Nebraska

CSCE 479/879 Lecture 2: Basic Artificial Neural Networks

Stephen Scott ntroduction Supervised .earning

Clearning Basic Units Gradient Descent Nonlinearly Separable Problems Backprop Types of Units Putting Things Together

CSCE 479/879 Lecture 2: Basic Artificial Neural Networks

Stephen Scott

(Adapted from Vinod Variyam, Ethem Alpaydin, Tom Mitchell, lan Goodfellow, and Aurélien Géron)

sscott@cse.unl.edu

Nebraska Lincoln Supervised Learning

CSCE 479/879 Lecture 2: lasic Artificial Neural Networks

Stephen Sco

Introduction

Supervised Learning

Basic Units

Gradient Descent

Nonlinearly Separable Problems

Backprop

Types of Units Putting Things Tog<u>ether</u>

- Supervised learning is most fundamental, "classic" form of machine learning
- "Supervised" part comes from the part of *labels* for examples (instances)
- Many ways to do supervised learning; we'll focus on artificial neural networks, which are the basis for deep learning

Nebraska Lincoln	Introduction ANNs	Nebřaška Lincoln	Introduction Properties
CSCE 479/879 Lecture 2: Basic Artificial Neural Networks Stephen Scott Introduction Supervised Learning Basic Units Gradient	Consider humans: • Total number of neurons $\approx 10^{10}$ • Neuron switching time $\approx 10^{-3}$ second (vs. 10^{-10}) • Connections per neuron $\approx 10^4 - 10^5$	CSCE 479/879 Lecture 2: Basic Artificial Networks Stephen Scott Introduction Supervised Learning Basic Units Gradient	Properties of artificial neural nets (ANNs): • Many "neuron-like" switching units • Many weighted interconnections among units • Highly parallel, distributed process • Emphasis on tuning weights outparticulty
Descent Nonlinearly Separable Problems Backprop Types of Units Putting Things Together 3/59	 Scene recognition time ≈ 0.1 second 100 inference steps doesn't seem like enough ⇒ massive parallel computation 	Discont Descent Nonlinearly Separable Problems Backprop Types of Units Putting Things Together 4/59	Emphasis on tuning weights automatically Strong differences between ANNs for ML and ANNs for biological modeling

Nebraska	When to Consider ANNs
CSCE 479/879 Lecture 2: Basic Artificial Neural Networks Stephen Scott	 Input is high-dimensional discrete- or real-valued raw sensor input)
Introduction	 Output is discrete- or real-valued
Supervised Learning	 Output is a vector of values
Basic Units	Possibly noisy data
Gradient Descent	 Form of target function is unknown
Nonlinearly Separable Problems	Human readability of result is unimportant

• Long training times acceptable

Backprop

bes of Un

utting Thing

eal-valued (e.g., Stephen Scott algorithm)

Nebraska

ntroduction

Supervised _earning

Basic Units

Gradient Descent

Nonlinearly Separable Problems

Backprop

Putting Things logether The Beginning: Linear units and the Perceptron algorithm (1940s)
 Spoiler Alert: stagnated because of inability to handle

Introduction

Brief History of ANNs

- data not *linearly separable*Aware of usefulness of multi-layer networks, but could
- not train
- **The Comeback:** Training of multi-layer networks with Backpropagation (1980s)
 - Many applications, but in 1990s replaced by large-margin approaches such as support vector machines and boosting

・ロト・(型ト・ミト・ミト・ミークへ)

Nebraska

479/879 Lecture 2 asic Artific Neural Networks

tephen Sc

ntroduction

Supervised earning

ackprop

ypes of Un

Introduction Brief History of ANNs (cont'd)

• The Resurgence: Deep architectures (2000s)

- Better hardware¹ and software support allow for deep (> 5–8 layers) networks
- Still use Backpropagation, but
 - Larger datasets, algorithmic improvements (new loss and activation functions), and deeper networks improve performance considerably
- Very impressive applications, e.g., captioning images

The Inevitable: (TBD) Oops

э

¹Thank a gamer today.

