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Introduction

In Homework 1, you are (supposedly)

1 Choosing a data set
2 Extracting a test set of size > 30
3 Building a tree on the training set
4 Testing on the test set
5 Reporting the accuracy

Does the reported accuracy exactly match the
generalization performance of the tree?

If a tree has error 10% and an ANN has error 11%, is the
tree absolutely better?

Why or why not?

How about the algorithms in general?
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Outline

Goals of performance evaluation
Estimating error and confidence intervals
Paired t tests and cross-validation to compare learning
algorithms
Other performance measures

Confusion matrices
ROC analysis
Precision-recall curves
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Setting Goals

Before setting up an experiment, need to understand
exactly what the goal is

Estimate the generalization performance of a
hypothesis
Tuning a learning algorithm’s parameters
Comparing two learning algorithms on a specific task
Etc.

Will never be able to answer the question with 100%
certainty

Due to variances in training set selection, test set
selection, etc.
Will choose an estimator for the quantity in question,
determine the probability distribution of the estimator,
and bound the probability that the estimator is way off
Estimator needs to work regardless of distribution of
training/testing data
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Setting Goals (cont’d)

Need to note that, in addition to statistical variations,
what we determine is limited to the application that we
are studying

E.g., if naı̈ve Bayes better than ID3 on spam filtering,
that means nothing about face recognition

In planning experiments, need to ensure that training
data not used for evaluation

I.e., don’t test on the training set!
Will bias the performance estimator
Also holds for validation set used to prune DT, tune
parameters, etc.

Validation set serves as part of training set, but not used
for model building
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Types of Error

For now, focus on straightforward, 0/1 classification
error
For hypothesis h, recall the two types of classification
error from Chapter 2:

Empirical error (or sample error) is fraction of set V that
h gets wrong:

errorV(h) ≡ 1
|V|
∑
x∈V

δ(C(x) 6= h(x)) ,

where δ(C(x) 6= h(x)) is 1 if C(x) 6= h(x), and 0 otherwise
Generalization error (or true error) is probability that a
new, randomly selected, instance is misclassified by h

errorD(h) ≡ Pr
x∈D

[C(x) 6= h(x)] ,

where D is probability distribution instances are drawn
from

Why do we care about errorV(h)?
6 / 35
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Estimating True Error

Bias: If T is training set, errorT (h) is optimistically
biased

bias ≡ E[errorT (h)]− errorD(h)

For unbiased estimate (bias = 0), h and V must be
chosen independently⇒ Don’t test on training set!
(Don’t confuse with inductive bias!)
Variance: Even with unbiased V, errorV(h) may still
vary from errorD(h)
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Estimating True Error (cont’d)

Experiment:

1 Choose sample V of size N according to distribution D
2 Measure errorV(h)

errorV(h) is a random variable (i.e., result of an experiment)

errorV(h) is an unbiased estimator for errorD(h)

Given observed errorV(h), what can we conclude about
errorD(h)?
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Confidence Intervals

If

V contains N examples, drawn independently of h and
each other
N ≥ 30

Then with approximately 95% probability, errorD(h) lies in

errorV(h)± 1.96

√
errorV(h)(1− errorV(h))

N

E.g. hypothesis h misclassifies 12 of the 40 examples in test
set V:

errorV(h) =
12
40

= 0.30

Then with approx. 95% confidence, errorD(h) ∈ [0.158, 0.442]
9 / 35
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Confidence Intervals (cont’d)

If

V contains N examples, drawn independently of h and
each other
N ≥ 30

Then with approximately c% probability, errorD(h) lies in

errorV(h)± zc

√
errorV(h)(1− errorV(h))

N

N%: 50% 68% 80% 90% 95% 98% 99%
zc: 0.67 1.00 1.28 1.64 1.96 2.33 2.58

Why?
10 / 35
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errorV(h) is a Random Variable

Repeatedly run the experiment, each with different
randomly drawn V (each of size N)

Probability of observing r misclassified examples:

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

0 5 10 15 20 25 30 35 40

P(
r)

Binomial distribution for n = 40, p = 0.3

P(r) =

(
N
r

)
errorD(h)r (1− errorD(h))N−r

I.e., let errorD(h) be probability of heads in biased coin, then
P(r) = prob. of getting r heads out of N flips
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Binomial Probability Distribution

P(r) =

(
N
r

)
pr(1− p)N−r =

N!

r!(N − r)!
pr(1− p)N−r

Probability P(r) of r heads in N coin flips, if p = Pr(heads)

Expected, or mean value of X, E[X] (= # heads on N
flips = # mistakes on N test exs), is

E[X] ≡
N∑

i=0

iP(i) = Np = N · errorD(h)

Variance of X is

Var(X) ≡ E[(X − E[X])2] = Np(1− p)

