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CSCE 478/878 Lecture 5:
Artificial Neural Networks and
Support Vector Machines

Stephen Scott

(Adapted from Ethem Alpaydin and Tom Mitchell)

sscott@cse.unl.edu

When to Consider ANNs

raw sensor input)

Output is discrete- or real-valued

Output is a vector of values

Possibly noisy data

Form of target function is unknown
Human readability of result is unimportant
Long training times acceptable

The Perceptron

,, (= ~O
2‘1"/" . 2
it ”:{1 |fi:20w’~xi>(l

1 otherwise

+1 ifwog+wixg 4+ +wpx, >0
y:()(xlv""xn):

—1 otherwise

(sometimes use 0 instead of —1)

Sometimes we’ll use simpler vector notation:

— ox) = +1 ifw-x>0
Y=o TN Z1 otherwise

Input is high-dimensional discrete- or real-valued (e.g.,

WEeetled |ntroduction

Lincoln

CSCE H .
ey Consider humans:

Lecture 5:

Aifcial @ Total number of neurons ~ 10'°
Rt @ Neuron switching time ~ 103 second (vs. 10~19)
i @ Connections per neuron =~ 10*-10°
- o Sceqe recognition time ~ 0.1 secor?d
@ 100 inference steps doesn’t seem like enough

IEEET = much parallel computation

OQutline

The Properties of artificial neural nets (ANNSs):

Perceptron

e @ Many neuron-like threshold switching units
Problems @ Many weighted interconnections among units
EERED @ Highly parallel, distributed process

SYMs @ Emphasis on tuning weights automatically

Strong differences between ANNs for ML and ANNs for
biological modeling

\EeN Outline
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Linear threshold units: Perceptron
Gradient descent

Multilayer networks
Backpropagation
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Introduction

OQutline

The Represents some useful functions

Perceptron

@ What weights represent g(xy,x2) = AND(x1,x2)?

Nonlinearly

Separable But some functions not representable

Problems

Backprop

@ l.e., those not linearly separable
@ Therefore, we’ll want networks of neurons

SVMs
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Perceptron Training Rule
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41 : ! L= —y)x
with e wi+ Awl , where Awi = n (' — ') x]

@ /' is label of training instance ¢
Introduction
Outline @ ' is perceptron output on training instance ¢
The @ 7 is small constant (e.g., 0.1) called learning rate

Perceptron
Training a Percoptron

l.e., if (" —»") > 0 then increase w} w.rt. x/, else decrease

Nonlinearly
Separable
Problems

Can prove rule will converge if training data is linearly

R separable and 7 sufficiently small

SVMs
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Nonlinearly

Separable t t+1

Problems w w
—

Backprop n
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conserv. corrective

coef .

Vector _ 141 2 A7t 1 )
Machines U(W) = HW — W ||2 +7n (r —_wtl.x )
Stephen Scott n ; 2
2
E 1+1 ! } : +1 1
Introduction = (Wl — w]) +n [ Wj+ xj
Outline j=1 =

The
Perceptron
Training a Percoptron

Take gradient w.r.t. w't! and set to 0:

Nonlinearly
Separable
Problems

n
_ 1+1 1 t 1t t
072<wi _Wi>_277 r—E Wi x| X
J=1

Backprop

SVMs
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Neural — R

Networks and Y =wpt+twpx + + Wy Xy

Support

Vector
Machines

@ Consider simpler linear unit, where output

(i.e., no threshold)

@ For each example, want to compromise between
correctiveness and conservativeness

Stephen Scott

Introduction

e o Correctiveness: Tendency to improve on x' (reduce
5o error)

Perceptron o Conservativeness: Tendency to keep w'*! close to w'
T (minimize distance)

Nailieziy @ Use cost function that measures both:

Separable

ictiels curr ex, new wits

EERTD . t+1 r t t+1 1

ST U(w) = dist (W', w') + nerror | ¥, wt! . x
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N e
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OQutline

