems

L4(7:g/g$g Let z; = 0 if gi(x) <0
ecture 2: 1
Basic Artificial 1 OtherWISe

Neural

Networks Class (x1,x) | &1(x) z1 | &2(x) =z
Stephen Scot pos B:(0,1)] 1/2 1]-1/2 0
Introduction pPos C: (17 0) 1/2 1 — 1/2 0
Eg;):zlqri\;ised neg A: (0, 0) — 1/2 0 —3/2 0
Bacic Units neg D:(1,1)| 3/2 1] 1/2 1
Gradient Now feed z;, zz into g(z) = 1-21 —2- 20 — 1/2
Descent %

. g(2)
Nonlinearly o -
Separable . <U,
Prg)blems D'él’l) >0
neg ,',

Backprop P pos
Types of Units ’//
Putting Things A %(/),0) e B,%: a0 @

Togathey

ey Handling Nonlinearly Separable Problems
Lincoln The XOR Problem (COnt’d)

CSCE
479/879
Lecture 2:

In other words, we remapped all vectors x to z such that the

prdelsal classes are linearly separable in the new vector space
wy= —1/2

Neural
N k: H
ELNCIES Hidden Layer
Stephen Scott K

-
Introduction

Supervised : :
Learning Input Layer : N\~ —

Basic Units

k Output
Layer

Gradient
Descent

Nonlinearly S|
=eererl This is a two-layer perceptron or two-layer feedforward

Separable Problems
neural network

Backprop

Rl Can use many nonlinear activation functions in hidden layer
Putting Things

Togathey

esy Handling Nonlinearly Separable Problems

Bl General Nonlinearly Separable Problems

CSCE
479/879
Lecture 2:

ywesl By adding up to 2 hidden layers of linear threshold units,

Neural

Networks can represent any union of intersection of halfspaces

Stephen Scott

neg
Introduction

Supervised pos

Learning
Basic Unit pos
asic Units neg

Gradient
Descent

Nonlinearly pOS neg
Separable pos

Problems

XOR

General Nonlinearly

=aerenns First hidden layer defines halfspaces, second hidden layer

B takes intersection (AND), output layer takes union (OR)
Types of Units

Putting Things

Togatheg

Ne‘BﬂvERSWV]or

Lincoln

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs
Sigmoid Unit
Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Typgs, ghUnits

Training Multiple Layers

@ In a multi-layer network, have to tune parameters in all
layers

@ In order to train, need to know the gradient of the loss
function w.r.t. each parameter

@ The Backpropagation algorithm first feeds forward
the network’s inputs to its outputs, then propagates
back error via repeated application of chain rule for
derivatives

@ Can be decomposed in a simple, modular way

\Lvetl Computation Graphs

Lincoln

CSCE
) @ Given a complicated function f(-), want to know its

Lecture 2:

Basc Artificial partial derivatives w.r.t. its parameters

Neural
retorks @ Will represent f in a modular fashion via a
computation graph (like what we do in TensorFlow)

(*] Eg, |etf(W,X) = WoXo + W1X]

Stephen Scott

Introduction

Supervised
Learning
Basic Units Wy
Gradient
Descent
Nonlinearly X'D
Separable

Problems

Backprop

Computation Graphs w
Sigmoid Unit i
Multilayer Networks

Training Multilayer
Networks

Backprop Alg xl

Tyg@,géUnits

Lincoln

\Lvetl Computation Graphs

CSCE
479/879
Lecture 2:
Basic Artificial

N’;‘%ﬁis EQ, wo = 3.0, w; = 1.0, X0 = 1.0, x; = 4.0
3.0

Stephen Scott

Introduction

Supervised X
Learning 0

Basic Units

Gradient
Descent —1.0

Nonlinearly
Separable
Problems 4.0

Backprop
Computation Graphs
Sigmoid Unit
Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Tyg@s,géUnits

\Lvetl Computation Graphs

Lincoln

CSCE
479/879
Lecture 2: @ So what?

