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Introduction

Consider humans:

Total number of neurons ⇡ 10

10

Neuron switching time ⇡ 10

�3 second (vs. 10

�10)
Connections per neuron ⇡ 10

4–10

5

Scene recognition time ⇡ 0.1 second
100 inference steps doesn’t seem like enough

) much parallel computation

Properties of artificial neural nets (ANNs):

Many neuron-like threshold switching units
Many weighted interconnections among units
Highly parallel, distributed process
Emphasis on tuning weights automatically

Strong differences between ANNs for ML and ANNs for
biological modeling2 / 50
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When to Consider ANNs

Input is high-dimensional discrete- or real-valued (e.g.,
raw sensor input)
Output is discrete- or real-valued
Output is a vector of values
Possibly noisy data
Form of target function is unknown
Human readability of result is unimportant
Long training times acceptable
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Outline

Linear threshold units: Perceptron
Gradient descent
Multilayer networks
Backpropagation
Support Vector Machines
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The Perceptron
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(sometimes use 0 instead of �1)

Sometimes we’ll use simpler vector notation:

y = o(x) =

⇢
+1 if w · x > 0

�1 otherwise
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Decision Surface
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Represents some useful functions

What weights represent g(x
1

, x

2

) = AND(x
1

, x

2

)?

But some functions not representable

I.e., those not linearly separable

Therefore, we’ll want networks of neurons
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Perceptron Training Rule

w

t+1

j

 w

t

j

+�w

t

j

, where �w

t

j

= ⌘ (rt � y

t) x

t

j

and

r

t is label of training instance t

y

t is perceptron output on training instance t

⌘ is small constant (e.g., 0.1) called learning rate

I.e., if (rt � y

t) > 0 then increase w

t

j

w.r.t. x

t

j

, else decrease

Can prove rule will converge if training data is linearly
separable and ⌘ sufficiently small
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Where Does the Training Rule Come From?

Consider simpler linear unit, where output

y

t = w

t

0

+ w

t

1

x

t

1

+ · · ·+ w

t

n

x

t

n

(i.e., no threshold)
For each example, want to compromise between
correctiveness and conservativeness

Correctiveness: Tendency to improve on x

t (reduce
error)
Conservativeness: Tendency to keep w

t+1 close to w

t

(minimize distance)
Use cost function that measures both:

U(w) = dist

�
w

t+1,w

t

�
+ ⌘ error
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r

t,

curr ex, new wtsz }| {
w

t+1 · x
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Gradient Descent

Gradient-Descent
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Lecture Notes for E Alpaydın 2010  Introduction  to  Machine  Learning  2e  ©  The  MIT  Press  (V1.0)
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Gradient Descent (cont’d)
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Gradient Descent (cont’d)
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Gradient Descent (cont’d)

Approximate with
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⇣
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Implementation Approaches

Can use rules on previous slides on an
example-by-example basis, sometimes called
incremental, stochastic, or on-line GD

Has a tendency to “jump around” more in searching,
which helps avoid getting trapped in local minima

Alternatively, can use standard or batch GD, in which
the classifier is evaluated over all training examples,
summing the error, and then updates are made

I.e., sum up �w

i

for all examples, but don’t update w

i

until summation complete
This is an inherent averaging process and tends to give
better estimate of the gradient

13 / 50
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Handling Nonlinearly Separable Problems
The XOR Problem

x

x

1

2

g (x)1

g (x)2
> 0

< 0

> 0
< 0

A: (0,0)

D: (1,1)

B: (0,1)

C: (1,0)

neg

pos
neg

Represent with intersection of two linear separators

g
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(x) > 0
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Handling Nonlinearly Separable Problems
The XOR Problem (cont’d)

Let z

i

=

(
0 if g

i

(x) < 0

1 otherwise

Class (x
1

, x

2

) g

1

(x) z

1

g

2

(x) z

2

pos B: (0, 1) 1/2 1 �1/2 0
pos C: (1, 0) 1/2 1 �1/2 0
neg A: (0, 0) �1/2 0 �3/2 0
neg D: (1, 1) 3/2 1 1/2 1