The
Perceptron
Training a Porcoptron
Imp o

Appr

Nonlinearly wo

Separable

Problems

e ou [ou dU U

SVMs — =\ s
ow Owgy’ Owy Owy,
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Introduction Jj=1
Outline . .
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The
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i Handling Nonlinearly Separable Problems

B The XOR Problem
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Implementation Approaches

CSCE
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Artificial . .
Neural @ Can use rules on previous slides on an

Networks and Networks and

S example-by-example basis, sometimes called Support

CSCE
478/878
Lecture 5:
Artificial
Neural

e incremental, stochastic, or on-line GD o

Stephen Scott e Has a tendency to “jump around” more in searching, Stephen Scott A0 7 \ - C (1 0 N
which helps avoid getting trapped in local minima 200 <N

Z:;::m” o Alternatively, can use standard or batch GD, in which Z:;::m” R i onof two I
o the classifier is evaluated over all training examples, o epresent with intersection of two linear separators
Perceptron summing the error, and then updates are made Perceptron
iy o l.e., sum up Aw; for all examples, but don’t update w; Nonlinearly six)=1-x+1-x0-1/2
A until summation complete Prasloms

Nonli ) I . . .
Sy e This is an inherent averaging process and tends to give

Problems better estimate of the gradient
Backprop

) =1-x+1-x0—-3/2

pos = {x € R? : g;(x) > 0 AND g>(x) < 0}
neg = {x € R?: g1(x), 82(x) < 0 OR g(x), g2(x) > 0}

SVMs
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Handling Nonlinearly Separable Problems
Bl The XOR Problem (contd)

The XOR Problem (contd)

Nebiaska

Lincoln

CSCE 0 ifgi(x)<0 ot

478/878 Letz; = 478/878 In other words, we remapped all vectors x to z such that the
Lecture 5: Z 1 h H Lecture 5: . .
Artificial otherwise Artifcial classes are linearly separable in the new vector space
Nelxifif'm Class ( ) (x) (x) Nelxifif'm Hidden Layer W= —12
S X,X%2) | &1(X) 71| &%) 2 Support v 4
Ve \' 7
E pos B (0.0 1/2 1|12 0 E (
Stephen Scott pOS C (17 O) 1/2 1 -1 /2 0 Stephen Scott 2
o neg A:(0,0)| -1/2 0| -3/2 0 o
ntroduction ntroduction
Outline neg D (17 1) 3/2 1 1/2 1 Outline
: -2 Output
Th Now f in 2)=1-71-2-20—-1/2 Th 'S AL P
Pe?cep(ron o eEd Zl! 22 tO g( ) Zl 22 / Pe?cep(ron % /k/d dyer
inearl inearl /ﬁ :
Separatle. Separatle. W =32

Problems Problems

This is a two-layer perceptron or two-layer feedforward
neural network

Each neuron outputs 1 if its weighted sum exceeds its
threshold, 0 otherwise

Handling Nonlinearly Separable Problems

General Nonlinearly Separable Problems

Nebiaska
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) The Sigmoid Unit

CSCE CSCE
478/878 478/878
Lecture 5: Lecture 5: /DC O
Avrtificial . X Artificial nw:%w X 1
Miweial By adding up to 2 hidden layers of perceptrons, can N & o= otne) =~
Support represent any union of intersection of halfspaces Support
Machines Machines . .y .
o(net) is the logistic function
Stephen Scott Stephen Scott
Introduction Introduction 1
Outline Outline 1+ e—net

The
Perceptron

The
Perceptron

Squashes net into [0, 1] range

Nonlinearly

Nonlinearly

Separabl pos ne Separabl H .
Psgba\'eamse pos g Psgba\'eamse N|Ce property'
General Nonlinearly d ( )
Separable Problems g(x
=ox)(1 —o(x
"2 = o) (1 - o))