Basic Artificial

NEITEL @ Can now decompose gradient calculation into basic

Networks

Stephen Scott OperatiOnS
o U _

Introduction of —

Supervised 3.0
Learnin:
¢} W(]

Basic Units

Gradient 1.0
Descent Xp

Nonlinearly
Separable
Problems

Backprop W —1.0
Computation Graphs 1
Sigmoid Unit
Multilayer Networks
Training Multilayer 4.0

Networks xl

Backprop Alg

Tyg@s,géUnits

W\cEeY Computation Graphs

Lincoln

CSCE
479/879
Og

ecture z: 8
Lecture 2: Olfg(y,z):y—i—zthena—y:a—:l

Basic Artificial

Neural
Networks ® Via chain rule, 9 = #£ 8¢ = (1.0)(1.0) = 1.0

Stephen Scott

@ Same with &

Introduction

Supervised 3.0
Learning l"""l.’_'l

Basic Units

Gradient 1.0
Descent

Nonlinearly
Separable
Problems

Backprop W 1
Computation Graphs
Sigmoid Unit
Multilayer Networks

Training Multilayer
REars X

Backprop Alg

Tyggs,géUnits

\Lvetl Computation Graphs

Lincoln

CSCE
479/879
Lecture 2: [+] |f h(y7 Z) =¥z then dy

Basic Artificial

Neural . . : :
Networks @ Via chain rule, %} = %g—;g = 1.0wp = 3.0
Stephen Scott
3.0
Introduction Wy 1.0
Supervised
Learning 1.0
B Xp
Basic Units 3.0
Gradient
Descent
Nonlinearly —-1.0
Separable Wl
Problems 4.0
Backprop
Computation Graphs X 4 . U
Sigmoid Unit 1 — 1 ,0
Multtayer Networks "
Training Multilayer
Networks r T
Soforx =[1.0,4.0]", Vf(w) = [1.0,4.0]"

Ty%%s,g§Units

e | he Sigmoid Unit

Lincoln Basics

CSCE
479/879 @ How does this help us with multi-layer ANNs?

Lecture 2:

Basic Articil @ First, let’s replace the threshold function with a
Networks continuous approximation

Stephen Scott

Introduction /\

S ised

s SRS

=it 0 =0(net) = —— =

I+e

Basic Units =f(x; w,b)
Gradient
Descent

o(net) is the logistic function

Nonlinearly
Separable
Problems 1

Backprop O'(I’let) =
Computation Graphs 1 + e—net
Sigmoid Unit

Multilayer Networks

(a type of sigmoid function)

Networks
Backprop Alg

TrRes gUnis Squashes ner into [0, 1] range

NeBWERSWV] OF

Lincoln

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs
Sigmoid Unit
Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Ty%%s,g§Units

Wo

a
3.0

The Sigmoid Unit

Computation Graph

Letf(wg,ux) =1/ (1 + exp (— (woxo + wix1)))

NeBWERSWV] OF

Lincoln

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs
Sigmoid Unit
Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Tyg@s,géUnits

The Sigmoid Unit

e | he Sigmoid Unit

Lincoln Gradient

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

o) 0
Stephen Scott 87{; - 8%:%2 = —0.0723(1) = —0.0723
3.0

a
3.0

Introduction Wy

Supervised
Learning Xy

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs
Sigmoid Unit
Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Tyw,géumts

e | he Sigmoid Unit

Lincoln Gradient

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott = —0.0723 exp(d) = —0.1966

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs
Sigmoid Unit
Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Typgs, gfUnits

e | he Sigmoid Unit

Lincoln Gradient

osce 9 — 90 — _.1966(—1) = 0.1966

479/879 dc — 0d Oc —
Lecture 2:

3.0 _
Basic Artificial Wa 2
Neural
NEWIS X, =0
0 €= d= g= h= f=
Stephen Scott 1.0 ﬂ 1.0 @ z.na<+1> 3.718 () 0.269
1.0 u_lgm:\-’}-onssun.mzs -0.0723 1.0
Introduction wy :@
Supervised
Learning X 40
Basic Units
. and so on:
Gradient 30
Descent Wy =
0.1966
Nonlinearly 1.0
Separable Xg —
Problems 0.5899
Backprop
Computation Graphs Wl 1.0
Sigmoid Unit 0.7866
Multilayer Networks
Training Multilayer X4 4.0
Networks —0.1966

