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Introduction

Pt In Homework 1, you are (supposedly)

Lecture 4:
Sy @ Choosing a data set

Analyss @ Extracting a test set of size > 30
© Building a tree on the training set
© Testing on the test set
© Reporting the accuracy

Stephen Scott

Introduction
Outline
Goals

Estimating

Error Does the reported accuracy exactly match the
Comparing generalization performance of the tree?

Learr!ing
Hoerth If a tree has error 10% and an ANN has error 11%, is the

Other
Performance tree absolutely better?

Measures

@ Why or why not?

How about the algorithms in general?
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Stephen Scott @ Goals of performance evaluation
@ Estimating error and confidence intervals

Outline @ Paired r tests and cross-validation to compare learning
Goals algorithms
SCHEE @ Other performance measures

Error

Comparing e Confusion matrices
Learning :
Algorithms ° ROC a..nal)/SIS

@ Precision-recall curves

Introduction

Other
Performance
Measures
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Weeete] Setting Goals

CSCE
478/878 @ Before setting up an experiment, need to understand

Lecture 4: .
Experimental exactly what the goal is

Design and

Analysis e Estimate the generalization performance of a
Stephen Scott hypotheSiS
e Tuning a learning algorithm’s parameters
introduction e Comparing two learning algorithms on a specific task
Outline ° EtC

— e Will never be able to answer the question with 100%

Error Certa|nty

ST e Due to variances in training set selection, test set

e selection, etc.

Other e Will choose an estimator for the quantity in question,

ferformance determine the probability distribution of the estimator,
and bound the probability that the estimator is way off

e Estimator needs to work regardless of distribution of

training/testing data
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Lecture 4:

Sy @ Need to note that, in addition to statistical variations,
Analysis what we determine is limited to the application that we

Stephen Scott are Study'ng

e E.g., if naive Bayes better than ID3 on spam filtering,

that means nothing about face recognition
@ In planning experiments, need to ensure that training
— data not used for evaluation

Efror . e l.e., don't test on the training set!
Comparing o Will bias the performance estimator

Introduction

Outline

Learning

Algorithms e Also holds for validation set used to prune DT, tune
Other parameters, etc.

Performance . . .
Measures @ Validation set serves as part of training set, but not used

for model building



Weeeted Types of Error
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Pt @ For now, focus on straightforward, 0/1 classification

Lecture 4:
Experimental error . i
Design and @ For hypothesis h, recall the two types of classification
nalysis
error from Chapter 2:
e Empirical error (or sample error) is fraction of set V that

Stephen Scott

Introduction h gets wrong:
Outline 1
Goals errorv(h) = m Z 5(C(x) # h(x)) )
Estimati x€V
stimating
Sl where §(C(x) # h(x)) is 1 if C(x) # h(x), and 0 otherwise
Esimating Error e Generalization error (or true error) is probability that a

Confidence Intervals

new, randomly selected, instance is misclassified by &

Comparing
Learnin:
A?;orithrgwws errorp (h) = XIE)r'D[C(x) 7& h(x)} )

Other . ., . . . .
Performance where D is probability distribution instances are drawn

Measures

from
@ Why do we care about errory(h)?
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@ Bias: If T is training set, errorr(h) is optimistically
biased

laicducicn bias = Elerrory(h)] — errorp(h)
Outline

Goals For unbiased estimate (bias = 0), h and V must be
Estimating chosen independently = Don'’t test on training set!

Error

(Don’t confuse with inductive bias!)

