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Weverel |ntroduction

CSCE ; )
478/878 Consider humans:

Lecture 5:

Artifcial @ Total number of neurons ~ 10'°

Neural
Networks and @ Neuron switching time ~ 103 second (vs. 10~19)
ectoy @ Connections per neuron ~ 10*-10°
Machines . .
@ Scene recognition time = 0.1 second
@ 100 inference steps doesn’t seem like enough

= much parallel computation

Stephen Scott

Introduction

Outline

The Properties of artificial neural nets (ANNSs):

Perceptron

S @ Many neuron-like threshold switching units
Pl @ Many weighted interconnections among units
Backprop @ Highly parallel, distributed process

SyMs @ Emphasis on tuning weights automatically

Strong differences between ANNs for ML and ANNs for
biological modeling
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Neural
Networks and

Support @ Input is high-dimensional discrete- or real-valued (e.g.,

Vector

eeies raw sensor input)
Stephen Scott @ Output is discrete- or real-valued

Introduction @ Output is a vector of values

Outline @ Possibly noisy data

- @ Form of target function is unknown

ST @ Human readability of result is unimportant

Problems

@ Long training times acceptable

Backprop

SVMs
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Outline

@ Linear threshold units: Perceptron
@ Gradient descent

@ Multilayer networks

@ Backpropagation

@ Support Vector Machines
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Support 1if x>0
Vector : o= ig') ik
Machines -1 otherwise

Stephen Scott

) =0(X1,... .
Outiine y = olx, —1 otherwise

The
Perceptron

e (sometimes use 0 instead of —1)

Implementation
Approaches

Introduction +1 ifwo+wix;+---+wux, >0
7xn) =

e Sometimes we’ll use simpler vector notation:
Separable

Problems f 0
Backprop y = O(X) _ { +1 ITW-X >
SVMs —1 otherwise

5/50
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Introduction

Outline

The
Perceptron

Training a Perceptron

@ What weights represent g(x;,x,) = AND(x1,x;)?

Approaches

Represents some useful functions

Nonlinearly

Separable But some functions not representable

Problems

Backprop

@ l.e., those not linearly separable
@ Therefore, we’ll want networks of neurons

SVMs

6/50



Nebtaska Perceptron Training Rule

Lincoln

CSCE
478/878
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Networks and 1+1 t ! r_ U AN
R wi < wj+ Awj , where Aw; =5 (r' —)') x;

Vector
VECGES and
Stephen Scott

@ /' is label of training instance ¢

Introduction

Outline @ ' is perceptron output on training instance ¢
LIS @ nis small constant (e.g., 0.1) called learning rate

Perceptron
Training a Perceptron
Implementation

s l.e., if (" —y') > O then increase w; w.r.t. x}, else decrease

Nonlinearly

SEEIElE Can prove rule will converge if training data is linearly

Problems .
Backprop separable and » sufficiently small

SVMs

7150
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@ Consider simpler linear unit, where output

Where Does the Training Rule Come From?

2 1 r ot tr ot
Y=wy+wixg+---+w,x,

(i.e., no threshold)
@ For each example, want to compromise between
correctiveness and conservativeness
e Correctiveness: Tendency to improve on x’ (reduce
error)
e Conservativeness: Tendency to keep w't! close to w’'
(minimize distance)

@ Use cost function that measures both:

curr ex, new wts

U(w) = dist (W, w') +nerror | 7, wth.x'



NeBWERSWV ] OF

Lincoln

CSCE
478/878
Lecture 5:
Artificial
Neural
Networks and
Support
Vector
Machines

Stephen Scott

Introduction
Outline

The
Perceptron
Training a Perceptron

Implementation
Approaches

Nonlinearly
Separable
Problems

Backpr
SIS

9/50

=

E (w))

E (Wt+1)