Standard deviation of X, σX, is

σX ≡
√

E[(X − E[X])2] =
√

Np(1− p)
12 / 35
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Approximate Binomial Dist. with Normal

errorV(h) = r/N is binomially distributed, with

mean µerrorV (h) = errorD(h) (i.e., unbiased est.)
standard deviation σerrorV (h)

σerrorV (h) =

√
errorD(h)(1− errorD(h))

N
(increasing N decreases variance)

Want to compute confidence interval = interval centered at
errorD(h) containing c% of the weight under the distribution

Approximate binomial by normal (Gaussian) dist:
mean µerrorV (h) = errorD(h)
standard deviation σerrorV (h)

σerrorV (h) ≈
√

errorV(h)(1− errorV(h))

N13 / 35
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Normal Probability Distribution

0
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0.1
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0.4

-3 -2 -1 0 1 2 3

Normal distribution with mean 0, standard deviation 1

p(x) =
1√

2πσ2
exp

(
−1

2

(
x− µ
σ

)2
)

The probability that X will fall into the interval (a, b) is
given by

∫ b
a p(x) dx

Expected, or mean value of X, E[X], is E[X] = µ
Variance is Var(X) = σ2, standard deviation is σX = σ

14 / 35
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Normal Probability Distribution (cont’d)
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80% of area (probability) lies in µ± 1.28σ

c% of area (probability) lies in µ± zc σ

c%: 50% 68% 80% 90% 95% 98% 99%
zc: 0.67 1.00 1.28 1.64 1.96 2.33 2.58
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Normal Probability Distribution (cont’d)

Can also have one-sided bounds:

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-3 -2 -1 0 1 2 3

c% of area lies < µ+ z′c σ or > µ− z′cσ, where
z′c = z100−(100−c)/2

c%: 50% 68% 80% 90% 95% 98% 99%
z′c: 0.0 0.47 0.84 1.28 1.64 2.05 2.33
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Confidence Intervals Revisited

If V contains N ≥ 30 examples, indep. of h and each other

Then with approximately 95% probability, errorV(h) lies in

errorD(h)± 1.96

√
errorD(h)(1− errorD(h))

N

Equivalently, errorD(h) lies in

errorV(h)± 1.96

√
errorD(h)(1− errorD(h))

N

which is approximately

errorV(h)± 1.96

√
errorV(h)(1− errorV(h))

N

(One-sided bounds yield upper or lower error bounds)
17 / 35
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Central Limit Theorem

How can we justify approximation?

Consider set of iid random variables Y1, . . . ,YN , all from
arbitrary probability distribution with mean µ and finite
variance σ2. Define sample mean Ȳ ≡ (1/N)

∑n
i=1 Yi

Ȳ is itself a random variable, i.e., result of an experiment
(e.g., errorS(h) = r/N)

Central Limit Theorem: As N →∞, the distribution
governing Ȳ approaches normal distribution with mean µ
and variance σ2/N

Thus the distribution of errorS(h) is approximately normal for
large N, and its expected value is errorD(h)

(Rule of thumb: N ≥ 30 when estimator’s distribution is
binomial; might need to be larger for other distributions)

18 / 35
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Calculating Confidence Intervals

1 Pick parameter to estimate: errorD(h)

2 Choose an estimator: errorV(h)

3 Determine probability distribution that governs
estimator: errorV(h) governed by binomial distribution,
approximated by normal when N ≥ 30

4 Find interval (L,U) such that c% of probability mass
falls in the interval

Could have L = −∞ or U =∞
Use table of zc or z′c values (if distribution normal)

19 / 35
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Comparing Learning Algorithms

What if we want to compare two learning algorithms L1

and L2 (e.g., ID3 vs k-nearest neighbor) on a specific
application?
Insufficient to simply compare error rates on a single
test set
Use K-fold cross validation and a paired t test

20 / 35
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K-Fold Cross Validation

1 Partition data set X into K equal-sized subsets
X1,X2, . . . ,XK , where |Xi| ≥ 30

2 For i from 1 to K, do
(Use Xi for testing, and rest for training)

1 Vi = Xi
2 Ti = X \ Xi
3 Train learning algorithm L1 on Vi to get h1

4 Train learning algorithm L2 on Vi to get h2

5 Let pj
i be error of hj on test set Vi

6 pi = p1
i − p2

i

3 Error difference estimate p = (1/K)
∑K

i pi

21 / 35
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K-Fold Cross Validation (cont’d)

Now want to determine confidence that p < 0

⇒ Confidence that L1 is better than L2 on learning task
Use one-sided test, with confidence derived from
student’s t distribution with K − 1 degrees of freedom
With approximately c% probability, true difference of
expected error between L1 and L2 is at most

p + tc,K−1 sp

where

sp ≡

√√√√ 1
K(K − 1)

K∑
i=1

(pi − p)2

22 / 35
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Student’s t Distribution (One-Sided Test)