Estimating Error

Conidence nervl @ Variance: Even with unbiased V, errory,(h) may still
COPENIE vary from errorp(h)

Learning
Algorithms

Stephen Scott

Other
Performance
Measures
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Introduction
Outline
Goals

Estimating
Error

Types of Error
Estimating Error

Confidence Intervals

Comparing
Learning
Algorithms
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Performance
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Estimating True Error (cont'd)

Experiment:

@ Choose sample V of size N according to distribution D
@ Measure errory(h)

errory(h) is a random variable (i.e., result of an experiment)
errory(h) is an unbiased estimator for errorp(h)

Given observed errory(h), what can we conclude about
errorp(h)?
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Design and @ )V contains N examples, drawn independently of # and

Analysis

Stephen Scott eaCh Other

@ N>30
Introduction
Qutine Then with approximately 95% probability, errorp(h) lies in
Goals
Estimating
rror h 1 — h
E errory(h) £ 1'96\/err0rv( )1 = errory(h))

N

Comparing E.g. hypothesis i misclassifies 12 of the 40 examples in test
Algorithms Set V: 12
Other
erformance errory(h) = 7= =0.30
::AGZSUI’ES V( ) 40

Then with approx. 95% confidence, errorp(h) € [0.158,0.442]
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Experimental

g @ V contains N examples, drawn independently of # and

Analysis

Stephen Scott eaCh Other
: @ N >30
Introduction
z:::e Then with approximately c% probability, errorp(h) lies in
Estimating
rror 1 _
ETYDESO'EHOr el"l’Ol”V (h) :l: ZC \/errorv (h)( errorv(h))
N
Comparing
e N%: | 50% 68% 80% 90% 95% 98% 99%
Other z: | 067 1.00 128 1.64 196 233 2.58

Performance
Measures

Why?
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Types of Error
Estimating Error
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errory(h) is a Random Variable

Repeatedly run the experiment, each with different
randomly drawn V (each of size N)

Probability of observing r misclassified examples:

014 Binomial distribution for n =40, p =0.3

0.12f R
0.1F R
0.08f R
0.06 R
0.041 R
0.02f E

0 N 1 1 1 1 1
0 5 10 15 20 25 30 35 40

P(r) = (]Z > errorp(h)’ (1 — errorp(h))N~"

P(r)

l.e., let errorp(h) be probability of heads in biased coin, then
P(r) = prob. of getting r heads out of N flips
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CSCE
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' N N!
Lecture 4: - N—r . Ny
xperimental 1— R 1 —
EDtgsignantdI (r) p ( p) r[(N_ I")' p ( p)

Analysis

SSIEER  Probability P(r) of r heads in N coin flips, if p = Pr(heads)

o @ Expected, or mean value of X, E[X] (= # heads on N
utline . . .

Sonle flips = # mistakes on N test exs), is

Estimating N

eror E[X] = iP(i) = Np =N - errorp(h)
Confidence Intervals l:0

Comparing @ Variance of X is

Learning

Var(X) = E[(X — E[X])* = Np(1 —p)
Other

PETENES @ Standard deviation of X, oy, is

Measures

ox = \/E[(X — E[X])?] = /Np(1 — p)



Nebiaska Approximate Binomial Dist. with Normal

Lincoln

S8 errory(h) = r/N is binomially distributed, with

Lecture 4:

Egggg’:‘;?}‘j‘ ® MeaAN Lepror, (n) = errorp(h) (i.e., unbiased est.)
Analysis @ standard deviation o, 1)
Stephen Scott
errorp(h)(1 — errorp(h))
Introduction Uerrory(h) = N
Outline
Goals (increasing N decreases variance)
Estimating . . .
Error Want to compute confidence interval = interval centered at
Eximatig e errorp(h) containing ¢% of the weight under the distribution
Confidence Intervals
Comgaing Approximate binomial by normal (Gaussian) dist:

Learning

Algorithms @ mean Merrorv(h) = 67’7’01’@([’1)
Other @ standard deviation o,

Performance

Measures
errory(h)(1 — errory(h))
Oerrory, () ~ N




Weeet=l Normal Probability Distribution

Lincoln

CSCE Normal distribution with mean 0, standard deviation 1
04

478/878 - ; : :

Lecture 4: 035 | ]

Experimental 03 b ]

Design and 025 |

Analysis ol 1

Stephen Scott 0.15 1

0.1 |

Introduction 005 F 1
0 I . ) )