Gradient Descent

wt

Wt+1
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Gradient Descent (cont'd)
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Support —_——N— L —N—
Vector U _ t+1 2 | ANt 1 o\2
Machines (W) - HW - W ||2+ n (I" - W 'X)
Stephen Scott n n 2
2
_ } : 1+1 t t § : +1 t
Introduction — (Wj - W]) + nyr — Wj xj
Outline ]:1 ]:1
The
P t H .
LG Take gradient w.r.t. w'*! and set to 0:
Implementation
Approaches
gonline;”y t+1 t t En : 1t t
eparable — _ _ _
Problems 0=2 <Wi Wi) 277 r W] xj Xi
J=1

Backprop

SVMs
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weiemel  Approximate with
Support

Vector
Machines n
t+1 t t 2 : 1ot t
h — —w) — — X g
Stephen Scott 0=2 (Wi Wt) 2?7 r W/ .XJ Xy
Introduction =1
Outline . .
which yields
The
Perceptron
Training a Perceptron AW’-
Implementation !
Anproaches 1 . f—t’ﬁ
1
Nonlinearly Wi = wi + n (I" -y ) xi

Separable
Problems

Backprop
SIS
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Artificial . .
Neural @ Can use rules on previous slides on an
Networks and

Support example-by-example basis, sometimes called
vector incremental, stochastic, or on-line GD

Machines

Stephen Scoft e Has a tendency to “jump around” more in searching,
which helps avoid getting trapped in local minima

@ Alternatively, can use standard or batch GD, in which

e the classifier is evaluated over all training examples,

Perceptron summing the error, and then updates are made

—— e l.e., sum up Aw, for all examples, but don’t update w;

until summation complete

Introduction

Outline

Implementation
Approaches

Nonlinearly

Separable e This is an inherent averaging process and tends to give

Problems better estimate of the gradient
Backprop

SVMs

13/50
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. 4
Stephen Scott A:(0.0) ﬁ \ 220 C: (1, 0)
g(x) <
Introduction

Outine Represent with intersection of two linear separators
;';Sceplron
Nonlinearly g](X) =1 - X1 +1 c Xy — 1/2
Separable
Problems
©x)=1-x+1-x-3/2

General Nonlinearly
Separable Problems

Backprop pos = {x € R? : g;(x) > 0 AND g»(x) < 0}
SVMs
neg = {x € R?: g(x), 82(x) < 0 OR g1(x), g2(x) > 0}

14/50
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Support

if gi(x) <0
otherwise

(Xl,xz)

g1(x)

21 | &(x)

Handling Nonlinearly Separable Problems

2N
)

Vector
Machines

pos
pos

B: (0,

Stephen Scott

12 1
12 1

~1/2
~1/2

0,1)

1,0)
. 0,0)
Introduction 1’ 1)

neg

Outline

The
Perceptron

C: (
neg A:(
D: (
(z

Now feed z;, z; into g(z

Nonlinearly
Separable
Problems

Backprop
SIS

~1/2 0] -3,2
32 1 1/2

- 21 —2-22— 1/2
g(z)

<0 ’
/>0

D: (1,1)
@)

15/50

C; 7
A: (0,0),-

® .
B,C:(1,0)

0
0
0
1



ey Handling Nonlinearly Separable Problems
Lincoln The XOR Problem (COnt’d)

e In other words, we remapped all vectors x to z such that the

Lecture 5:

Artficial classes are linearly separable in the new vector space
Neural . w,= —1/2
Networks and Hidden Layer 30
Support < Jr—
Vector 7

Machines

Outline

. w,=1 i w,= -2 /\JOutput
Perceptron : i P Layer

Stephen Scott

Input Layer

Introduction

Nonlinearly S— | —
Separable W= — 32

Problems

‘ This is a two-layer perceptron or two-layer feedforward

Separable Problems neura / netwo rk
Backprop

SVMs Each neuron outputs 1 if its weighted sum exceeds its

threshold, 0 otherwise
16/50
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iy By adding up to 2 hidden layers of perceptrons, can