Now feed z

1

, z

2

into g(z) = 1 · z

1

� 2 · z

2

� 1/2

1

2

A: (0,0)

D: (1,1)

B, C: (1,0)

> 0

< 0

pos
neg

g(z)
z

z
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Handling Nonlinearly Separable Problems
The XOR Problem (cont’d)

In other words, we remapped all vectors x to z such that the
classes are linearly separable in the new vector space

Σ
i

Σ
i i

x

Σ
i

w  = 1

w  = 1

w  = 1

w  = 1

w  = −1/2

w  = −3/2

w

w xi

i
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w  = −2
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2x

Hidden Layer

Input Layer

Output
Layer

31
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41
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40

53

54

50

3i

42 4i

5i

z

z

z

This is a two-layer perceptron or two-layer feedforward

neural network

Each neuron outputs 1 if its weighted sum exceeds its
threshold, 0 otherwise
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Handling Nonlinearly Separable Problems
General Nonlinearly Separable Problems

By adding up to 2 hidden layers of perceptrons, can
represent any union of intersection of halfspaces

pos

pos
pos

neg

neg

neg

pos
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The Sigmoid Unit
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.
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�

net = � wi xii=0

n
1

1 + e-neto = �(net) = 

�(net) is the logistic function

1

1 + e

�net

Squashes net into [0, 1] range

Nice property:

d�(x)

dx

= �(x)(1� �(x))

Continuous, differentiable approximation to threshold
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Sigmoid Unit
Gradient Descent

Again, use squared error for correctiveness:
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Sigmoid Unit
Gradient Descent (cont’d)

Since y

t is a function of net

t = w

t · x

t,

@E

@w

t

j

= � �rt � y
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Multilayer Networks

x0
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xn

Σ

=1

Σ
1

σ

σ

Σ

Σ

σ
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w
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w

w

net n+1

net n+2

net n+3

net n+4

n+3,n+1
w

w

w

w

n+3,n+2

n+4,n+1

n+4,n+2

x
1 x n+3,n+1n+1,1

n+1,n

n+2,1

n+2,n

n+2,0

n+1,0

x
ji = input from i to j

= wt from i to jw
ji

Hidden layer Output Layer

In
p
u
t 

la
y
er

y n+4

y n+3

Use sigmoid units since continuous and differentiable

E

t = E(wt) =
1

2

X

k2outputs

�
r

t

k

� y

t

k

�
2
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Training Multilayer Networks
Output Units

Adjust weight w

t

ji

according to E

t as before

For output units, this is easy since contribution of w

t

ji

to E

t

when j is an output unit is the same as for single neuron
case1, i.e.,

@E

t

@w

t

ji

= � �rt

j

� y

t

j

�
y

t

j

�
1� y

t
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�
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t
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= ��t
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x

t
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where �t

j

= � @E

t

@net

t

j

= error term of unit j

1This is because all other outputs are constants w.r.t. w

t
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Training Multilayer Networks
Hidden Units

How can we compute the error term for hidden layers
when there is no target output r

t for these layers?
Instead propagate back error values from output layer
toward input layers, scaling with the weights
Scaling with the weights characterizes how much of the
error term each hidden unit is “responsible for”
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Training Multilayer Networks
Hidden Units (cont’d)

The impact that w

t

ji

has on E

t is only through net

t

j

and units
immediately “downstream” of j:
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Works for arbitrary number of hidden layers
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Backpropagation Algorithm

Initialize all weights to small random numbers

Until termination condition satisfied do

For each training example (rt, x

t) do
1 Input x

t to the network and compute the outputs y

t

2 For each output unit k

�t

k

 y

t

k

(1� y

t

k

) (rt

k

� y

t

k

)