-3 2 1 0 1 > 3

Outline
Goals

Estimating

1 1 [(x—p
Error P(x) = m eXp ) pu

Estimating Error

Confidence Intervals

Comparing @ The probability that X will fall into the interval (a, b) is

Learning

Algorithms given by fabp(x) dx
Other @ Expected, or mean value of X, E[X], is E[X]| =

Performance

Measures @ Variance is Var(X) = o2, standard deviation is ox = o
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Normal Probability Distribution (cont'd)

80% of area (probability) lies in 1 + 1.28¢0

% of area (probability) lies in £+ z. o

50% 68% 80% 90% 95% 98% 99%
0.67 1.00 128 164 196 233 2.58

c%:

2!
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Normal Probability Distribution (cont'd)

Can also have one-sided bounds:

04 -
035
03 r
025
02 |
0.15
0.1 |
005

0

1 2 3

¢% of area lies < y+ z.o or >y — z.o, where
Z = 2100—(100—c) /2

50%
0.0

68%
0.47

80%
0.84

90%
1.28

95% 98% 99%
1.64 2.05 2.33
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Confidence Intervals Revisited

If V contains N > 30 examples, indep. of 4 and each other

Then with approximately 95% probability, errory(h) lies in

errorp(h)(1 — errorp(h))
N

errorp(h) £ 1 .96\/

Equivalently, errorp(h) lies in

errorp(h)(1 — errorp(h))
N

errory(h) £ 1.96\/

which is approximately

errory(h)(1 — errory(h))
N

errory(h) £ 1.96\/

(One-sided bounds yield upper or lower error bounds)
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Central Limit Theorem

How can we justify approximation?

Consider set of iid random variables Y1, ..., Yy, all from
arbitrary probability distribution with mean . and finite
variance o2. Define sample mean Y = (1/N) Y%, ¥;

Y is itself a random variable, i.e., result of an experiment
(e.g., errors(h) = r/N)

Central Limit Theorem: As N — oo, the distribution
governing Y approaches normal distribution with mean
and variance o*/N

Thus the distribution of errorg(h) is approximately normal for
large N, and its expected value is errorp(h)

(Rule of thumb: N > 30 when estimator’s distribution is
binomial; might need to be larger for other distributions)



hLct=Y Calculating Confidence Intervals
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CSCE
478/878
Lecture 4:
Experimental
Design and

Anabysis @ Pick parameter to estimate: errorp(h)
Stephen Scott

’ @ Choose an estimator: errory (h)
© Determine probability distribution that governs

Introduction

Outli . . . . . .
o estimator: errory (k) governed by binomial distribution,
Ectimat approximated by normal when N > 30

stimating

S @ Find interval (L, U) such that ¢% of probability mass
Sainain s falls in the interval

— e Could have L = —oco or U =00

Learning e Use table of z. or z. values (if distribution normal)

Algorithms

Other
Performance
Measures
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Stephen Scott

@ What if we want to compare two learning algorithms L!
Introduction and L? (e.g., ID3 vs k-nearest neighbor) on a specific
Outline application?

S:j:aﬁng @ Insufficient to simply compare error rates on a single
Error test set

s @ Use K-fold cross validation and a pairedt test

Learning
Algorithms
K-Fold CV

Student's 1
Distribution

Other
Performance

Measures
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Experimental

e @ Partition data set X' into K equal-sized subsets
X, A, ..., Xk, where |2L),| > 30

@ Forifrom1toK,do

Stephen Scott

o (Use A; for testing, and rest for training)
Goals 0 Vi = )C"

Estimating e 77 =X \ 26!