Continuous, differentiable approximation to threshold



e Sigmoid Unit EeNey Sigmoid Unit

Bl Gradient Descent ERl  Gradient Descent (cont'd)

CSCE
478/878
Lecture 5: . . .
Artificial Since y' is a function of net’ = w' - X',

Neural

Again, use squared error for correctiveness:

Neural

Networks and Networks and
Support 1 ) i OE . Oy Onet
Vector ‘ector —— = = —
Maiﬁizes E(W[) = 5 (rt - y’) Machines owt (l’ y) Onett  Ow'
Stephen Scott Stephen Scott 8 ( tt) ]a tt
: : : o (ne ne,
(folding 1,/2 of correctiveness into error func) = —(Fr—y) =+
Introduction Introduction Onet’ 6th
Outline aE (9 1 2 Outline
Thus —— = =— = (¥ =) = —(F=y)y (1-y)x
Th t t Th y)y V)X
Pe?ceplron aw} 8W} 2 Pe?ceplron /
Nonlinearly Nonlinearly Update rule:
Separable 1 8yt gepérable
Problems t roblems
=_2(=y) =5 (F=y)=("-y) |-
! !
Backprop 2 j 6Wj Backprop ‘ wj{+l = W; + nyl (1 _ yl) (rt _ y’) x][. ‘

N Multilayer Networks \Bveney 1raining Multilayer Networks

Lincoln Lincoln Output Units

ji = mnputirom1to]
_ f . . CSCE
W, = wt from11to ] 478/878

Js Lecture 5:

Lect g
Artificial

' Avrtificial
5] . . .
Nemoric and (R Wl Adjust weight w!; according to E' as before
Support — Support
~— . . . . . .
Machines 2 et For output units, this is easy since contribution of w!; to £’
Stephen Scott (RS senmeed  when j is an output unit is the same as for single neuron
case',i.e
Introduction Introduction roEn
Outline Outline aEt
1 t t 1 1 1
- . = (=) v (1 =) X = =N
Pe?ceplron Pe?ceplron Bwj’, ( J yj) yj ( yj) s SO
Nonlinearly Nonlinearly
Separable 1 Separable o
Probems Hidden layer Output Layer Problems where 8! = — 22, — error term of unit j
J

Backprop . . . . . . .
Use sigmoid units since continuous and differentiable
Traning uliayer 1

E'=EW)= 3 Z (ri _y;()z emm

keoutputs

"This is because all other outputs are constants w.r.t. Wi

Training Multilayer Networks
Hidden Units

[Rieaey Training Multilayer Networks

BB  Hidden Units (contd)
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CSCE
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Artficial The impact that wi; has on E is only through net} and units

Wi immediately “downstream” of j:

Support
Vector

Machines @ How can we compute the error term for hidden layers Machines OE'  OQE' Onetf OE" Onet,
Stephen Scott when there is no target output r’ for these layers? Stephen Scott owl  Onet owl. di Z Onet, 8net}
Jt J s kedown(j)
intracuction @ Instead propagate back error values from output layer Introduction
Outline toward input layers, scaling with the weights Outline e Z o Onet;, e Z st Onet},  dy;
LA @ Scaling with the weights characterizes how much of the LA -”k o) k Onet; f’k domn(i) k dyj Onet;
: R : ” Edow Edow
S error term each hidden unit is “responsible for N o o
Separable Separable ay .
Probl Probl _ ro J —Stwevi (1 — v
roblems roblems - xji Z —5k Wi et = le- Z (S]( Wi i (1 y})
kedown(j) J kedown(j)

Works for arbitrary number of hidden layers
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Backpropagation Algorithm

Initialize all weights to small random numbers

Until termination condition satisfied do

Neural
Networks and

S @ For each training example (#,x’) do
Machines @ Input x' to the network and compute the outputs y*

Stephen Scot @ For each output unit k
Introduction Op < Y (1L =yi) (re — ¥
Outine © For each hidden unit

The
Perceptron t t 1 i t
O v (1 =y) E Wih 0

Nonlinearly
Separable kedown(h)

Problems

© Update each network weight w!,
Wi = wh 4 Aw

where
Awj; =185,

Backpropagation Algorithm

REINETE

Nebiaska

Lincoln

Lect g
Artificial

N @ When to stop training? When weights don’t change

Support much, error rate sufficiently low, etc. (be aware of
Machines overfitting: use validation set)
Stephen Scott ..