Networks and

Support represent any union of intersection of halfspaces

Vector
Machines

Stephen Scott neg

Introduction
pos

i
Outline pos

The neg
Perceptron

Nonlinearly
Separable pos neg
Problems pos

XOR

General Nonlinearly
Separable Problems

Backprop
SVMs
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o(net) is the logistic function
Stephen Scott

net=2 w; x; 1
i=0 1l 0 = o(net) = —————
“net

I+e

Introduction 1

Outline 1 + e—net
The

Perceptron Squashes net into [0, 1] range

Nonlinearly
Separable

Problems Nice property:

Backprop

Sigmoid Unit do- (x)

Multilayer Networks

Training Multilayer dx =ag (x) ( l -0 ('x))

Networks

“ Continuous, differentiable approximation to threshold
Hyd &A&0
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N Again, use squared error for correctiveness:

Networks and

Support 1 5

Vi t !

eoins E(wW) =3 (7" =)
Stephen Scott

, (folding 1/2 of correctiveness into error func)
Introduction
Outline OE 0 1 2
Thus — = —— = (' =)
Thi t !
Pereceptron 8W] a‘/Vj 2
Nonlinearly
Separable 1 a a t
Problems 1 t t t t 2 Y
==-2(r - r — = (r— -

3200 ) g (7)== (5
Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg
Overfitting
Remarks

Hyd 880
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Nonlinearly
Separable
Problems

Backprop
Sigmoid Unit
Multilayer Networks

Training Multilayer
Networks

Backprop Alg
Overfitting

Remarks

HyBEph&0

Sigmoid Unit

Gradient Descent (cont'd)

Since y' is a function of ner’ = w' - X/,

OE B (rt _y,) oy'  Onet'
8th- Onet! 8wjt.
Oo (net') Onet'
R
N (r Y ) Onet!  Ow!

J
= — (=) (-Y)x

Update rule:

Wit =i (1) (7 - ) 5
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Backprop
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Multilayer Networks

Training Multilayer
Networks

Backprop Alg
Overfitting
Remarks

HyBdph&0

Multilayer Networks

Ui = Input Trom 1 {0
Xy=1 w,; = Wt fromito ]

g\. ! Wn+3’n+ net n+3 y n+3
2 5 6y —

=

=9

=

)

xn
%ﬂ,\ Q y n+4
1+ nerN+E= W, 4ns2 “net n+4
n+2,0
Hidden layer Output Layer
Use sigmoid units since continuous and differentiable
1 2
E'=E(W) = 3 Z (rfc —yfc)
k€outputs
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Backprop Alg
Overfitting
Remarks

HyR8h&0

Training Multilayer Networks
Output Units

Adjust weight w!; according to £’ as before

For output units, this is easy since contribution of w]’.,. to E'

when j is an output unit is the same as for single neuron
case', i.e.,

O (1 3y (1= yl) oy = i,
awjt'i J J7 7] JJ J
t_ OE __ o
where 4} = ~ Bnel = error term of unit j

'This is because all other outputs are constants w.r.t. w);
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Lecture 5:
Artificial
Neural
Networks and
Support
Vector

Machines @ How can we compute the error term for hidden layers
Stephen Scott when there is no target output r’ for these layers?

Introduction @ Instead propagate back error values from output layer

Outiine toward input layers, scaling with the weights
L @ Scaling with the weights characterizes how much of the

e error term each hidden unit is “responsible for”

Separable
Problems

Backprop
Sigmoid Unit
Multilayer Networks

Training Multilayer
Networks

Backprop Alg
Overfitting
Remarks

HyE&h&0
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Backprop
Sigmoid Unit
Multilayer Networks

Training Multilayer
Networks

Backprop Alg
Overfitting
Remarks

HyB4oh&0

Training Multilayer Networks
Hidden Units (cont'd)

The impact that w}; has on E' is only through net; and units

immediately “downstream” of ;:

OE! OE! anett

8w]’l 8net’ 8w
Onet!

o t k
= i Z _ — Onet!
kedown(j) 7

kedown(j)

t
—Ocwy Onet!

dyj

t

= Xj; E
!