3 For each hidden unit h

�t

h

 y

t

h

(1� y

t

h

)
X

k2down(h)

w

t

k,h �
t

k

4 Update each network weight w

t

j,i

w

t

j,i  w

t

j,i +�w

t

j,i

where
�w

t

j,i = ⌘ �t

j

x

t

j,i
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Backpropagation Algorithm
Example

c fsumc
wdc

yc d
sumd f

yd

wca

wcb

= 1 / (1 + exp(- x))f(x) 
ytarget = 

wc0 wd0
b

a
trial 2: a = 0, b = 1, y = 0
trial 1: a = 1, b = 0, y = 1

1 1
eta 0.3 

trial 1 trial 2
w_ca 0.1 0.1008513 0.1008513 
w_cb 0.1 0.1 0.0987985 
w_c0 0.1 0.1008513 0.0996498 
a 1 0 
b 0 1 
const 1 1 
sum_c 0.2 0.2008513 
y_c 0.5498340 0.5500447 

w_dc 0.1 0.1189104 0.0964548 
w_d0 0.1 0.1343929 0.0935679 
sum_d 0.1549834 0.1997990 
y_d 0.5386685 0.5497842 

target 1 0 
delta_d 0.1146431 -0.136083 
delta_c 0.0028376 -0.004005 

delta_d(t)  = y_d(t) * (y(t) - y_d(t)) * (1 - y_d(t))
delta_c(t) = y_c(t) * (1 - y_c(t)) * delta_d(t) * w_dc(t)
w_dc(t+1) = w_dc(t) + eta * y_c(t) * delta_d(t)
w_ca(t+1) = w_ca(t) + eta * a * delta_c(t)

eta 0.3 

trial 1 trial 2
w_ca 0.1 0.1008513 0.1008513 
w_cb 0.1 0.1 0.0987985 
w_c0 0.1 0.1008513 0.0996498 
a 1 0 
b 0 1 
const 1 1 
sum_c 0.2 0.2008513 
y_c 0.5498340 0.5500447 

w_dc 0.1 0.1189104 0.0964548 
w_d0 0.1 0.1343929 0.0935679 
sum_d 0.1549834 0.1997990 
y_d 0.5386685 0.5497842 

target 1 0 
delta_d 0.1146431 -0.136083 
delta_c 0.0028376 -0.004005 

delta_d(t)  = y_d(t) * (y(t) - y_d(t)) * (1 - y_d(t))
delta_c(t) = y_c(t) * (1 - y_c(t)) * delta_d(t) * w_dc(t)
w_dc(t+1) = w_dc(t) + eta * y_c(t) * delta_d(t)
w_ca(t+1) = w_ca(t) + eta * a * delta_c(t)
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Remarks

When to stop training? When weights don’t change
much, error rate sufficiently low, etc. (be aware of
overfitting: use validation set)
Cannot ensure convergence to global minimum due to
myriad local minima, but tends to work well in practice
(can re-run with new random weights)
Generally training very slow (thousands of iterations),
use is very fast
Setting ⌘: Small values slow convergence, large values
might overshoot minimum, can adapt it over time
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Backpropagation Algorithm
Overfitting
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Error versus weight updates (example 2)

Training set error
Validation set error

Danger of stopping too soon!
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Alternative error function: cross entropy

E

t =
X

k2outputs

�
r

t

k

ln y

t

k

+
�
1� r

t

k

�
ln

�
1� y

t

k

��

“blows up” if r

t

k

⇡ 1 and y

t

k

⇡ 0 or vice-versa (vs.
squared error, which is always in [0, 1])
Regularization: penalize large weights to make space
more linear and reduce risk of overfitting:

E

t =
1

2

X

k2outputs

�
r

t

k

� y

t

k

�
2

+ �
X

i,j

(wt

ji

)2
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Backpropagation Algorithm
Remarks (cont’d)

Representational power:

Any boolean function can be represented with 2 layers
Any bounded, continuous function can be represented
with arbitrarily small error with 2 layers
Any function can be represented with arbitrarily small
error with 3 layers

Number of required units may be large

May not be able to find the right weights
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Hypothesis Space