@ Cannot ensure convergence to global minimum due to
aleceicy myriad local minima, but tends to work well in practice
Outine (can re-run with new random weights)

The P . .
Perceptron @ Generally training very slow (thousands of iterations),
Nonlinearly use is very fast

Separable
Problems

@ Setting n: Small values slow convergence, large values
might overshoot minimum, can adapt it over time

Backpropagation Algorithm

REINETE

Nebiaska

Lincoln

CSCE
478/878
Lecture 5:
Avrtificial 5 H .
ek @ Alternative error function: cross entropy
Networks and
Support

t 1 t 1 t
e E'= > (ddny+(1-nr)in(1-5))
Stephen Scott keoutputs
Iniroduction “blows up” if r, = 1 and y; =~ 0 or vice-versa (vs.
Outiine squared error, which is always in [0, 1])
P o Regularization: penalize large weights to make space
Lo ey more linear and reduce risk of overfitting:
eparable
Prt?b\ems 1
t t £\2 £\2
E = 3 Z (=) +’YZ(Wﬁ)
kE€outputs ij

Remarks

&eaey Backpropagation Algorithm

Lincoln Example

target="y trial T-a=T1,b=0,y
CSCE .
478/878 fix) =1/ + exp(- X)) trial 2:a=0,b=1,y=0
Lecture 5:
Artificial a \’\éa
Neural
Networks and sumg Ye Sumd yd
Support f w f
Vector
Machines b ch de
Weo Wdo
Stephen Scott c!
Introduction e 03
Outline
trial 1 trial 2
The w_ca 0.1..0.1008513 0.1008513
helceRil w_cb 0.1 0.1 0.0987985
Nonlinearly w_c0 0.1..0.1008513  0.0996498
Separable a 1 0
Problems b 0 1 target 1 0
const 1 1 delta_d 0.1146431_-0.136083
sum_c 0.2 0.2008513 delta_c 0.0028376 - -0.004005
yv.c 0.5498340 . 0.5500447
w_dc 0.1..0.1189104 0.0964548 |delta_d(t) =y_d(t) * (y(t) - y_d(t) * (1-y_d(t)
w_do 0.1..0.1343929  0.0935679 |delta_c(t) =y _c(t) * (1 - y_c(t)) * delta_d(t) * w_dc(t
sum_d 0.1549834 0.1997990 w_de(t+1) =w_dc(t) + eta * y_c(t) * delta_d(t)
y.d 0.5386685 0.5497842 w_ca(t+1)=w ca(t) +eta*a*delta c(t)

&eney Backpropagation Algorithm

BB  Overfitting

Error versus weight updates (example 1)

001
CSCE R ,
478/878 0009 |+ Training set error
Validation seterror  +
Lecture 5: 0.008
i o
Artificial 0007 [
Neural 5 &
Networks and g oo W
Support 0.005
Vecl_or 0004
Machines 0003
Stephen Scott 0.002 L L L
0 5000 10000 15000 20000
Number of weight updates
liiEnEiET Error versus weight updates (example 2)
Outline 008 [, T T T
007 | % Training set error
' Validation seterror ~ +
The 006 [
Perceptron
005 F
Nonlinearly E 004 .
, &
Separable 003 | .
Problems .
002 | 5
001 | \.“‘
0 .
0 1000 2000 3000 4000 5000 6000

Number of weight updates

Danger of stopping too soon!