= Xj; E

OE' Onet,
Onet;, 8net’

D

kedown(])

o Onet,  Oy;
k dyj Onet;

kedown(j)

— 0 wi v (1 =)

kedown(j)

Works for arbitrary number of hidden layers
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Backpropagation Algorithm

cscE e ,
Sk Initialize all weights to small random numbers

Lecture 5:
Artificial

\ifica Until termination condition satisfied do

Networks and

Support @ For each training example (#,x") do

Maghines @ Input x' to the network and compute the outputs y’
Stephen Scott @ For each output unit &

Introduction 5;( — y;c (1 - y;) (r]tc - yi)

Outline @ For each hidden unit

The

Perceptron t r 1 ! 1
O <y (1 =y3,) E Wih Oy
Nonlinearly

Separable kedown(h)
Problems

Backprop © Update each network weight w/ ;

Sigmoid Unit

Mulilayer Networks wh.o—wh. + AW .
Training Multilayer Jst It Il
Networks

Backprop Alg where

Overfiting

Remarks

Awh . = n(stxt .
1y 2BoAB0 It 15750
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HyR60h&0

Backpropagation Algorithm

Example

target="y

f(x)=1/7(1+exp(- X))

trial 2: a—O b=1,y=0

a ca
sum
sum, Ye /(‘1\ d Y4
c fi— f
b ch dc
w,
WCO do
eta 0.3
trial 1 trial 2
w_ca 0.1..0.1008513 . 0.1008513
w_cb 0.1 0.1..0.0987985
w_c0 0.1..0.1008513 . 0.0996498
a 1 0
b 0 1 target 1 0
const 1 1 delta_d 0.1146431__-0.136083
sum_c 0.2 .0.2008513 delta_c 0.0028376 -0.004005
v.c 0.5498340 . 0.5500447
w_dc 0.1..0.1189104 . 0.0964548 |delta d(t) =y _d(t) * (y(t) - y_d(t)) * (1 - y_d())
w_do 0.1...0.1343929  0.0935679 |delta_c(t) =y_c(t) * (1 - y_c(t)) * delta_d(t) * w_dc(t
sum_d 0,1549834 . 0.1997990 w_dc(t+1) = w_dc(t) + eta *y_c(t) * delta_d(t)
y_d 0.5386685 | 0.5497842 w_ca(t+1) = w_ca(t) + eta * a * delta_c(t)
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Lecture 5:
Artificial

Neto @ When to stop training? When weights don’t change

S much, error rate sufficiently low, etc. (be aware of

Machines overfitting: use validation set)

@ Cannot ensure convergence to global minimum due to
myriad local minima, but tends to work well in practice
(can re-run with new random weights)
The

Perceptron @ Generally training very slow (thousands of iterations),
Nonlinearly

il use is very fast

Problems

Stephen Scott

Introduction

Outline

@ Setting n: Small values slow convergence, large values

o might overshoot minimum, can adapt it over time

Multilayer Networks

Training Multilayer
Networks

Backprop Alg
Overfitting
Remarks

HyBZoh&0
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Error versus weight e 1)

updates (exampls
T

CSCE 0.01 " T T
478/878 0009 Fu Training set error <
Validation set error +
Lecture 5: 0.008 1
Artificial 0007
Neural 5
Networks and = 0.006
Support 0.005
Vector 0.004
Machines 0.003
Stephen Scott 0.002
0 5000 10000 15000 20000
Number of weight updates
Introduction Error versus weight updates (example 2)
008 ey T T T
007 | * Training set error « 4
Validation set error +
0.06 R
005
Nonlinearly E 004
Separable H
003
Problems
002
Backpr 001 |
Sigmoid Unit 0 . t
Multilayer Networks 0
1000 2000 3000 4000 5000 6000
B A0 Number of weight updates
Backprop Alg
Overfitting .
Danger of stopping too soon!