Backprop Alg

Types, ghUnits

Soforx = [1.0.4.0] ", Vf(w) = [0.1966,0.7866] "

NeBWERSWV] OF

Lincoln

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs
Sigmoid Unit
Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Tyae\;)s,géUnits

The Sigmoid Unit

Gradient

3.0

Wq a=
0.1966)
L0
Xo

0.5899

w, =12
0.7866
20 0.1966

X olC
1—0.1966 (c)

Note that Z = o(c)(1 — o(c)), s0

of 9f dc Ob
= = 1— 1
Bwr — 0c.9b o, a(c)(1 —o(c))(1)x
This is modular, so once we have a formula for the gradient

for this unit, we can apply it anywhere in a larger graph

Ne‘BﬂvERSWV]or

Lincoln

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems

Backprop
Computation Graphs
Sigmoid Unit
Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Types ghUnits

Training Multilayer Networks
Output Units

@ Let loss on instance (x',y") be J(w) = 1 37, (5 — y)?

@ Weights ws, and wg, tie to output units
@ Gradients and weight updates done as before

(] Eg, W/53 = W53 —1

aJ
8W53

=wsz — i (1 = 31) (1 — y1)o3

ey 1raining Multilayer Networks
Bl Hidden Units

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Multivariate chain rule says we sum paths from J to wy;:

Gradient

Desvjent 8] B g aa B @@ + Q@ aa
g;’%?:;? Owsy Oadwy \0cda ' 0bda) Owsp
. 8J dd dc OJ e Db\ da
ackprop — _—t ————
Cege 0dOc da 0edbda) Ows

= (1A =31)01 —y1)l [wsa] [o4(a)(1 — 04(a))]
+ [a(l =32) (02 = y2)] wea] [o4(a) (1 — 04(a))]) x2

Types ghUnits

ey 1raining Multilayer Networks

Bl Hidden Units

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

@ Analytical solution is messy, but we don’t need the
formula; only need to compute gradient for specific
Introduction input(s)

Stephen Scott

et @ The modular form of a computation graph means that
Basic Units once we've computed and 8’ , We can plug those
Gradiant values in and compute gradlents for earlier layers

pescent e Doesn’t matter if layer is output, or farther back; can run
Separable. indefinitely backward

Problems . .
Backorop @ Backpropagation of error from outputs to inputs
Sigmoid Unit

Training Multilayer
Networks

Backprop Alg

Tya%s/gbumts

ey 1raining Multilayer Networks

Bl Hidden Units

CSCE
479/879
Lecture 2:
Basic Artificial

Neural @ We are propagating back error from output layer

Networks

Stephen Scott toward input layers
: @ Process:

Introduction .
S @ Submit inputs x
Learning © Feed forward signal to outputs
Basic Units © Comptue network loss
Gradient © Propagate error back to compute loss gradient w.r.t.
Descent .

_ each weight
Separatle. @ Update weights
Probl . . .
B:ck::: @ All done automatically in TensorFlow, etc.: Automatic
differentiation based on computation graph

Sigmoid Unit
Muliilayer Networks

Training Multilayer
Networks

Backprop Alg

Types ghUnits

ety Backpropagation Algorithm

Bl Sigmoid Activation Units and Square Loss

cscE e ,
oo Initialize weights

Lecture 2:
Basic Articil Until termination condition satisfied do
Networks

@ For each training example (x',y") do
@ Input x’ to the network and compute the outputs
Introduction @ For each output unit &

Supervised

S 3101 =30 0 — 31
Basic Units F h h .
Gradiont © For each hidden unit &

Descent

5 (1 =% 2: wh ot
Nonlinearly h yh(yh) k,n Tk
Separable kedown(h)

Problems

Backprop © Update each network weight w'

Computation Graphs

Stephen Scott

Sigmoid Unit Wt‘i — Wt'i + AWJZ_J

Multilayer Networks

Training Multilayer

po—— where Aw!, = nd;x;; and x}; is signal sent from node i
to node j

Tyw,géUnits

ety Backpropagation Algorithm

Lincoln Notes

CSCE
479/879

Lecture 2: @ Formula for § assumes sigmoid activation function

Basic Artificial

Aeural e Straightforward to change to new activation function via
computation graph