Error @ Train learning algorithm L! on V; to get /!
Comparing @ Train learning algorithm L? on V), to get h?
e O Let p] be error of // on test set V)

K-Fold GV 0 Pi — ptl _p12

Student's 1
Distribution

© Error difference estimate p = (1/K) YK p;

Other
Performance
Measures
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Lecture 4:

Erma——— @ Now want to determine confidence that p < 0
Design and

Analysis = Confidence that L! is better than L? on learning task

SRl @ Use one-sided test, with confidence derived from
Introduction student’s t distribution with K — 1 degrees of freedom

Qi @ With approximately ¢% probability, true difference of
Goals expected error between L! and L? is at most

Estimating

Error

Comparing p + tcyK*I sl’
Learning

Algorithms

KFold OV where

Student's

Distribution 1 K

Other
Performance
Measures

"E;h
Il
Ja
>~
|
S
|
=
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Introduction
Outline
Goals

Estimating
Error

Comparing
Learning
Algorithms
K-Fold CV

Student's
Distribution

Other
Performance
Measures

Student’s ¢ Distribution (One-Sided Test)

df 0.600 0.700 0.800 0.900 0.950 0.975 0.990 0.995
1 0,325 0.727 1.376 3.078 5,314 12.706 31.821 £3.657
2 0.289 0.617 1.061 1.886 2920 4,303 6.965 9.5925
3 0.277 0.584 0.978 1.638 2.353 3.182 4.541 5.841
4 0.271 0.569 0.541 1.533 FREF] 2776 3.747 4.604
5 0.267 0.559 0.920 1476 2015 2.571 3.365 4.032
[ 0,265 0.553 [ 1.440 1.943 2.447 3.143 3.707
7 0.263 0.549 10.896 1.415 895 2,365 2.998 3.499
8 0.262 0.546 0.889 397 860 2,306 2.896 3.355
9 0.261 0.543 0.883 383 833 2,262 2,821 3.250
10 0.260 0.542 0.879 372 812 2,228 2.764 3.169
11 0.260 0.540 0.876 1.363 1.796 2.201 2.718 3.106
12 0.259 .539 0.873 1.356 1.782 2.179 2.681 3.055

13 0.259 0.538 0.870 1.350 1771 2.160 2.650 3.012

If p+tc.x-15, < 0 our assertion that L' has less error than
L? is supported with confidence ¢

So if K-fold CV used, compute p, look up 7. x—; and check if
p<- tc,K—l Sp

One-sided test; says nothing about L* over L!
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Design and @ Say you want to show that learning algorithm L!
performs better than algorithms L%, L3, L*, L’

@ If you use K-fold CV to show superior performance of
L' over each of L2, ..., L’ at 95% confidence, there’s a

Stephen Scott

Introduction

Outline .
o 5% chance each one is wrong
oals
Estimating = There’s a 20% chance that at least one is wrong
Error
Comparing = Our overall confidence is only 80%
L i .
Bie @ Need to account for this
K-Fold CV
Studene 1 @ Or, use other statistical tests to analyze multiple
Other algorithms

Performance
Measures
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Experimental @ So far, we've looked at a single error rate to compare

Design and

Analysis hypotheses/learning algorithms/etc.
Stephen Seott @ This may not tell the whole story:
Introduction e 1000 test examples: 20 positive, 980 negative
Outline e h! gets 2/20 pos correct, 965/980 neg correct, for
Goals accuracy of (2 + 965)/(20 + 980) = 0.967
Estimating e Pretty impressive, except that always predicting
Error negative yields accuracy = 0.980
iR e Would we rather have 42, which gets 19/20 pos correct
Algorithms and 930/980 neg, for accuracy = 0.949?

Other e Depends on how important the positives are, i.e.,
Performance

Measures frequency in practice and/or cost (e.g., cancer
Confusion Matrices d I ag n OS I S)

ROC Curves

Precision-Recall
Curves

25/35
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Error

Comparing
Learning
Algorithms

Other
Performance
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Confusion Matrices
ROC Curves

Precision-Recall
Curves
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Confusion Matrices

Break down error into type: true positive, etc.

Predicted Class

True Class | Total
Positive tp : true positive | fn : false negative | p
Negative fp : false positive | m : true negative n
Total N

Generalizes to multiple classes

Allows one to quickly assess which classes are missed the
most, and into what other class
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ROC Curves

@ Consider an ANN or SVM

@ Normally threshold at 0, but what if we changed it?

