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Stephen Scott Stephen Scott ° Cer:le reCOgnItIOﬂ tlme : ~1 secon X
@ 100 inference steps doesnOt seem like enough
Introduction Introduction " mUCh parallel Computation
Outline Stephen SCOtt Outline ) ) ) .
;chemmn ;chemmn Properties of artibcial neural nets (ANNs):
Separable’ (Adapted from Ethem Alpaydin and Tom Mitchell) Separable’ @ Many neL_Jron-Iik_e threshold _SWitChing units )
FEiEnS FEiEnS @ Many weighted interconnections among units
Backprop Backprop @ Highly parallel, distributed process

SVMs

SVMs

@ Emphasis on tuning weights automatically

Strong differences between ANNSs for ML and ANNSs for
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sscot@cse.unl.edu biological modeling
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acies raw sensor input) Macines @ Linear threshold units: Perceptron
Stephen Scott @ Output is discrete- or real-valued Stephen Scott o Gradient descent
Introduction @ Output is a vector of values Introduction o Multilayer networks
3:‘;“"6 @ Possibly noisy data '"e e Backpropagation
:ﬁeif."y @ Form of target fgnctlon is ur?knov.vn ZZ?TZ:." o Support Vector Machines
Separable @ Human readability of result is unimportant Senarstle
)

Long training times acceptable

Backprop Backprop
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Introduction _ _ : +1 if Wo + WiXq + ééa WiXp > 0 Introduction
Outline y= O(X]_, s ,Xn) - #1 otherwise Outline )
The The Represents some useful functions

Perceptron . . Perceptron

e (sometimes use O instead of # 1) .

\ lemenito @ What weights represent g(xi, X2) = AND(x1, X2)?

Nonlinearly Sometimes weOll use simpler vector notation: Nonlinearly .

Separable | Sepaishic But some functions not representable

Backprop y= O(X) = +1 ifw ax > 0 Backprop
#1 otherwise

Problems

@ l.e., those not linearly separable
@ Therefore, well wanhetworks of neurons

SVMs SVMs
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WS wi+ L wf, where! wi= 1 (r'# ) X

@ rtis label of training instance t
Introduction
outline @ y'is perceptron output on training instance t
UL @ ! is small constant (e.g., 0.1) called learning rate

Perceptron
Training a Percepiron

l.e., if (' # y) > Othen increase w w.r.t. , else decrease

Nonlinearly
Separable
Problems

Can prove rule will converge if training data is linearly
separable and ! sufbciently small
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SVMs
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Stephen Scott n / O2 n 2
- +1 et 4 + 1t

Introduction - \th # VVJt + ! A)I’ # VVJ( Xj+
Outline =1 j=1

The
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Take gradient w.r.t. w'* 1 and set to O:
$ *
/ 0 on
0=2 wt#w #2 %' wixt X
=1
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@ Consider simpler linear unit, where output

(i.e., no threshold)

@ For each example, want to compromise between
correctiveness and conservativeness
e Correctiveness: Tendency to improve on x' (reduce
error)
e Conservativeness: Tendency to keep wt* ! close to wt
(minimize distance)

Stephen Scott
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Nonlinearty @ Use cost function that measures both:

Separable *
Problems $ CIT €%, New Wts
Backprop " (n,_

. #
e U(w) = dist w2 wt + I error %r!, wi*1axt +

8/50

Nebiaska

Lincoln

Gradient Descent (contOd)

CSCE
478/878
Lecture 5:
Artibcial
Neural
Networks and
Support
Vector
Machines

Stephen Scott

Introduction

IR S S
A TTTrT eSS S
N e
== S
= S

Outline

The
Perceptron
Training a Per

jon

cepiron

Nonlinearly wo
Separable
Problems
Backprop n U LT U " U " U
SVMs T T sy wo,aaa;
w Wy "wg Wn

10/50

Nebiaska

Lincoln

Gradient Descent (contOd)

CSCE
478/878
Lecture 5:
Artibcial
Neural . .
vl Approximate with
Support .
Vector $