Nebraska Lincon Outline

479/879 Lecture 2: asic Artificial Neural

tenhen Sr

Introduction

Supervised _earning

Basic Units

Gradient Descent

Nonlinearl Separable

Backprop

ypes of U

Backprop

vpes of Unit

utting Thing

utting Thing

- Supervised learning
- Basic ANN units
 - Linear unit
 - Linear threshold units
 - Perceptron training rule
- Gradient Descent
- Nonlinearly separable problems and multilayer networks
- Backpropagation
- Types of activation functions
- Putting everything together

・ロト・西ト・ヨト・ヨー つへの

θ

A B > A B > A B > A B >
 A

 x_1 : Price

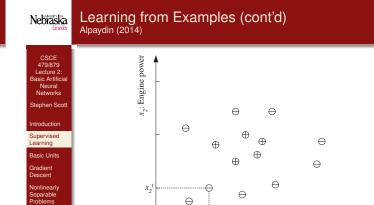
E - 900

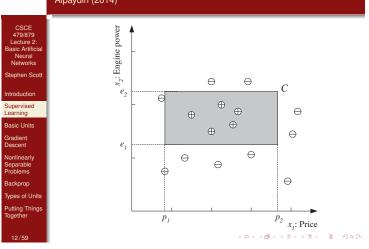
braska Lincoln	Learning	from	Exampl
-------------------	----------	------	--------

• Let *C* be the **target function** (or **target concept**) to be learned

es

- Think of C as a function that takes as input an **example** (or **instance**) and outputs a **label**
- Goal: Given training set $\mathcal{X} = \{(x^t, y^t)\}_{t=1}^N$ where $y^t = C(x^t)$, output hypothesis $h \in \mathcal{H}$ that approximates C in its classifications of new instances
- Each instance x represented as a vector of attributes or features
 - E.g., let each $x = (x_1, x_2)$ be a vector describing
 - attributes of a car; x_1 = price and x_2 = engine power
 - In this example, label is binary (positive/negative, yes/no, 1/0, +1/-1) indicating whether instance x is a "family car"





 x_1^{t}

Nebraska Thinking about C

• Can think of target concept C as a function

- In example, *C* is an axis-parallel box, equivalent to upper and lower bounds on each attribute
- Might decide to set H (set of candidate hypotheses) to the same family that *C* comes from
- Not required to do so
- Can also think of target concept *C* as a **set** of positive instances
 - In example, *C* the continuous set of all positive points in the plane
- Use whichever is convenient at the time

7/59 Nebřask

479/879 Lecture 2: asic Artificial Neural Networks ephen Scott

Supervised Learning Basic Units Gradient Descent Nonlinearly Separable Problems Backprop Types of Unit: Putting Thing Together

> CSCE 479/879 Lecture 2

> asic Artific Neural Networks

Stephen Sco

Supervised Learning

asic Units

lonlinearly eparable roblems

Backprop

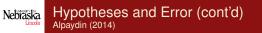
Putting Things

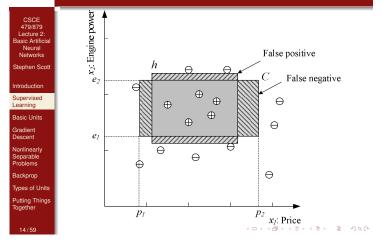
Gradient Descent

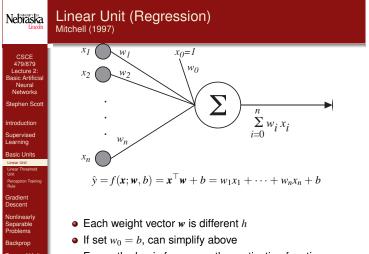
troduction

Nebraska Hypotheses and Error

- A learning algorithm uses training set \mathcal{X} and finds a hypothesis $h \in \mathcal{H}$ that approximates C
- In example, \mathcal{H} can be set of all axis-parallel boxes
- If C guaranteed to come from \mathcal{H} , then we know that a
 - perfect hypothesis exists • In this case, we choose h from the version space =
 - subset of ${\mathcal H}$ consistent with ${\mathcal X}$ • What learning algorithm can you think of to learn C?
- Can think of two types of error (or loss) of h
 - Empirical error is fraction of X that h gets wrong
 - Generalization error is probability that a new,
 - randomly selected, instance is misclassified by h • Depends on the probability distribution over instances
 - Can further classify error as false positive and false negative

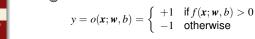


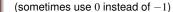




• Forms the basis for many other activation functions

Linear Threshold Unit (Binary Classification) Nebraska Mitchell (1997) x_1 $x_2 \bigoplus$ troduction $\sum_{i=1}^{n} w_i x_i$ 1 if $\sum_{i=0}^{n} w_i x_i > 0$ -1 otherv x_n