Vaeney Backpropagation Algorithm

EB  Remarks (cont'd)

CSCE
478/878
Lecture 5:
Artificial

Miweia  Representational power:

Support
Vector

Machines @ Any boolean function can be represented with 2 layers
Stephen Scott @ Any bounded, continuous function can be represented
Introduction with arbitrarily small error with 2 layers
LG @ Any function can be represented with arbitrarily small
Poreeptron error with 3 layers
Nonlinearly . .

Separable Number of required units may be large

Problems

May not be able to find the right weights

Remarks



N2 Hypothesis Space Eien=) Support Vector Machines

Lincoln RN Introduction

CSCE
478/878

@ Hyp. space # is set of all weight vectors (continuous

Lecture 5:

i vs. discrete of decision trees) Ao Similar to ANNs, polynomial classifiers, and RBF networks

Ao @ Search via Backprop: Possible because error function itswssadl (N that it remaps inputs and then finds a hyperplane
Vector H H H H Vector
i and output functions are continuous & differentiable i o . .

Machines ] P ] ) ) Machines @ Main difference is how it works
Stephen Scott @ Inductive bias: (Roughly) smooth interpolation between Stephen Scoft
N data points [ Features of SVMs:
Outline 4000 Outline . . 3
e o pess The @ Maximization of margin
Perceptron + hod Perceptron .
Nonlinearly 2000 o Noniinearly o Duallty
Separabl + heard Separabl
Sl e S Separable @ Use of kernels

sty Backprop @ Use of problem convexity to find classifier (often without
SVMs local minima)
s e :

e Support Vector Machines B Support Vector Machines

Tincon [EEVENGTTIS Bl The Perceptron Algorithm Revisited

CSCE
Support vectors (with 478/878
eeh . l}\}ll_]lr\:\l}l]"’\ r{mrlgm‘) un]xq‘urcly Leme 5
Artificial deline hyperpuane (other Artificial
points not needed)
Neural Neural

Networks and Networks and ! —
Lo Lo Wy 0,bp«—0,m«+0,r € {—1,+1}Vt

Vector
Machines

Vector
HERATED While mistakes are made on training set

Stephen Scott Stephen Scott

@ Fort=11to N (= # training vectors)

Introduction Introduction o If ( -x'+b ) <0
OQutline OQutline AW X "= tor
The @ A hyperplane’s margin + is the shortest distance from it The O Wt = W TN

t traini t Perceptron @ but1 < bu+nr'
Nonlinearly 0 any ralnlng vector Nonlinearly o m«—m+1

Separable @ Intuition: larger margin = higher confidence in Separable
Problems classifier’s ability to generalize Froblems
e Guaranteed generalization error bound in terms of 1/+2
(under appropriate assumptions) e

@ Definition assumes linear separability (more general —
definitions exist that do not)

Perceptron

Final predictor: A(x) = sgn (W, - X + by,)

Backprop Backprop

SVMs SVMs

Margins
Duality

Support Vector Machines

The Perceptron Algorithm Revisited (partial example)

e Support Vector Machines

BB The Perceptron Algorithm Revisited (partial example)

Nebiaska
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CSCE
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Lecture 5:

CSCE
478/878
Lecture 5:

Artificial R i wy wy b o ! i wi wy b @ Artificial
Neural 2 1 F1 ] 04 01 0.1 T 4 1 41 ][04 00 00 | 2 Neural
Networks and 5 3 +1 0.4 0.1 0.1 0 5 3 +1 0.4 0.0 0.0 0 Networks and
Support 6 3 41|04 01 0.1 0o 6 3 +1 |04 00 00 | 0 Support
Vector 2 1 —1]04 01 o1 [0l 2 1 —1]o0o2 —01 —0a1]|3 Vector f f
Machines 2 2 —1 |04 o1 0.1 ofl2 2 —1]|02 -—o1 -o1|o0 Machines At this point, w = (0~27 702)! b=-02a= (3’ 0,0,5,0, 0)
3 1 —1]o04 01 01 o]l 3 1 —1]o2 —01 —01]0
Sieptepiset T 1 +1 04 01 01 [T & 1 +1]02 —01 —01]¢2 Stephen Scoit (G PR compute
5 3 41|04 01 0.1 o5 3 41|02 —01 —01]0 11 4d 0.1(3(1/4 + 5(—1)2 02
Introduction 6 3 +1 0.4 0.1 0.1 0 6 3 +1 0.2 —=0.1 —=0.1 0 Introduction = = 0. — = 0.
2 1 1|02 00 00 | 1] 2 1 —1]o0 -02 —02|4 wi = n(air X+ our xl) (B(14+5(-1)2)
Outline 2 2 -1 0.2 0.0 0.0 0 2 2 —1 0.0 —0.2 —0.2 0 Outline 11 4.4
- 3 1 1|02 00 00 | 0 3 1 1] 00 0.2 02 | 0 - wo _n(alr X, + ayr xz) _().](3(])] _A,_S(_])]) = —-02
i 1 f1]02 00 00 | 1 4 1 1 ]04 —01 —01]3 i
5 3 41 ]02 00 00 [0l 5 3 41]04 —01 —01 |0 I - N tot
Nonlinearly 6 3 +1 0.2 0.0 0.0 0 6 3 +1 0.4 —0.1 —0.1 0 Nonlinearly e, W= n thl or'X
Separable 2 1 -1 0.0 —0.1 —0.1 2 2 1 —1 0.4 —0.1 —0.1 4 Separable
Problems 2 2 -1 0.0 —0.1 —0.1 0 2 2 —1 0.4 —0.1 —0.1 0 Problems
3 1 —1]00 —01 o1 o3 1 —1]o4 —01 —01]0
gacis 7 1+l |04 00 00 2] & T +1]04 —01 o013 gacis
SVMs 5 3  +1 |04 00 00 [0l 5 3 41 ]04 —01 —01 |0 SVMs
6 3 41|04 00 00 |0l 6 3 41 ]04 —01 —01 |0 e
2 1 —1]04 00 00 |22 1 —1]o02 —02 —02|5
2 2 —1]04 00 00 [0l 2 2 —1]o02 —02 —02/|0
3 1 —1]04 00 00 |0l 3 1 —1]o2 —02 —02]0




e Support Vector Machines

Lincoln Duality

CSCE

478/878

Lecture 5:

Artificial
Neural

el Another way of representing predictor:

Ve

Maif\‘iz'es

N
Stephen Scott
h(x) = sgn (w-x + b) = sgn nz (atr'x’) X4 b

Introduction p
Outline N
Th _ ! .
Pe?ceplron =sgn|n Z Qrr (X X) +b

inear! =1
Nonlinearly
Separable
Frovlems (o = # prediction mistakes on x')

Backprop
SVMs

Margins
Duality

W\Cve=l XOR Revisited

Lincoln

CSCE
478/878
Lecture 5:
Artificial .
Neural B' ( 17+1)
Networks and .
Support
Vector
Machines

D: (+1,+1)
O

Stephen Scott

Introduction Xl
OQutline

The
Perceptron

Nonlinearly
Separable

@)
Problems A: (_1’_1)

Backprop

o
C: (+1,-1)

SVMs
Margins
Dualty

Remap to new space:

o(x1,x) = [x%ax%7\/§«’fl-’f2>\/§xl7\/§x2a 1]

L2l XOR Revisited (contd)

Lincoln

s @ Can easily compute the dot product ¢(x) - ¢(z) (where

Lecture 5:

el X = [x1,x2]) without first computing ¢:
Networks and

St K(x,2) = (x-z+ 1)’ = (az + 0o + 1)
Machines
Stephen Scott = (0121)* + (02)? + 2012102 + 2021 + 2602 + 1

Introduction = {x%,x%, \/EX] X2, \/E)C]7 \@xg, 1]