HyE&AS0
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Training Multilayer
Networks

Backprop Alg
Overlitting

Remarks

@ Alternative error function: cross entropy

Backpropagation Algorithm

Remarks

E' = rilny, + (1 —7r)In (1 -y,
Iy k k

kEoutputs

“blows up” if r; = 1 and y, =~ 0 or vice-versa (vs.
squared error, which is always in [0, 1])

@ Regularization: penalize large weights to make space

more linear and reduce risk of overfitting:

2

>

k€outputs

2
=)D (wWh)?
iy
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Whelol  Representational power:
Support
Vector

Machines @ Any boolean function can be represented with 2 layers
R @ Any bounded, continuous function can be represented
Introduction with arbitrarily small error with 2 layers

Outline @ Any function can be represented with arbitrarily small
L error with 3 layers

Nonlinearly . .

Separable Number of required units may be large

Problems

S May not be able to find the right weights

Multilayer Networks

Training Multilayer
Networks

Backprop Alg
Overfitting
Remarks
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478/878 i i I
4Te/678 @ Hyp. space # is set of all weight vectors (continuous

Artificial

\ifica vs. discrete of decision trees)
Networks and

Support @ Search via Backprop: Possible because error function

Vector

Y and output functions are continuous & differentiable

Stephen Scott @ Inductive bias: (Roughly) smooth interpolation between
Introduction data pOintS

Outline
4000,

The
Perceptron

o head

s hid

+ hod

» had

© haved
v heard
© heed

<hud

> who'd
» hood

Nonlinearly
Separable
Problems

Backprop
Sigmoid Unit 1000

Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Overfitting

Remarks



Ne‘BﬂvERSWV]or

Lincoln

CSCE
478/878
Lecture 5:
Artificial
Neural
Networks and
Support
Vector
Machines

Stephen Scott

Introduction
Outline

The
Perceptron

Nonlinearly
Separable
Problems

Backprop

Margins
Duality
Kernels
Types of Kemels
SVMs
32/50

Support Vector Machines

Introduction

Similar to ANNs, polynomial classifiers, and RBF networks
in that it remaps inputs and then finds a hyperplane

@ Main difference is how it works

Features of SVMs:

@ Maximization of margin
@ Duality
@ Use of kernels

@ Use of problem convexity to find classifier (often without
local minima)
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Support Vector Machines

Margins

Support vectors (with
minimum margin) uniquely
define hyperplane (other
points not needed)

@ A hyperplane’s margin  is the shortest distance from it
to any training vector

@ Intuition: larger margin = higher confidence in
classifier’s ability to generalize

e Guaranteed generalization error bound in terms of 1/~?
(under appropriate assumptions)

@ Definition assumes linear separability (more general

definitions exist that do not)
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Support Vector Machines
The Perceptron Algorithm Revisited

wo < 0,bg 0,m« 0,7 € {—1,+1}Vt
While mistakes are made on training set

@ Fort=11to N (= # training vectors)
o If r' (W, X' +by) <0
@ Wyt1 — Wy +nr' X
@ byy1 < by +nr
@ m+ m+1

Final predictor: h(x) = sgn (W, - X + by,)
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Support Vector Machines

The Perceptron Algorithm Revisited (partial example)