Linear Threshold Unit Linear Threshold Unit Nebraska Non-Numeric Inputs Decision Surface (Mitchell 1997) Lecture sic Artifi Neural Netwo Stephen Sco Encode them numerically upervised (*b*) nino asic Units [0, 0, 1]Represents some useful functions ar Unit ar Threshok • What parameters (w, b) represent $g(x_1, x_2; w, b) = AND(x_1, x_2)$?

ackpro vpes of U

Basic Units

Backpror

ypes of L

But some functions not representable

(a)

- I.e., those not linearly separable
- Therefore, we'll want networks of units ٠

۲	What if	attributes	are no	ot numeric?	

- E.g., if an attribute Color has values Red, Green, and Blue, can encode as **one-hot** vectors [1,0,0], [0,1,0],
- Generally better than using a single integer, e.g., Red is 1, Green is 2, and Blue is 3, since there is no implicit ordering of the values of the attribute

<ロ><四><日><日><日><日><日><日><日><日<</p>

Supervised Learning Backprop ypes of U

Nebraska

CSCE 479/879 Lecture 2

sic Artifi Neural

tephen Sc

pervised

asic Units

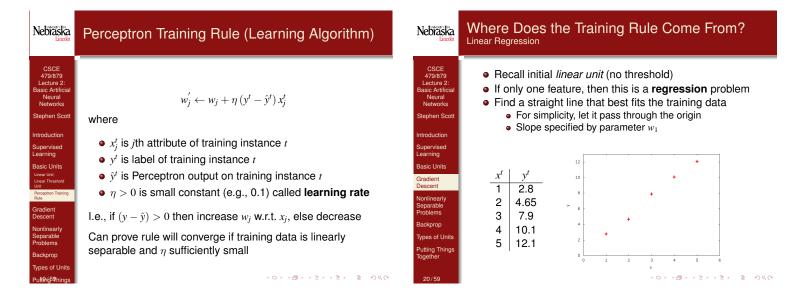
ear Unit ear Threshok

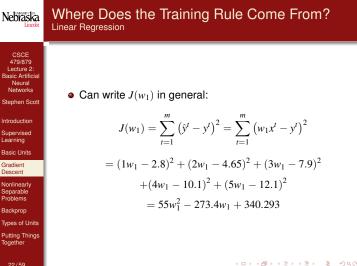
mes of U

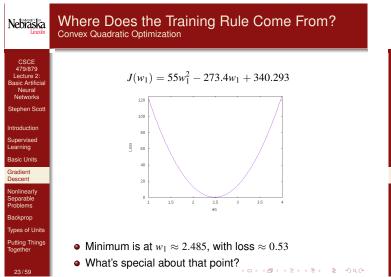
arning

Lecture 2 asic Artifi Neural Network

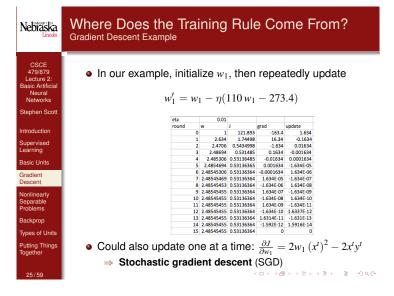
tenhen Sr



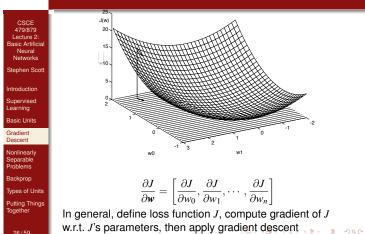




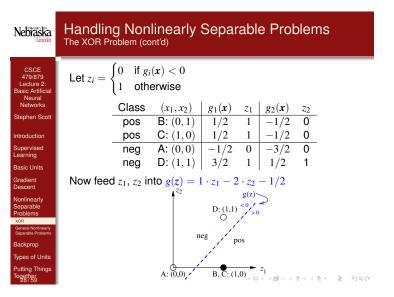
Nebraska Lincoln	Where Does the Training Rule Come From? Gradient Descent
CSCE 479/879 Lecture 2: Basic Artificial Neural Networks Stephen Scott Introduction Supervised Learning Basic Units Gradient	 Recall that a function has a (local) minimum or maximum where the derivative is 0
Descent w' = w - \eta \nabla J(w) Nonlinearly w' = w - \eta \nabla J(w) Separatile η is learning rate to moderate updates Public Things Gradient is a vector of partial derivatives: $\left[\frac{\partial J}{\partial w_i}\right]$	$\mathbf{w}' = \mathbf{w} - \eta \nabla J(\mathbf{w})$ • η is learning rate to moderate updates • Gradient is a vector of partial derivatives: $\left[\frac{\partial J}{\partial w_i}\right]_{i=1}^{n}$
24/59	• $\frac{\partial J}{\partial w_i}$ is how much a change in w_i changes J