Machines 0 . n
Stephen Scott O = 2 V\Iit+ 1 # VV: # 2' %rt # \Nt th+ X|t 1
Introduction =1
Outline . -

which yields

The
Perceptron
Training a Percepiron 4 ;
& ()

Nonlinearly
Separable
Problems

Backprop

SVMs

12/50



Nebisska Implementation Approaches Nebisska IT—I|1andI|ng Nonlinearly Separable Problems
e XOR Problem

CSCE
478/878
Lecture 5:
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Artibcial . . Artibcial
Neural @ Can use rules on previous slides on an Neural
Networks and - - Networks and
Support example-by-example basis, sometimes called Support

estor incremental, stochastic, or on-line GD ector . g

Stephen Scott e Has a tendency to Ojump aroundO more in searching, Stephen Scott AT 7 e o)
which helps avoid getting trapped in local minima (0 <N

Introduction . . . Introduction
outine @ Alternatively, can use standard or batch GD, in which oune R i ) " i
. the classiPer is evaluated over all training examples, . epresent with intersection of two linear separators
Perceptron summing the error, and then updates are made oo ) )
T o lLe.,sumup! w; for all examples, but donOt updatew; Noninearly Q)= 1aq+ lap# 12
— until summation complete e

Nonl ) e . . .
Separable’ o This is an inherent averaging process and tends to give E

Problems better estimate of the gradient SRtk S 1 2
Backprop Backprop pOS = X & RZ : gl(X) > 0 AND gZ(X) < 0

SVMs 1 2
neg = x&R?:gi(X),g2(X) < 0OR g1(x),g2(x) > O

gz(X): lax;+ laxp# 3/2

SVMs
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Nebrasl@ Handling Nonlinearly Separable Problems \Bved Handling Nonlinearly Separable Problems

The XOR Problem (contOd) BN The XOR Problem (contOd)

Tl Lctz- O ifgi(x) < 0 yorll  In other words, we remapped all vectors X to z such that the
o 1 otherwise peilll  classes are linearly separable in the new vector space
Nelv’:‘/sxjsland Class (X X ) (X) z (X) z Nelv’:‘/sxjsland Hidden Layer W3g= -1z
Support 1y A2 O1 1| O2 2 Support
Mechiocs pos B:(0,1) | V2 1 |#12 O Mechiocs
Stephen Scott pOS C: (1, O) 1/ 2 l # l/ 2 O Stephen Scott
Introduction neg A (0‘ O) # l/ 2 0 # 3/ 2 0 Introduction
Outline neg D: (1' 1) 3/ 2 1 1/ 2 1 Outline
The Now feed z;, z intog(z) = 1laz # 2az # 1/ 2 The
Perceptron b3 @ Perceptron
Nonlinearly <g0 , Nonlinearly
Separable D: (1,1) 50 Separable
Problems . Problems

This is a two-layer perceptron or two-layer feedforward
B neural network

Backprop

SVMs Each neuron outputs 1 if its weighted sum exceeds its
threshold, O otherwise

Backprop

SVMs
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Networks and
S represent any union of intersection of halfspaces
Machines

net=2w;x
=

0= ofnet) =

#(neY is the logistic function

Stephen Scott

Stephen Scott

1
1+ ¢ net

Introduction Introduction

Outline

Outline

The
Perceptron

The
Perceptron

Squashes netinto [0, 1] range

Nonlinearly
Separable

Nonlinearly
Separable pos neg

Nice property:

Problems pos Problems
eral Nonlinearly Backprop d
e P #(X)

= #(9(1# #(X)

Backprop

dx

SVMs

Continuous, differentiable approximation to threshold
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Sigmoid Unit

Gradient Descent

Again, use squared error for correctiveness:
" #
rt#

(folding 1/ 2 of correctiveness into error func)

e

th W}E rt# ¢t

Ew) = =

Thus

4 5
_1 "t # o "t #_"t # y(
-§2r#y‘ Wtr#yt-r#yt #o

Multilayer Networks

; = Input from 1 to |
wji=wtfr0m1t0J

Input layer

Hidden layer Output Layer
Use sigmoid units since continuous and differentiable
E'= E(w!) = 1 re# yL#Z
k" outputs

Training Multilayer Networks
Hidden Units

@ How can we compute the error term for hidden layers
when there is no target output r! for these layers?