@ Initialization used to be via random numbers near zero,

Stephen Scott

Intioduction e.g., from (0, 1)

et e More refined methods available (later)

Basic Units @ Algorithm as presented updates weights after each
Gradient instance

zj:i::a”y o Gan also accumulate ijyi_across multiple training
Separable instances in the same mini-batch and do a single

FESE update per mini-batch

‘if:‘;j:ﬁj:em = Stochastic gradient descent (SGD)

o o e Extreme case: Entire training set is a single batch

e (batch gradient descent)

Backprop Alg

Types ghUnits

becte] Types of Output Units

Lincoln

Py Given hidden layer outputs k

Lecture 2:

B o @ Linearunit: y=w'h+b

Networks e Minimizing square loss with this output unit maximizes
Stephen Scott log likelihood when labels from normal distribution
Introduction @ l.e, find a set of parameters 6 that is most likely to
Supervised generate the labels of the training data
LEliig e Works well with GD training
Z::;:"s @ Sigmoid: y = o(w h + b)
Descent e Approximates non-differentiable threshold function
Nonlinearly e More common in older, shallower networks
e i e Can be used to predict probabilities
Backprop @ Softmax unit: Start withz = WTh + b
e.‘ e Predict probability of label i to be
softmax(z); = exp(z)/ (¥, exp(3))

Units.

e Continuous, differentiable approximation to argmax

Putting Things
To56th29

Weeet= Types of Hidden Units

Lincoln

CSCE
479/879 Rectified linear unit (ReLU): max{0,wx + b}

Lecture 2: .
Basic Artificial @ Good default choice

Neural

Networks @ In general, GD works 0
SEhEp el well when functions “ =LRelU
i e nearly linear 2 i
Supervised o =
Loperree @ Variations: leaky ReLU
. and exponential ReLU © —
Gradient replace z < 0 side with o . ; :
pescent 0.01z and a(exp(z) — 1),) X
Nonlinearly .
Separable respectively
Problems
Bretaies Logistic sigmoid (done already) and tanh
Types of Units
et @ Nice approximation to threshold, but don’t train well in
deep networks since they saturate

Pumng Things
To&dth29

N ‘Bﬂv[ksm]or

Lincoln

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott

Introduction

Supervised
Learning

Basic Units

Gradient
Descent

Nonlinearly
Separable
Problems
Backprop

Types of Units

Putting Things
Together

@ How many layers to use?

Putting Everything Together

Hidden Layers

e Deep networks build potentially useful representations
of data via composition of simple functions

e Performance improvement not simply from more
complex network (number of parameters)

e Increasing number of layers still increases chances of
overfitting, so need significant amount of training data
with deep network; training time increases as well

Accuracy vs Depth Accuracy VS CompIeX|ty

— 3, ‘convolutional |l
+—+ 3, fully connected
V-V 11, convolutional [

number of layers, source of variation _|

M /*‘__—4

Network Depth B 91 ! . L
X . 0.0 0.2 0.4 0.6 0.8 1.0

Test accuracy (percent)
e © 9
g & 8
—T

4 5 6 7 8 9 10 11 Number of parameters x108

ety Putting Everything Together

Bl Universal Approximation Theorem

CSCE
479/879
Lecture 2:

Basic Artficial @ Any boolean function can be represented with two

Neural
Networks |aye rs
Stephen Scott

@ Any bounded, continuous function can be represented

Introduction with arbitrarily small error with two layers
et @ Any function can be represented with arbitrarily small
Basic Units error with three layers
Gradient
Descent

_ Only an EXISTENCE PROOF
Nonlinearly
Separable
Froblems @ Could need exponentially many nodes in a layer

Backprop

@ May not be able to find the right weights

Types of Units

Putting Things @ Highlights risk of overfitting and need for regularization

Together

ety Putting Everything Together

Bl [nitialization

o859 @ Previously, initialized weights to random numbers near

Basic At 0 (from A(0, 1))
Meured e Sigmoid nearly linear there, so GD expected to work

Networks g y p

better
Stephen Scott . . .