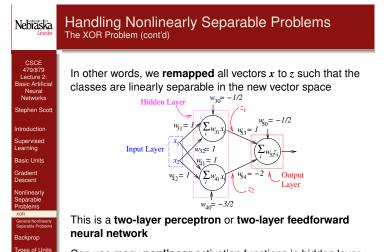


Nebraska Gradient Descent (Mitchell 1997)



Handling Nonlinearly Separable Problems Nebraska The XOR Problem Using linear threshold units D: (1,1) O neg g₂(x) C: (1,0) A: (0.0) Basic Units Represent with intersection of two linear separators $g_1(\mathbf{x}) = 1 \cdot x_1 + 1 \cdot x_2 - 1/2$ $g_2(\mathbf{x}) = 1 \cdot x_1 + 1 \cdot x_2 - 3/2$ $\mathsf{pos} = \{ \mathbf{x} \in \mathbb{R}^2 : g_1(\mathbf{x}) > 0 \text{ <u>AND</u>} g_2(\mathbf{x}) < 0 \}$ $\mathsf{neg} = \left\{ \mathbf{x} \in \mathbb{R}^2 : g_1(\mathbf{x}), g_2(\mathbf{x}) < 0 \text{ } \underbrace{\mathsf{OR}} g_1(\mathbf{x}), g_2(\mathbf{x}) > 0 \right\}, \quad \text{ for all } \mathbf{x} \in \mathbb{R}^2$ ting Thing





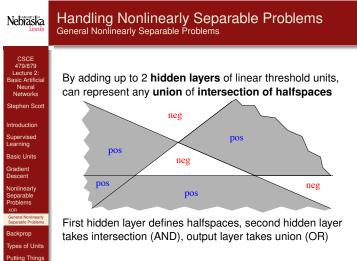
Can use many nonlinear activation functions in hidden layer

ng Thir

gether

・ロト・(個)・(目)・(目)・(目)・(の)()

ogether



Nebiaska Training Multiple Layers

479/87

upervised earning

ckprop

- In a multi-layer network, have to tune parameters in all layers
- In order to train, need to know the gradient of the loss function w.r.t. each parameter
- The Backpropagation algorithm first feeds forward the network's inputs to its outputs, then propagates back error via repeated application of chain rule for derivatives

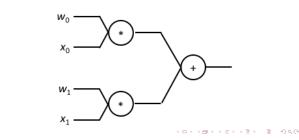
• Can be decomposed in a simple, modular way

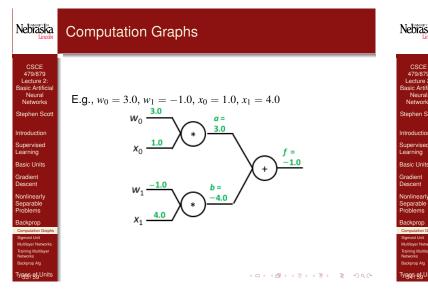
Nebraska Computation Graphs

479/87

Supervised earning

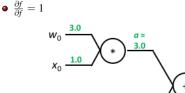
- Given a complicated function $f(\cdot)$, want to know its partial derivatives w.r.t. its parameters
- Will represent *f* in a modular fashion via a **computation graph** (like what we do in TensorFlow)
- E.g., let $f(\mathbf{w}, \mathbf{x}) = w_0 x_0 + w_1 x_1$