t x’l x’z r wy wy b a x’i x’z r wi wy b e
1 4 1 +1 0.4 0.1 0.1 1 4 1 +1 0.4 0.0 0.0 2
2 5 3 +1 0.4 0.1 0.1 0 5 3 +1 0.4 0.0 0.0 0
3 6 3 +1 0.4 0.1 0.1 0 6 3 +1 0.4 0.0 0.0 0
4 2 1 —1 0.4 0.1 0.1 0 2 1 —1 0.2 —0.1 —0.1 3
5 2 2 —1 0.4 0.1 0.1 0 2 2 —1 0.2 —0.1 —0.1 0
6 3 1 —1 0.4 0.1 0.1 0 3 1 —1 0.2 —0.1 —0.1 0
1 4 1 +1 0.4 0.1 0.1 1 4 1 +1 0.2 —0.1 —0.1 2
2 5 3 +1 0.4 0.1 0.1 0 5 3 +1 0.2 —0.1 —0.1 0
3 6 3 +1 0.4 0.1 0.1 0 6 3 +1 0.2 —0.1 —0.1 0
4 2 1 —1 0.2 0.0 0.0 1 2 1 —1 0.0 —0.2 —0.2 4
5 2 2 —1 0.2 0.0 0.0 0 2 2 —1 0.0 —0.2 —0.2 0
6 3 1 —1 0.2 0.0 0.0 0 3 1 —1 0.0 —0.2 —0.2 0
1 4 1 +1 0.2 0.0 0.0 1 4 1 +1 0.4 —0.1 —0.1 3
2 5 3 +1 0.2 0.0 0.0 0 5 3 +1 0.4 —0.1 —0.1 0
3 6 3 +1 0.2 0.0 0.0 0 6 3 +1 0.4 —0.1 —0.1 0
4 2 1 —1 0.0 —0.1 —0.1 2 2 1 —1 0.4 —0.1 —0.1 4
5 2 2 —1 0.0 —0.1 —0.1 0 2 2 —1 0.4 —0.1 —0.1 0
6 3 1 —1 0.0 —0.1 —0.1 0 3 1 —1 0.4 —0.1 —0.1 0
1 4 1 +1 0.4 0.0 0.0 2 4 1 +1 0.4 —0.1 —0.1 3
2 5 3 +1 0.4 0.0 0.0 0 5 3 +1 0.4 —0.1 —0.1 0
3 6 3 +1 0.4 0.0 0.0 0 6 3 +1 0.4 —0.1 —0.1 0
4 2 1 —1 0.4 0.0 0.0 2 2 1 —1 0.2 —0.2 —0.2 5
5 2 2 —1 0.4 0.0 0.0 0 2 2 —1 0.2 —0.2 —0.2 0
6 3 1 —1 0.4 0.0 0.0 0 3 1 —1 0.2 —0.2 —0.2 0
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At this point, w =

Can compute
wy = n(alrlx} + oz4r4x‘11

Wy = n(alrlx% + oz4r4x‘21

N
le,w=mn>_,arx

(0.2,-0.2), b

)=
)=

Support Vector Machines

The Perceptron Algorithm Revisited (partial example)

—0.2, a = (3,0,0,5,0,0)

0.1(3(1)4 +5(~1)2) = 0.2

0.1(3(

1

)1 +5(=1)1) = —0.2
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(a; =

Another way of representing predictor:

Support Vector Machines
Duality

N
h(x) = sgn(w-x + b) = sgn Z oar'x) - x+b
=1

= sgn nZa,r’ (x'-x)+b
=1

# prediction mistakes on x’)
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Bl Duality (contd)

CSCE
478/878
Lecture 5:

ecture S So perceptron alg has equivalent dual form:

Neural

Networks and a+—0.b+0
Support ’

Vector

Machines While mistakes are made in For loop
Stephen Scott

_— @ Fort=11to N (= # training vectors)
ntroduction
Outline o Ifr (77 Z]N:I ajrf (¥ -x') + b) <0

The
Perceptron

o+ 1
Nonlinearly

Separable

Problems b+ b + n rl

Backprop

SUMs Replace weight vector with data in dot products

Margins

So what?

Kernels

Types of Kernels
SVMs
38/50
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XOR Revisited

D: (+1,+1)
® O

O ®
A: (-1,-1)| C:(+1,-1)
Remap to new space:

¢(X1,X2) = {x%,xz, \/EX])Cz, \6}(17 \fo% 1:|
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XOR Revisited (cont’d)

remapped vector (scaling v/2 to 1):

n

C: (-1,+1)
®

D: (+1,+1)
O

Now consider the third and fourth dimensions of the

A: (+1,-1)
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XOR Revisited (cont’d)

@ Can easily compute the dot product ¢(x) - ¢(z) (where
x = [x1, x2]) without first computing ¢:
K(x,z) = (x-z+1)* = (x121 + X220 + 1)°