@ Keeping weight vector constant while changing

threshold = holding hyperplane’s slope fixed while
moving along its normql vector

o-. T predall +
.o®
-0 \\
o
@) [ ]
b hANE]
. O~
pred all - ‘Q

@ l.e., get a set of classifiers, one per labeling of test set

@ Similar situation with any classifier with confidence
value, e.g., probability-based
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B Plotting 7 versus fp
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Lecture 4:

Experimental @ Consider the “always —” hyp. What is fp? What is #p?

Design and

Anlysis What about the “always +” hyp?
Stephen Seot @ In between the extremes, we plot TP versus FP by
Introduction sorting the test examples by the confidence values

Outline

Goals

Estimating Ex | Confidence | label | Ex | Confidence | label
Error x| 169.752 + || x6 | —12.640 -
il xy | 109.200 + | x| —29.124 -

Learning

Algorithms X3 19.210 — X3 —83.222 —
ggnjfirrmance X4 1.905 + X9 —91.554 T
Mfasures X5 -2.175 —+ X10 —128.212 -

atrices
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Introduction
Outline
Goals

Estimating
Error

Comparing
Learning
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Other
Performance
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Confusion Matrices
ROC Curves

Precision-Recall
Curves
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Stephen Scott @naive Bayes

Introduction

Outline

Goals Fp

Estimating
Error

Comparing @ The convex hull of the ROC curve yields a collection of
Learning

i classifiers, each optimal under different conditions
- e If FP cost = FN cost, then draw a line with slope |N|/|P|

Performance

performar at (0, 1) and drag it towards convex hull until you touch
Contusion Matices it; that’s your operating point

Preclor Recall e Can use as a classifier any part of the hull since can
e randomly select between two classifiers

30/35
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ROC Curves

Convex Hull

@naive Bayes

@ Can also compare curves against “single-point”
classifiers when no curves

e In plot, ID3 better than our SVM iff negatives scarce; nB
never better
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ROC Curves

Miscellany

@ What is the worst possible ROC curve?

@ One metric for measuring a curve’s goodness: area
under curve (AUC):

> e 2ox_en I(h(xy) > h(x-))
[Pl IN]
i.e., rank all examples by confidence in “+” prediction,

count the number of times a positively-labeled example

(from P) is ranked above a negatively-labeled one (from
N), then normalize

o What is the best value?

e Distribution approximately normal if |P|, |[N| > 10, so can
find confidence intervals

e Catching on as a better scalar measure of performance
than error rate

@ ROC analysis possible (though tricky) with multi-class
problems
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ROC Curves

Miscellany (cont'd)

@ Can use ROC curve to modify classifiers, e.g., re-label
decision trees

@ What does “ROC” stand for?

o “Receiver Operating Characteristic” from signal

detection theory, where binary signals are corrupted by
noise

e Use plots to determine how to set threshold to
determine presence of signal

e Threshold too high: miss true hits (zp low), too low: too
many false alarms (fp high)

@ Alternative to ROC: cost curves
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Analysis

Stephen Scott

Introduction
Outline
Goals

Estimating
Error

Comparing
Learning
Algorithms

Other  Alldocuments v relevant X notrelevant (O refrieved

Performance

Measures precision = tp/p’ = fraction of retrieved that are positive

Confusion Matrices
ROC Curves

recall = tp/p = fraction of positives retrieved

Precision-Recall
Curves
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o) As with ROC, can vary threshold to trade off precision

Lecture 4: against recall
Experimental
Design and !
Analysis

Stephen Scott

Introduction

Outline

Goals

Estimating
Error

Comparing

Learning Can compare curves based on containment
gorithms

Other Use Fz-measure to combine at a specific point, where 3

Performance

Measures i ] .
el \Weights precision vs recall
ROC Curves

precision - recall
(B2 - precision) + recall

Precision-Recall

Curves Fﬁ = (1 + 52)
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