Hyp. space H is set of all weight vectors (continuous
vs. discrete of decision trees)
Search via Backprop: Possible because error function
and output functions are continuous & differentiable
Inductive bias: (Roughly) smooth interpolation between
data points
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Support Vector Machines
Introduction

Similar to ANNs, polynomial classifiers, and RBF networks
in that it remaps inputs and then finds a hyperplane

Main difference is how it works

Features of SVMs:

Maximization of margin

Duality

Use of kernels

Use of problem convexity to find classifier (often without
local minima)
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Support Vector Machines
Margins

0

�

w =b

Support vectors (with 
minimum margin) uniquely
define hyperplane (other
points not needed)

�

�

A hyperplane’s margin � is the shortest distance from it
to any training vector
Intuition: larger margin) higher confidence in
classifier’s ability to generalize

Guaranteed generalization error bound in terms of 1/�2

(under appropriate assumptions)
Definition assumes linear separability (more general
definitions exist that do not)
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Support Vector Machines
The Perceptron Algorithm Revisited

w

0

 0, b

0

 0, m 0, r

t 2 {�1,+1} 8t
While mistakes are made on training set

For t = 1 to N (= # training vectors)
If r

t (w
m

· x

t + b

m

)  0

w

m+1

 w

m

+ ⌘ r

t

x

t

b

m+1

 b

m

+ ⌘ r

t

m m + 1

Final predictor: h(x) = sgn (w
m

· x + b

m

)
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Support Vector Machines
The Perceptron Algorithm Revisited (partial example)

t x

t

1

x

t

2

r

t

w

1

w

2

b ↵ x

t

1

x

t

2

r

t

w

1

w

2

b ↵
1 4 1 +1 0.4 0.1 0.1 1 4 1 +1 0.4 0.0 0.0 2
2 5 3 +1 0.4 0.1 0.1 0 5 3 +1 0.4 0.0 0.0 0
3 6 3 +1 0.4 0.1 0.1 0 6 3 +1 0.4 0.0 0.0 0
4 2 1 �1 0.4 0.1 0.1 0 2 1 �1 0.2 �0.1 �0.1 3
5 2 2 �1 0.4 0.1 0.1 0 2 2 �1 0.2 �0.1 �0.1 0
6 3 1 �1 0.4 0.1 0.1 0 3 1 �1 0.2 �0.1 �0.1 0
1 4 1 +1 0.4 0.1 0.1 1 4 1 +1 0.2 �0.1 �0.1 2
2 5 3 +1 0.4 0.1 0.1 0 5 3 +1 0.2 �0.1 �0.1 0
3 6 3 +1 0.4 0.1 0.1 0 6 3 +1 0.2 �0.1 �0.1 0
4 2 1 �1 0.2 0.0 0.0 1 2 1 �1 0.0 �0.2 �0.2 4
5 2 2 �1 0.2 0.0 0.0 0 2 2 �1 0.0 �0.2 �0.2 0
6 3 1 �1 0.2 0.0 0.0 0 3 1 �1 0.0 �0.2 �0.2 0
1 4 1 +1 0.2 0.0 0.0 1 4 1 +1 0.4 �0.1 �0.1 3
2 5 3 +1 0.2 0.0 0.0 0 5 3 +1 0.4 �0.1 �0.1 0
3 6 3 +1 0.2 0.0 0.0 0 6 3 +1 0.4 �0.1 �0.1 0
4 2 1 �1 0.0 �0.1 �0.1 2 2 1 �1 0.4 �0.1 �0.1 4
5 2 2 �1 0.0 �0.1 �0.1 0 2 2 �1 0.4 �0.1 �0.1 0
6 3 1 �1 0.0 �0.1 �0.1 0 3 1 �1 0.4 �0.1 �0.1 0
1 4 1 +1 0.4 0.0 0.0 2 4 1 +1 0.4 �0.1 �0.1 3
2 5 3 +1 0.4 0.0 0.0 0 5 3 +1 0.4 �0.1 �0.1 0
3 6 3 +1 0.4 0.0 0.0 0 6 3 +1 0.4 �0.1 �0.1 0
4 2 1 �1 0.4 0.0 0.0 2 2 1 �1 0.2 �0.2 �0.2 5
5 2 2 �1 0.4 0.0 0.0 0 2 2 �1 0.2 �0.2 �0.2 0
6 3 1 �1 0.4 0.0 0.0 0 3 1 �1 0.2 �0.2 �0.2 0
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Support Vector Machines
The Perceptron Algorithm Revisited (partial example)