@ Instead propagate back error values from output layer
toward input layers, scaling with the weights

@ Scaling with the weights characterizes how much of the
error term each hidden unit is Oresponsible forO
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Sigmoid Unit

Gradient Descent (contOd)

Since y! is a function of net = wt axt,

"E "yt " net
W r# yt “nef "wi
"# (nef) "ne

= t#yt
# rt#y' yt 1#yt x}

Update rule:

WSy Ly R

Training Multilayer Networks
Output Units

Adjust weight w}; according to E' as before

For output units, this is easy since contribution of W}i to E!
when j is an output unit is the same as for single neuron
casel, i.e.,

%-# r#ytytl#y‘ Xi = #4%

where :ﬁ‘ =# 8‘21'56 = error term of unit j

This is because all other outputs are constants w.r.t. w}

Training Multilayer Networks
Hidden Units (contOd)

The impact that wi; has on E' is only through nef and units
immediately OdownstreamO ¢f

"E " Et ¢ "E' "nef

k" dowr(j)

#3

k" dowr(j)

"net "y
"y nef

#Gowig Y (1# v5)
K" dowr(j)

_ i _ g

= X% _ # Wy nef = X%
k" down(j)

Works for arbitrary number of hidden layers



Nebiaska

Lincoln

CSCE
478/878
Lecture 5:
Artibcial
Neural
Networks and
Support
Vector
Machines

Stephen Scott

Introduction
Outline

The
Perceptron

Nonlinearly
Separable
Problems

Nebiaska

Lincoln

CSCE
478/878
Lecture 5:
Artibcial
Neural
Networks and
Support
Vector
Machines

Stephen Scott

Introduction
Outline

The
Perceptron
Nonlinearly
Separable
Problems

Backprop

Nebiaska

Lincoln

CSCE
478/878
Lecture 5:
Artibcial
Neural
Networks and
Support
Vector
Machines

Stephen Scott

Introduction
Outline

The
Perceptron

Nonlinearly
Separable
Problems

Backprop

Remarks

Backpropagation Algorithm

Initialize all weights to small random numbers

Backpropagation Algorithm

Remarks

@ When to stop training? When weights donOt change

Backpropagation Algorithm

Remarks

@ Alternative error function: cross entropy

Until termination condition satisPed do

@ For each training example (r!, x!) do

© Input x! to the network and compute the outputs y
@ For each output unit k

K Vi (@# ) (r# W)
@ For each hidden unit h

% Vh(1# )

kedowr(h)

Wi S

© Update each network weight W},
WS Wl w

i i
where
bw= 18X

much, error rate sufpciently low, etc. (be aware of
overbtting: use validation set)

Cannot ensure convergence to global minimum due to
myriad local minima, but tends to work well in practice
(can re-run with new random weights)

Generally training very slow (thousands of iterations),
use is very fast

Setting ! : Small values slow convergence, large values
might overshoot minimum, can adapt it over time

o " 4 o
E'= riinyk+ 1# 1l In 1# v

k" outputs

Oblows upOif,! 1andyi! 0 or vice-versa (vs.
squared error, which is always in [0, 1])

@ Regularization: penalize large weights to make space

more linear and reduce risk of overbptting:

g=1 r}(#y{(#2+ "/O.H(V\’jti)2

K" outputs ij

Vaeaey Backpropagation Algorithm

Lincoln Example

target="y trial T:a=1,b=0,y
CSCE .
478/878 fix) =1/ + exp(- X)) trial 2:a=0,b=1,y=0
Lecture 5:
Artibcial a \’\éa
Neural
Networks and sumg Ye Sumd yd
Support f
Vector w
Machines b ch de
Weo Wdo
Stephen Scott C
Introduction e 03
Outline
trial 1 trial 2
The w_ca 0.1, 0.1008513 0.1008513
(REEE w_cb 0.1 0.1 0.0987985
Nonlinearly w_c0 0.1..0.1008513  0.0996498
Separable a 1 0
Problems b 0 1 target 1 0
const 1 1 delta_d 0.1146431_-0.136083
sum_c 0.2 0.2008513 delta_c 0.0028376 - -0.004005
yv.c 0.5498340 . 0.5500447
w_dc 0.1..0.1189104  0.0964548 |delta_d(t) =y_d(t) * (y(t) - y_d() * (1 - y_d(t))
w_do 0.1..0.1343929  0.0935679 |delta_c(t) =y _c(t) * (1 - y_c(t)) * delta_d(t) * w_dc(t
sum_d 0.1549834 0.1997990 w_de(t+1) =w_dc(t) + eta * y_c(t) * delta_d(t)
y.d 0.5386685 0.5497842 w_ca(t+1)=w ca(t) +eta*a*delta c(t)

Vaeney Backpropagation Algorithm

BB Overbtting

Error versus weight updates (example 1)

CSCE 001
478/878 0009 |+ Training set error
Validation seterror  +
Lecture 5: 0.008
o
Artibcial 0007 [
Neural = %
Networks and 5 0006 W
Support 0.005
Vector 0.004
Machines 0003
Stephen Scott 0.002 L L L
0 5000 10000 15000 20000
Number of weight updates
el e Error versus weight updates (example 2)
Outline 008 [, T T T

‘Training set error
Validation set error +

The
Perceptron

Nonlinearly
Separable
Problems

Error
28
‘ /f

Backprop

0 .
0 1000 2000 3000 4000 5000 6000
Number of weight updates

Danger of stopping too soon!

Waeaey Backpropagation Algorithm

BN Remarks (Conléd)
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Machines @ Any boolean function can be represented with 2 layers
B @ Any bounded, continuous function can be represented
Introduction with arbitrarily small error with 2 layers
Outine @ Any function can be represented with arbitrarily small
s error with 3 layers

Perceptron

Representational power:

Nonlinearly
Separable
Problems

Number of required units may be large

RO May not be able to bnd the right weights

Remarks
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Hypothesis Space

@ Hyp. space H is set of all weight vectors (continuous
vs. discrete of decision trees)

@ Search via Backprop: Possible because error function
and output functions are continuous & differentiable

@ Inductive bias: (Roughly) smooth interpolation between
data points

4000

o head
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gins

Support vectors (with
minimum margin) uniquely
define hyperplane (other
points not needed)

@ A hyperplaneOsnargin %is the shortest distance from it
to any training vector

@ Intuition: larger margin " higher conbdence in
classiberOs ability to generalize

e Guaranteed generalization error bound in terms of 1/ %
(under appropriate assumptions)

@ Debnition assumes linear separability (more general

debnitions exist that do not)

Perceptron Algorithm Revisited (partial example)

t % [ [ [ b [ X% [ [ W b !
1 4 1 +1 0.4 01 01 1 4 1 +1 0.4 0.0 0.0 2
2 5 3 +1 0.4 01 01 0 5 3 +1 0.4 0.0 0.0 0
3 6 3 +1 0.4 0.1 0.1 0 6 3 +1 0.4 0.0 0.0 0
4 2 1 11 0.4 0.1 0.1 0 2 1 1 0.2 101 101 3
5 2 2 11 0.4 0.1 0.1 0 2 2 1 0.2 101 101 0
6 3 1 11 0.4 0.1 0.1 0 3 1 11 0.2 ! 0.1 ! 01 0
1 4 1 +1 0.4 01 01 1 4 1 +1 0.2 101 101 2
2 5 3 +1 0.4 01 01 0 5 3 +1 0.2 01 101 0
3 6 3 +1 0.4 01 01 0 6 3 +1 0.2 01 101 0
4 2 1 r1 0.2 0.0 0.0 1 2 1 'l 0.0 102 102 4
5 2 2 11 0.2 0.0 0.0 0 2 2 1 0.0 102 102 0
6 3 1 11 0.2 0.0 0.0 0 3 1 11 0.0 ! 02 102 0
1 4 1 +1 0.2 0.0 0.0 1 4 1 +1 0.4 101 101 3
2 5 3 +1 0.2 0.0 0.0 0 5 3 +1 0.4 01 101 0
3 6 3 +1 0.2 0.0 0.0 0 6 3 +1 0.4 01 101 0
4 2 1 r1 0.0 101 o1 2 2 1 'l 0.4 101 101 4
5 2 2 r1 0.0 o1 101 0 2 2 ' 0.4 101 101 0
6 3 1 11l 0.0 101 ! 0.1 0 3 1 11 0.4 ! 01 101 0
1 4 1 +1 0.4 0.0 0.0 2 4 1 +1 0.4 101 101 3
2 5 3 +1 0.4 0.0 0.0 0 5 3 +1 0.4 01 101 0
3 6 3 +1 0.4 0.0 0.0 0 6 3 +1 0.4 01 101 0
4 2 1 r1 0.4 0.0 0.0 2 2 1 r1 0.2 102 102 5
5 2 2 r1 0.4 0.0 0.0 0 2 2 r1 0.2 102 102 0
6 3 1 r1 0.4 0.0 0.0 0 3 1 1 0.2 ! 02 ! 02 0