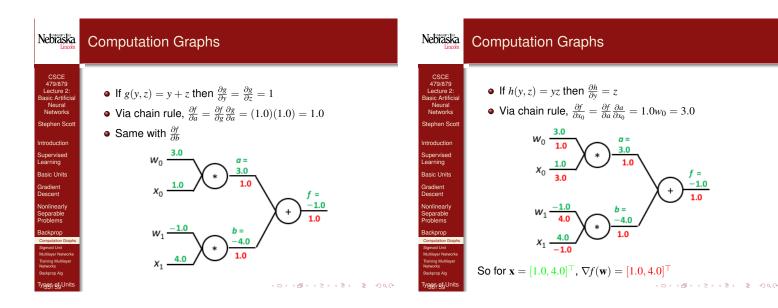


Nebraska Lincol

 Can now decompose gradient calculation into basic operations



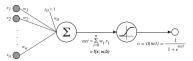
$x_{0} \xrightarrow{1.0} f = -1.0$ $w_{1} \xrightarrow{-1.0} f = -1.0$ $w_{1} \xrightarrow{-1.0} f = -1.0$ $x_{1} \xrightarrow{-1.0} f = -1.0$



The Sigmoid Unit

• How does this help us with multi-layer ANNs?

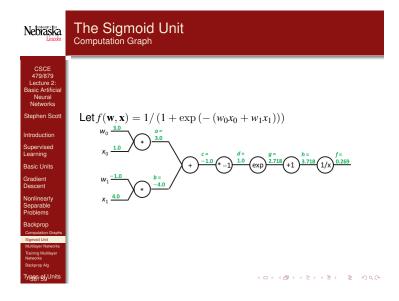
• First, let's replace the threshold function with a continuous approximation

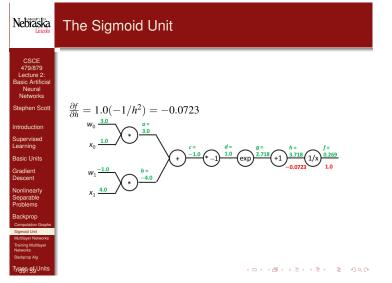


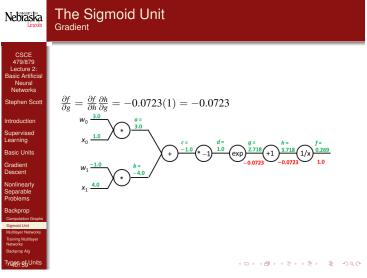
 $\sigma(\mathit{net})$ is the logistic function

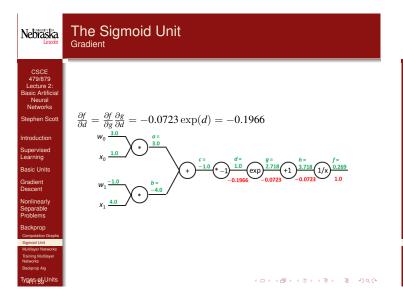
$$\sigma(net) = \frac{1}{1 + e^{-net}}$$

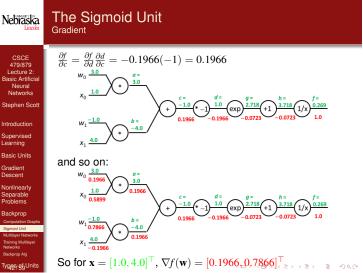
(a type of **sigmoid** function) **Squashes** *net* into [0, 1] range