At this point, w = (0.2,�0.2), b = �0.2, ↵ = (3, 0, 0, 5, 0, 0)

Can compute
w

1

= ⌘(↵
1

r

1

x

1

1

+ ↵
4

r

4

x

4

1

) = 0.1(3(1)4 + 5(�1)2) = 0.2

w

2

= ⌘(↵
1

r

1

x

1

2

+ ↵
4

r

4

x

4

2

) = 0.1(3(1)1 + 5(�1)1) = �0.2

I.e., w = ⌘
P

N

t=1

↵
t

r

t

x

t

36 / 50



CSCE
478/878

Lecture 5:
Artificial
Neural

Networks and
Support
Vector

Machines

Stephen Scott

Introduction

Outline

The
Perceptron

Nonlinearly
Separable
Problems

Backprop

SVMs
Margins

Duality

Kernels

Types of Kernels

SVMs

Support Vector Machines
Duality

Another way of representing predictor:

h(x) = sgn (w · x + b) = sgn

 
⌘

NX

t=1

�
↵

t

r

t

x

t

� · x + b

!

= sgn

 
⌘

NX

t=1

↵
t

r

t

�
x

t · x

�
+ b

!

(↵
t

= # prediction mistakes on x

t)
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Support Vector Machines
Duality (cont’d)

So perceptron alg has equivalent dual form:

↵ 0, b 0

While mistakes are made in For loop

For t = 1 to N (= # training vectors)
If r

t

⇣
⌘
P

N

j=1

↵
j

r

j

�
x

j · x

t

�
+ b

⌘
 0

↵
t

 ↵
t

+ 1

b b + ⌘ r

t

Replace weight vector with data in dot products

So what?
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XOR Revisited

x2

x
1

D: (+1,+1)

C: (+1,−1)

B: (−1,+1)

A: (−1,−1)

Remap to new space:

�(x
1

, x

2

) =
h
x

2

1

, x

2

2

,
p

2 x

1

x

2

,
p

2 x

1

,
p

2 x

2

, 1

i
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XOR Revisited (cont’d)

Now consider the third and fourth dimensions of the
remapped vector (scaling

p
2 to 1):

D: (+1,+1)

y2

y
1

C: (−1,+1)

A: (+1,−1)B: (−1,−1)
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XOR Revisited (cont’d)

Can easily compute the dot product �(x) · �(z) (where
x = [x

1

, x

2

]) without first computing �:

K(x, z) = (x · z + 1)2 = (x
1

z

1

+ x

2

z

2

+ 1)2

= (x
1

z

1

)2 + (x
2

z

2

)2 + 2x

1

z

1

x

2

z

2

+ 2x

1

z

1

+ 2x

2

z

2

+ 1

=
h
x

2

1

, x

2

2

,
p

2 x

1

x

2

,
p

2 x

1

,
p

2 x

2

, 1

i

| {z }
�(x)

·
h
z

2

1

, z

2

2

,
p

2 z

1

z

2

,
p

2 z

1

,
p

2 z

2

, 1

i

| {z }
�(z)

I.e., since we use dot products in new Perceptron
algorithm, we can implicitly work in the remapped y

space via k
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A kernel is a function K such that 8 x, z,
K(x, z) = �(x) · �(z)
E.g., previous slide (quadratic kernel)
In general, for degree-q polynomial kernel, computing
(x · z + 1)q takes ` multiplications + 1 exponentiation for
x, z 2 R`

In contrast, need over
�`+q�1

q

� �
⇣
`+q�1

q

⌘
q

multiplications if compute � first
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Kernels (cont’d)

Typically start with kernel and take the feature mapping
that it yields
E.g., Let ` = 1, x = x, z = z, K(x, z) = sin(x� z)

By Fourier expansion,

sin(x�z) = a

0

+
1X

n=1

a

n

sin(n x) sin(n z)+
1X

n=1

a

n

cos(n x) cos(n z)

for Fourier coeficients a

0

, a

1

, . . .