Support Vector Machines
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Similar to ANNs, polynomial classibers, and RBF networks
in that it remaps inputs and then bPnds a hyperplane

@ Main difference is how it works

Stephen Scott

Features of SVMs:

Introduction

Outline

@ Maximization of margin
@ Duality
@ Use of kernels

The
Perceptron
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Separable
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@ Use of problem convexity to bnd classiber (often without
local minima)

Backprop

Support Vector Machines
The Perceptron Algorithm Revisited
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Wo$ 0,bp$ Oom$ O, rt&{#1,+1}'t

While mistakes are made on training set

Stephen Scott

@ Fort= 1to N (= # training vectors)

Introduction L,

out o Ifrt(wpaxt+ by) ( O

utline

e @ Wmiz! Wm+ ! rix

Perceptron @ bpsr! b+ !r!
em! m+1

Nonlinearly
Separable
Probl . . ;
R Final predictor: h(x) = sgn(wm ax + bm)

Backprop

SVMs

Margins

Duality

Support Vector Machines

The Perceptron Algorithm Revisited (partial example)
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At this point, w = (0.2,#0.2), b= #0.2, &=(3,0,0,5,0,0)

Stephen Scott

Can compute
wy = 1 (&rixd + &rxd) = 0.1(3(1)4+ 5(#1)2) = 0.2

Wy = 1 (&t + &ar*xd) = 0.1(3(1)1+ 5(#1)1) = #0.2

6
N tyt
=1 &r'x

Introduction
Outline

The
Perceptron
Nonlinearly I-e-, w=1
Separable

Problems

Backprop

SVMs

Margins
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h(x) = sgn(w &x + b) = sgn ! &rixt ax+ b

Introduction t= 15

4

Outline N "

’ t t'#
The =sgn ! &rt xa&x +b

Perceptron
t=1

Stephen Scott

Nonlinearly
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Margins
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Duality 7 8

oy L
C(xLxe) = X%, 2xiX, 2X1, 2%, 1

Lhet XOR Revisited (contOd)

Lincoln

araeTs @ Can easily compute the dot product ' (x) & (2) (where

Lecture 5: . .

kel X = [ X1, X2]) without Prst computing' :
Networks and 2 2

Selor K(x,2) = (xaz+ 1) = (xazs + Xpz2 + 1)

Machines

(7x121)2 + (%022)? + 2Z1%020 + 82xlzl + 20+ 1

Stephen Scott

X2, X5, 2x1%2, 2X1, 2%, 1

Introduction
Outline \R'

&(x)
The
Perceptron '722 22 ) — ) — ) — 8
Nonlinearly a 1“2 2 42, 2 2, 2 2, 1
Separable ( & !
Problems #(2)

Backprop

@ l.e., since we use dot products in new Perceptron
algorithm, we can implicitly work in the remapped y
space via k

Bl Support Vector Machines
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olfrt 1 L & Xaxt'+b (0

Outline

The
Perceptron &S &+ 1
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Backprop

Replace weight vector with data in dot products

SVMs

Margins

So what?
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If number of training vectors is very large, may opt to
approximately solve these problems to save time and space
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