Nebraska

479/87

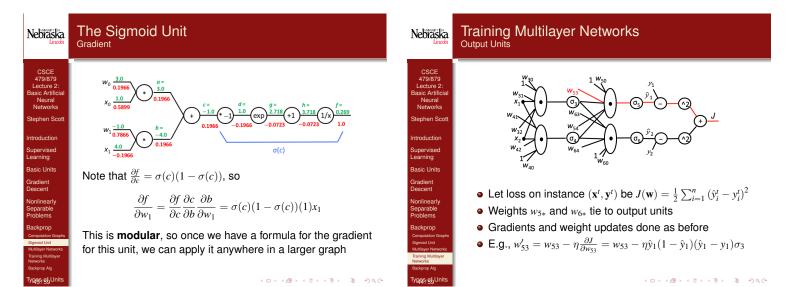
Lecture asic Artifi Neural

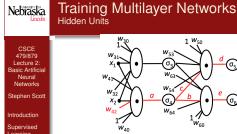
Netwo

tephen S

Supervised earning

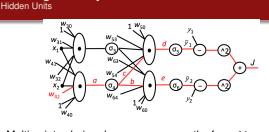
ckprop





asic Artif Neural Network

Stephen Sc

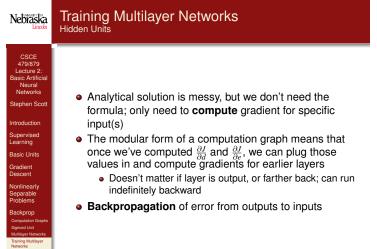


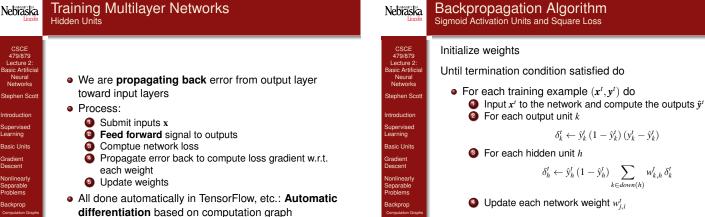
Multivariate chain rule says we sum paths from J to w_{42} :

$$\frac{\partial J}{\partial w_{42}} = \frac{\partial J}{\partial a} \frac{\partial a}{\partial w_{42}} = \left(\frac{\partial J}{\partial c} \frac{\partial c}{\partial a} + \frac{\partial J}{\partial b} \frac{\partial b}{\partial a}\right) \frac{\partial a}{\partial w_{42}}$$
$$= \left(\frac{\partial J}{\partial d} \frac{\partial d}{\partial c} \frac{\partial c}{\partial a} + \frac{\partial J}{\partial e} \frac{\partial e}{\partial b} \frac{\partial b}{\partial a}\right) \frac{\partial a}{\partial w_{42}}$$

$$= ([\hat{y}_1(1-\hat{y}_1)(\hat{y}_1-y_1)][w_{54}][\sigma_4(a)(1-\sigma_4(a))]$$

+ $[\hat{y}_2(1-\hat{y}_2)(\hat{y}_2-y_2)][w_{64}][\sigma_4(a)(1-\sigma_4(a))]x_2$





Types/ef_Uni

イロト イロト イモト イモト ヨー わへで

$$w_{i,i}^t \leftarrow w_{i,i}^t + \Delta w_{i,i}^t$$

where $\Delta w_{j,i}^t = \eta \, \delta_j^t \, x_{j,i}^t$ and $x_{j,i}^t$ is signal sent from node ito node *i*

Backpropagation Algorithm Notes

Nebiaska

479/87

Lecture 2 asic Artific Neural

Network

upervised earning

asic Units

Nebraska

tephen So

ntroduction

Basic Units

onlinearly eparable roblems

ackprop pes of Unit

tting Th

- Formula for δ assumes sigmoid activation function
 - Straightforward to change to new activation function via computation graph
- Initialization used to be via random numbers near zero, e.g., from $\mathcal{N}(0,1)$
 - More refined methods available (later)
- Algorithm as presented updates weights after each instance
 - Can also accumulate $\Delta w_{i,i}^t$ across multiple training instances in the same mini-batch and do a single update per mini-batch
 - ⇒ Stochastic gradient descent (SGD)
 - Extreme case: Entire training set is a single batch (batch gradient descent)

Nebraska Types of Output Units

479/879

Lecture asic Artifi Neural

Supervised earning

Basic Units

iradient escent

Ionlinearly Separable

Backprop

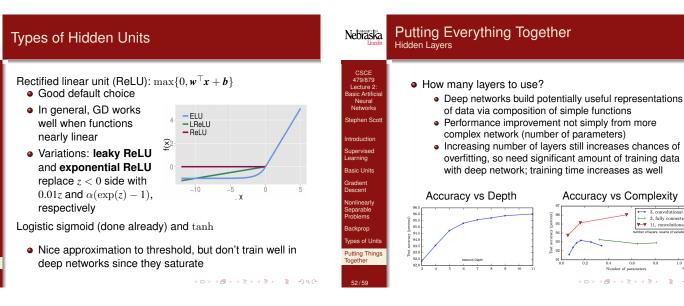
pes of L

Given hidden layer outputs h

- Linear unit: $\hat{y} = \boldsymbol{w}^{\top} \boldsymbol{h} + b$
 - Minimizing square loss with this output unit maximizes log likelihood when labels from normal distribution
 - I.e., find a set of parameters θ that is most likely to
 - generate the labels of the training data Works well with GD training
- Sigmoid: $\hat{y} = \sigma(\boldsymbol{w}^{\top}\boldsymbol{h} + b)$
 - Approximates non-differentiable threshold function
 - More common in older, shallower networks Can be used to predict probabilities
- Softmax unit: Start with $z = W^{\top}h + b$
- Predict probability of label i to be