If p + tc,K−1 sp < 0 our assertion that L1 has less error than
L2 is supported with confidence c

So if K-fold CV used, compute p, look up tc,K−1 and check if
p < − tc,K−1 sp

One-sided test; says nothing about L2 over L1

23 / 35
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Caveat

Say you want to show that learning algorithm L1

performs better than algorithms L2,L3,L4,L5

If you use K-fold CV to show superior performance of
L1 over each of L2, . . . ,L5 at 95% confidence, there’s a
5% chance each one is wrong

⇒ There’s a 20% chance that at least one is wrong
⇒ Our overall confidence is only 80%

Need to account for this
Or, use other statistical tests to analyze multiple
algorithms

24 / 35
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More Specific Performance Measures

So far, we’ve looked at a single error rate to compare
hypotheses/learning algorithms/etc.
This may not tell the whole story:

1000 test examples: 20 positive, 980 negative
h1 gets 2/20 pos correct, 965/980 neg correct, for
accuracy of (2 + 965)/(20 + 980) = 0.967
Pretty impressive, except that always predicting
negative yields accuracy = 0.980
Would we rather have h2, which gets 19/20 pos correct
and 930/980 neg, for accuracy = 0.949?
Depends on how important the positives are, i.e.,
frequency in practice and/or cost (e.g., cancer
diagnosis)

25 / 35
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Confusion Matrices

Break down error into type: true positive, etc.

Predicted Class
True Class Positive Negative Total
Positive tp : true positive fn : false negative p
Negative fp : false positive tn : true negative n
Total p′ n′ N

Generalizes to multiple classes

Allows one to quickly assess which classes are missed the
most, and into what other class

26 / 35
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ROC Curves

Consider an ANN or SVM
Normally threshold at 0, but what if we changed it?
Keeping weight vector constant while changing
threshold = holding hyperplane’s slope fixed while
moving along its normal vector

pred all !

pred all +

b

I.e., get a set of classifiers, one per labeling of test set
Similar situation with any classifier with confidence
value, e.g., probability-based

27 / 35
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ROC Curves
Plotting tp versus fp

Consider the “always −” hyp. What is fp? What is tp?
What about the “always +” hyp?
In between the extremes, we plot TP versus FP by
sorting the test examples by the confidence values

Ex Confidence label Ex Confidence label
x1 169.752 + x6 −12.640 −
x2 109.200 + x7 −29.124 −
x3 19.210 − x8 −83.222 −
x4 1.905 + x9 −91.554 +
x5 −2.75 + x10 −128.212 −

28 / 35
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ROC Curves
Plotting tp versus fp (cont’d)

x10

0
0

1

1

TP

FP
x1

x5
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ROC Curves
Convex Hull

naive Bayes

0
0

1

1

TP

FP

ID3

The convex hull of the ROC curve yields a collection of
classifiers, each optimal under different conditions

If FP cost = FN cost, then draw a line with slope |N|/|P|
at (0, 1) and drag it towards convex hull until you touch
it; that’s your operating point
Can use as a classifier any part of the hull since can
randomly select between two classifiers

30 / 35
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ROC Curves
Convex Hull

naive Bayes

0
0

1

1

TP

FP

ID3

Can also compare curves against “single-point”
classifiers when no curves

In plot, ID3 better than our SVM iff negatives scarce; nB
never better
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ROC Curves
Miscellany

What is the worst possible ROC curve?
One metric for measuring a curve’s goodness: area
under curve (AUC):∑

x+∈P
∑

x−∈N I(h(x+) > h(x−))

|P| |N|
i.e., rank all examples by confidence in “+” prediction,
count the number of times a positively-labeled example
(from P) is ranked above a negatively-labeled one (from
N), then normalize

What is the best value?
Distribution approximately normal if |P|, |N| > 10, so can
find confidence intervals
Catching on as a better scalar measure of performance
than error rate

ROC analysis possible (though tricky) with multi-class
problems

32 / 35
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ROC Curves
Miscellany (cont’d)

Can use ROC curve to modify classifiers, e.g., re-label
decision trees
What does “ROC” stand for?

“Receiver Operating Characteristic” from signal
detection theory, where binary signals are corrupted by
noise
Use plots to determine how to set threshold to
determine presence of signal
Threshold too high: miss true hits (tp low), too low: too
many false alarms (fp high)

Alternative to ROC: cost curves
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Precision-Recall Curves

Consider information retrieval task, e.g., web search

precision = tp/p′ = fraction of retrieved that are positive

recall = tp/p = fraction of positives retrieved

34 / 35
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Precision-Recall Curves (cont’d)

As with ROC, can vary threshold to trade off precision
against recall

Can compare curves based on containment

Use Fβ-measure to combine at a specific point, where β
weights precision vs recall:

Fβ ≡ (1 + β2)
precision · recall

(β2 · precision) + recall
35 / 35
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