Outline
The #(x)
Perceptron
2 2
Nonlinearly . [Z17Z27 \/EZI 225 \/EZ], \/§Z27 1]
Separable
Problems o([)
Backprop '
Sys @ l.e, since we use dot products in new Perceptron
B algorithm, we can implicitly work in the remapped y

space via k

e Support Vector Machines

BN Duality (contd)

CSCE
478/878
Lecture 5: i .
cclure So perceptron alg has equivalent dual form:
Neural
Networks and
Support
Vector

Machines While mistakes are made in For loop

Stephen Scott

a+0,b+0

o @ Fort=1to N (= # training vectors)
Outline o Ifr (77 ZJI'V:I Ctj rj (Xj . xl) + b) S 0

The
Perceptron Qp — a; + 1
Nonlinearly

Separable !
Problems b<b+ nr

Backpro
SVM: ’ Replace weight vector with data in dot products

Margins

uaMy So what?

WbcEeY XOR Revisited (contd)

CSCE
478/878 Now consider the third and fourth dimensions of the

Lecture 5:

Artifcial remapped vector (scaling v/2 to 1):

Neural

Networks and y2
Support
Vector
Machines

Stephen Scott

C:(-1,+41) |D: (+1,+1)
Introduction . O

OQutline

The
Perceptron

Nonlinearly yl
Separable
Problems

i e O
B: (-1,-1)|A: (+1,-1)

Duality

NCel=l Kernels

Lincoln

CSCE
478/878
Lecture 5:
Artificial
Neural
N k: . .
Soppors @ A kernelis a function K such that Vx, z,
Ve
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Kernels (cont’d)

@ Typically start with kernel and take the feature mapping
that it yields

@ Eg,letl=1,x=x2=12 K(x,z) =sin(x — 2)
@ By Fourier expansion,
[ee] o]

sin(x—z) = ao—i-z ay sin(nx) sin(n z)+z ay cos(nx) cos(nz)
n=1 n=1

for Fourier coeficients ag, ay, . . .

@ This is the dot product of two infinite sequences of
nonlinear functions:

{¢i(x)}:2y = [1,sin(x), cos(x), sin(2x), cos(2x), .. .]

@ l.e., there are an infinite number of features in this
remapped space!

Types of Kernels

Gaussian

Support Vector Machines
Finding a Hyperplane

Can show that if data linearly separable in remapped space,
then get maximum margin classifier by minimizing w - w
subjectto r' (w-x'+b) > 1

Can reformulate this in dual form as a convex quadratic
program that can be solved optimally, i.e., won’t encounter
local optima:

N

1 P .
‘mi o . J
maximize Za, ZZa,ajr 7 K(x',x/)
i=1 ij
a;>0,i=1,....,m

N
E air' =0
i=1

s.t.
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Polynomial

Types of Kernels
Others

Hyperbolic tangent:
K(x',x) = tanh (2x - x + 1)
(not a true kernel)

Also have ones for structured data: e.g., graphs, trees,
sequences, and sets of points

In addition, the sum of two kernels is a kernel, the product of
two kernels is a kernel

Finally, note that a kernel is a similarity measure, useful in
clustering, nearest neighbor, etc.

Support Vector Machines
Finding a Hyperplane (cont'd)

After optimization, label new vectors with decision function:

N
f(x) = sgn (Z air K(x,x') + b)

i=1

(Note only need to use x’ such that o, > 0, i.e., support
vectors)

Can always find a kernel that will make training set linearly
separable, but beware of choosing a kernel that is too
powerful (overfitting)



e Support Vector Machines

Bl Finding a Hyperplane (cont'd)

GEeE If kernel doesn’t separate, can soften the margin with slack
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Can still solve optimally
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Support Vector Machines
Finding a Hyperplane (cont'd)

If number of training vectors is very large, may opt to
approximately solve these problems to save time and space

Use e.g., gradient ascent and sequential minimal
optimization (SMO)

When done, can throw out non-SVs