SRS e But in deep networks, this increases variance per layer,
Introduction resulting in vanishing gradients and poor optimization
Superised @ Glorot initialization controls variance per layer: If layer

earnin . age . . .
b Ug_l has n;, inputs and n,,, outputs, initialize via uniform
asic units
over [—r,r] or N(0,0)
Gradient
Descent er—=a = _En and o =a - —zn
Nonlinearly in out in out
Separable
Problems
E— Activation | a
Types of Units LOgiStiC 1
Putting Things tanh 4

Together

RelLU V2

veiey Putting Everything Together

Bl Optimizers

CSCE
479/879
Lecture 2:
Basic Artificial
Neural
Networks

Stephen Scott .y . . .
Variations on gradient descent optimization:

Introduction

Supervised @ Momentum optimization
Learning

Basic Units @ AdaGrad

Gradient ") RMSProp

Descent

Nonlinearly o Adam

Separable
Problems

Backprop
Types of Units

Putting Things
Together

Aveiey Putting Everything Together

Bl Momentum Optimization

CSCE . .
479/879 @ Use a momentum term 3 to keep updates moving in

Lecture 2:

Basic Artificial same direction as previous trials

Neural

Networks @ Replace original GD update w' = w — nV.J(w) with
Stephen Scott

Introduction w=w-m ’

Supervised

Learning Where
Basic Units m = fm + nVJ(W)

Gradient

pescent @ Using sigmoid activation and square loss, replace
Nonli | .

Separatio’ Awj; = n 4t xj; with

Problems

Backprop A I ror A i—1

Types of Units w]l Ui 5] sz + B Wj,

L i @ Can help move through small local minima to better

ones & move along flat surfaces

ety Putting Everything Together
el AdaGrad

Jre @ Standard GD can too quickly descend steepest slope,

Lecture 2:

Basic Artficial then slowly crawl through a valley

Networks @ AdaGrad adapts learning rate by scaling it down in
Stephen Scott steepest dimensions:
w =w—nVJ(w)© s+ e, where
Supervised s=s+VJ(w)@VJ(w) ,
Learning ® and @ are element-wise multiplication and division
Sasic Units and e = 10~'° prevents division by 0

Gradient
Descent

Introduction

) 8, (steep dimension)
Nonlinearly \

Separable s accumulates Aancrd
Backprop squares of gradient,
el and learning rate for
each dimension o
scaled down Descent

Cost

Putting Things
Together

(flatter dimension)

1

ety Putting Everything Together
Lincoln RMSP rop

CSCE
479/879
Lecture 2:
Basic Artificial
Neural

Networks @ AdaGrad tends to stop too early for neural networks
Stephen Scot due to over-aggressive downscaling

Introduction @ RMSProp exponentially decays old gradients to
Supervised address this

Learning

Basic Units / VJ
Gradient w=w- n (W) @ Ste ’
Descent

Nonlinearly Whel’e
Separable
Problems

Backprop S = ﬁS + (1 — B)VJ(W) (= VJ(W)
Types of Units

Putting Things
Together

ety Putting Everything Together

Lincoln Adam

CSCE
479/879

Lecture 2: Adam (adaptive moment estimation) combines Momentum

Basic Artificial

Neural optimization and RMSProp

Networks

Stephen Scott

Q@ m=p5m+ (1-75)VJ(w)
Introduction Q s= o8 + (1 — 52)V.](W) & V.](W)

Supervised

Learning e m = m/(l - Bi)
Basic Units o s = S/(l _ 55)

Gradient

Descent e w, =WwW-—1nmm @ \/m

Nonlinearly
Separable
Problems

@ lteration counter 7 used in 3 and 4 to prevent m and s
from vanishing

@ Canset 3 =09, 3, =0.999, ¢ = 1078

Backprop
Types of Units

Putting Things
Together

	Introduction
	Supervised Learning
	Basic Units
	Linear Unit
	Linear Threshold Unit
	Perceptron Training Rule

	Gradient Descent
	Nonlinearly Separable Problems
	XOR
	General Nonlinearly Separable Problems

	Backprop
	Computation Graphs
	Sigmoid Unit
	Multilayer Networks
	Training Multilayer Networks
	Backprop Alg

	Types of Units
	Types of Output Units
	Types of Hidden Units

	Putting Things Together