This is the dot product of two infinite sequences of
nonlinear functions:

{�
i

(x)}1
i=0

= [1, sin(x), cos(x), sin(2x), cos(2x), . . .]

I.e., there are an infinite number of features in this

remapped space!
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Polynomial

K(xt, x) =
�
x

t · x + 1

�
q

0 0.5 1 1.5 2
0

0.5

1

1.5

2

−1

1
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Types of Kernels
Gaussian

K(xt, x) = exp

✓
�kx

t � xk2

2s

2

◆

0 1 2
0

1

2
(a) s2=2

−1

1

0 1 2
0

1

2
(b) s2=0.5

−1

1

0 1 2
0

1

2
(c) s2=0.25

−1−1

1

0 1 2
0

1

2
(d) s2=0.1

−1

−1

1
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Types of Kernels
Others

Hyperbolic tangent:

K(xt, x) = tanh

�
2x

t · x + 1

�

(not a true kernel)

Also have ones for structured data: e.g., graphs, trees,
sequences, and sets of points

In addition, the sum of two kernels is a kernel, the product of
two kernels is a kernel

Finally, note that a kernel is a similarity measure, useful in
clustering, nearest neighbor, etc.
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Support Vector Machines
Finding a Hyperplane

Can show that if data linearly separable in remapped space,
then get maximum margin classifier by minimizing w · w

subject to r

t (w · x

t + b) � 1

Can reformulate this in dual form as a convex quadratic

program that can be solved optimally, i.e., won’t encounter

local optima:

maximize

↵

NX

i=1

↵
i

� 1

2

X

i,j

↵
i

↵
j

r

i

r

j

K(xi, x

j)

s.t. ↵
i

� 0, i = 1, . . . ,m

NX

i=1

↵
i

r

i = 0

47 / 50

CSCE
478/878

Lecture 5:
Artificial
Neural

Networks and
Support
Vector

Machines

Stephen Scott

Introduction

Outline

The
Perceptron

Nonlinearly
Separable
Problems

Backprop

SVMs
Margins

Duality

Kernels

Types of Kernels

SVMs

Support Vector Machines
Finding a Hyperplane (cont’d)

After optimization, label new vectors with decision function:

f (x) = sgn

 
NX

i=1

↵
i

r

t

K(x, x

t) + b

!

(Note only need to use x

t such that ↵
t

> 0, i.e., support

vectors)

Can always find a kernel that will make training set linearly
separable, but beware of choosing a kernel that is too

powerful (overfitting)
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Support Vector Machines
Finding a Hyperplane (cont’d)

If kernel doesn’t separate, can soften the margin with slack

variables ⇠i:

minimize

w,b,⇠
kwk2 + C

NX

i=1

⇠i

s.t. r

i((xi · w) + b) � 1� ⇠i, i = 1, . . . ,N

⇠i � 0, i = 1, . . . ,N

The dual is similar to that for hard margin:

maximize

↵

NX

i=1

↵
i

�
X

i,j

↵
i

↵
j

r

i

r

j

K(xi, x

j)

s.t. 0  ↵
i

 C, i = 1, . . . ,N

NX

i=1

↵
i

r

i = 0

Can still solve optimally49 / 50
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Support Vector Machines
Finding a Hyperplane (cont’d)

If number of training vectors is very large, may opt to
approximately solve these problems to save time and space

Use e.g., gradient ascent and sequential minimal
optimization (SMO)

When done, can throw out non-SVs
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