(x121)% + (0222)? + 2x121%022 + 2x121 + 23020 + 1

= |:X%,X2, \/E-xl X2, \/EXI, \6)(:2, 1]

N~

P(x)

. [z%,z%, \/511 22, \/521, \f2z2, 1]

/

o(2)

@ l.e., since we use dot products in new Perceptron

algorithm, we can implicitly work in the remapped y
space via k
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Kernels

K(x,z) = ¢(x) - ¢(z)

@ A kernelis a function K such that Vx, z,

@ E.g., previous slide (quadratic kernel)

@ In general, for degree-q polynomial kernel, computing
(x -z + 1)7 takes ¢ multiplications + 1 exponentiation for

x,z € R¢

@ In contrast, need over (“*¢~") > (
multiplications if compute ¢ first

l+q—1
q

)
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Kernels (cont'd)

@ Typically start with kernel and take the feature mapping
that it yields

@ Eg,letl=1,x=x,2=12z K(x,z) = sin(x — 2)
@ By Fourier expansion,

oo oo
sin(x—z) = ao—i-z ap sin(n x) sin(n Z)+Z a, cos(nx) cos(nz)
n=1 n=1

for Fourier coeficients ag, ay, . ..

@ This is the dot product of two infinite sequences of
nonlinear functions:

{0i(x)}2y = [1,sin(x), cos(x), sin(2x), cos(2x), . . .|

@ l.e., there are an infinite number of features in this
remapped space!
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= exp (—

%" —x]>

)

(b) $?=0.5
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Types of Kernels
Others

Hyperbolic tangent:

K(x',x) = tanh (2x' - x + 1)
(not a true kernel)

Also have ones for structured data: e.g., graphs, trees,
sequences, and sets of points

In addition, the sum of two kernels is a kernel, the product of
two kernels is a kernel

Finally, note that a kernel is a similarity measure, useful in
clustering, nearest neighbor, etc.
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BRIl Finding a Hyperplane

CSCE
araere Can show that if data linearly separable in remapped space,
N then get maximum margin classifier by minimizing w - w

1 f t
Rl subjectto ' (w-x'+b) > 1

Vector

Machines

Can reformulate this in dual form as a convex quadratic

MGl  program that can be solved optimally, i.e., won’t encounter

Introduction local Optima:

Outline

The N 1

Perceptron maximize E o — = E a;joir' P K(x',x/)
Nonlinearly « i=1 2 ij

Separable

Problems s.t. o > 07 = 1, oo, m

Backprop

N
SVMs E a;r'=0
Margins

Duality i=1

Kernels

Types of Kernels
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Lincoln Flndmg a Hyperplane (COnt’d)
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Artificial
N | . . . . .. . i

Wbl After optimization, label new vectors with decision function:

Support
Vi
Maiﬁtiﬁoras N

Stephen Scott f(X) = sgn Z Q; r K(X, Xt) +b

=1

Introduction '

Outline (Note only need to use x’ such that o, > 0, i.e., support
The vectors)

Perceptron

Nonlinearly

Separable Can always find a kernel that will make training set linearly
Problems separable, but beware of choosing a kernel that is too
powerful (overfitting)

Backprop

SVMs
Margins
Duality
Kernels

Types of Kernels
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Support Vector Machines
Finding a Hyperplane (contd)

variables '
N
e 2 i
minimize ||w||“*+C)» &
nin [[wl] ;
s.t. F(x-w)+b)>1-¢ i

&€>0,i=1,...,N
The dual is similar to that for hard margin:

N
max(ilmize g ai—E a;air' P K(x',x/)

i=1 i
s.t. 0<o;<C,i=1,..

N
E o' =0
i=1

Can still solve optimally

— P

N

If kernel doesn’t separate, can soften the margin with slack

N
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Support Vector Machines
Finding a Hyperplane (contd)

If number of training vectors is very large, may opt to
approximately solve these problems to save time and space

Use e.g., gradient ascent and sequential minimal
optimization (SMO)

When done, can throw out non-SVs
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