 $\operatorname{softmax}(z)_i = \exp(z_i) / \left(\sum_j \exp(z_j) \right)$

Continuous, differentiable approximation to argmax



479/87

sic Artifi Neural

Stephen Sco

asic Units

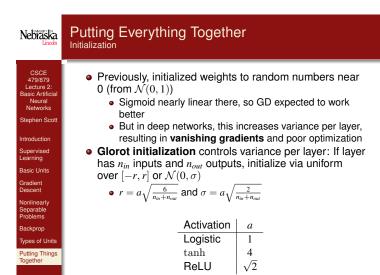
utting Things

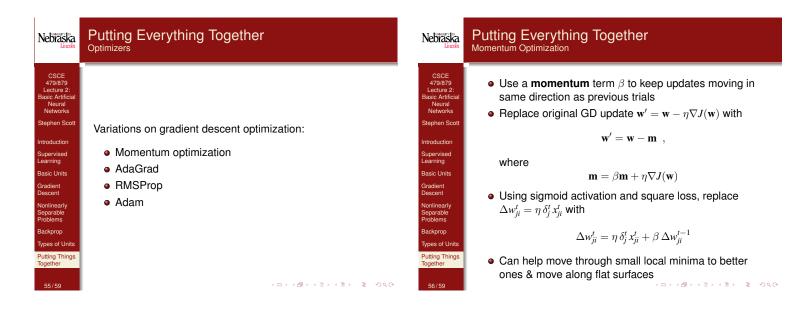
Putting Everything Together Universal Approximation Theorem

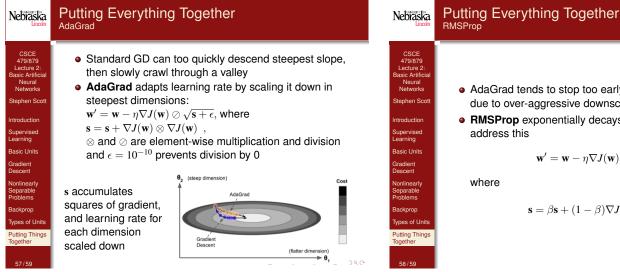
- Any boolean function can be represented with two layers
- Any bounded, continuous function can be represented with arbitrarily small error with two layers
- Any function can be represented with arbitrarily small error with three layers

Only an EXISTENCE PROOF

- · Could need exponentially many nodes in a layer
- May not be able to find the right weights
- Highlights risk of overfitting and need for regularization







 AdaGrad tends to stop too early for neural networks due to over-aggressive downscaling

• RMSProp exponentially decays old gradients to address this

$$\mathbf{w}' = \mathbf{w} - \eta \nabla J(\mathbf{w}) \oslash \sqrt{\mathbf{s} + \epsilon} \;\;,$$

$$\mathbf{s} = \beta \mathbf{s} + (1 - \beta) \nabla J(\mathbf{w}) \otimes \nabla J(\mathbf{w})$$

<ロ><四><日><日><日><日><日><日><日><日<</p>

Putting Everything Together Adam

Adam (adaptive moment estimation) combines Momentum optimization and RMSProp

 $\mathbf{0} \ \mathbf{m} = \beta_1 \mathbf{m} + (1 - \beta_1) \nabla J(\mathbf{w})$ $\mathbf{s} = \beta_2 \mathbf{s} + (1 - \beta_2) \nabla J(\mathbf{w}) \otimes \nabla J(\mathbf{w})$

$$s = \beta_2 \mathbf{s} + (1 - \beta_2) \nabla J(\mathbf{w}) \otimes \mathbf{v}$$

$$m = m/(1 - \beta_1^t)$$

•
$$\mathbf{m} = \mathbf{m}/(1 - \beta_1)$$

• $\mathbf{s} = \mathbf{s}/(1 - \beta_2)$

$$\mathbf{w}' = \mathbf{w} - \eta \mathbf{m} \oslash \sqrt{\mathbf{s} + \epsilon}$$

- Iteration counter t used in 3 and 4 to prevent m and s from vanishing
- Can set $\beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 10^{-8}$