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@ Goals of performance evaluation

ntroduction @ Estimating error and confidence intervals

Outiine @ Paired r tests and cross-validation to compare learning
Goals algorithms

EStimaiing @ Other performance measures

Error
e Confusion matrices
o ROC analysis
e Precision-recall curves
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@ Need to note that, in addition to statistical variations,
what we determine is limited to the application that we
are studying

o E.g., if naive Bayes better than ID3 on spam filtering,
that means nothing about face recognition

@ In planning experiments, need to ensure that training
data not used for evaluation
o l.e., don't test on the training set!
o Will bias the performance estimator
e Also holds for validation set used to prune DT, tune
Other parameters, etc.
;2‘1,‘;1:?:;“ @ Validation set serves as part of training set, but not used
for model building
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@ Choosing a data set

@ Extracting a test set of size > 30
© Building a tree on the training set
@ Testing on the test set

@ Reporting the accuracy
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Error Does the reported accuracy exactly match the
generalization performance of the tree?
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If a tree has error 10% and an ANN has error 11%, is the
tree absolutely better?
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@ Why or why not?

How about the algorithms in general?
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@ Before setting up an experiment, need to understand
exactly what the goal is
o Estimate the generalization performance of a
hypothesis
o Tuning a learning algorithm’s parameters
e Comparing two learning algorithms on a specific task
Outline ° EtC

— o Will never be able to answer the question with 100%

Error Cel’talnty

Compari o Due to variances in training set selection, test set

Algorithms selection, etc.

Other o Will choose an estimator for the quantity in question,

Perormance determine the probability distribution of the estimator,
and bound the probability that the estimator is way off

o Estimator needs to work regardless of distribution of

training/testing data
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ERd Types of Error

— @ For now, focus on straightforward, 0/1 classification
Experimental error

PCr @ For hypothesis A, recall the two types of classification
Stoonon Seot error from Chapter 2:

° o Empirical error (or sample error) is fraction of set V that

Introduction h gets wrong:
Outline 1
Goals errory(h) = m Zé(c(x) 74 h(x)) ’

Estimating xey

T where §(C(x) # h(x)) is 1 if C(x) # h(x), and 0 otherwise

o Generalization error (or true error) is probability that a
new, randomly selected, instance is misclassified by &

errorp(h) = XIé’rD[C(x) # h(x)] ,

[
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where D is probability distribution instances are drawn
from
@ Why do we care about errory(h)?
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@ Bias: If T is training set, errory(h) is optimistically
biased

Stephen Scott

Introduction

bias = Elerrory(h)| — errorp(h)
Outline

Goals For unbiased estimate (bias = 0), h and ¥V must be
chosen independently = Don't test on training set!
(Don’t confuse with inductive bias!)

@ Variance: Even with unbiased V, errory(h) may still
vary from errorp(h)
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@ V contains N examples, drawn independently of # and
each other

@ N >30

Stephen Scott

Introduction
outine Then with approximately 95% probability, errorp () lies in

Goals

Estimating

errory(h)(1 — errory(h))

errory(h) £ 1 .96\/

N
Egg;gianrgm E.g. hypothesis i misclassifies 12 of the 40 examples in test
Algorithms set V:
Other 12
Performance errOrV(h) = % =0.30

Measures

Then with approx. 95% confidence, errorp(h) € [0.158,0.442)
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errory(h) is a Random Variable

ey Repeatedly run the experiment, each with different
randomly drawn V (each of size N)
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Probability of observing r misclassified examples:

Stephen Scott Binomial distribution for n =40,p =03

0.14, T —
Introduction 0.12
Outline 0.1F
Goals = 008F
’ S 006k
Estimating
Error 0.04
, 0.02F
Gonfidence Intervals 0

0 5 10 15 20 25 30 35 40

P(r) = C’ ) errorp ()’ (1 — errorp(R))V~"
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l.e., let errorp(h) be probability of heads in biased coin, then
P(r) = prob. of getting r heads out of N flips
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@ Choose sample V of size N according to distribution D
@ Measure errory(h)

Introduction
Outline
Goals

errory(h) is a random variable (i.e., result of an experiment)

Estimating

errory(h) is an unbiased estimator for errorp(h)

Given observed errory(h), what can we conclude about
errorp(h)?

Comparing
Learning
Algorithms

Other
Performance
Measures

Nebiaska

Lincoln

Confidence Intervals (cont'd)

CSCE
478/878
Lecture 4:
Experimental
Design and
Analysis

@ V contains N examples, drawn independently of z and
each other

@ N >30
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Introduction

outine Then with approximately c% probability, errorp () lies in

Goals

Estimating

ETTW g errory(h) & z \/erer(h)(lA; errory(h))

Estimating Error

Confidence Intervals

Comparin
Leamng” N%: | 50% 68% 80% 90% 95% 98% 99%
Other z: | 067 1.00 128 164 196 233 258
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p0) = (V) o = s

Stephen Scott

Probability P(r) of r heads in N coin flips, if p = Pr(heads)

'(’)“:;i:“‘"” @ Expected, or mean value of X, E[X] (= # heads on N
conte flips = # mistakes on N test exs), is

Estimating N

ETr:or’E E[X] = Z iP(i) = Np = N - errorp(h)

Estimating Error i=0

Confidence Intervals

@ Variance of X is
Var(X) = E[(X — E[X])’] = Np(1 —p)
@ Standard deviation of X, oy, is
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ox = /E[(X — E[X])?] = /Np(1 — p)
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Approximate Binomial Dist. with Normal

Normal Probability Distribution (cont’d)

Confidence Intervals Revisited

errory(h) = r/N is binomially distributed, with
@ MEAN Lerror, (1) = errorp(h) (i.e., unbiased est.)
@ standard deviation o, (i)

errorp(h)(1 — errorp(h))
Oerrory,(h) = N

(increasing N decreases variance)

Want to compute confidence interval = interval centered at
errorp(h) containing ¢% of the weight under the distribution

Approximate binomial by normal (Gaussian) dist:
@ mean fieypor, (h) = errorD(h)

@ standard deviation o, ()

N \/errory(h)(l — errory(h))

Oerrory (h) ~ N

0 1

80% of area (probability) lies in u & 1.280

¢% of area (probability) lies in p £ z. o

%: | 50% 68% 80% 90% 95% 98% 99%
z: | 0.67 1.00 128 164 196 233 258

Then with approximately 95% probability, errory (h) lies in

errorp(h)(1 — errorp(h))
N

errorp(h) £ 1,96\/

Equivalently, errorp(h) lies in

errorp(h)(1 — errorp(h))
N

errory(h) £ 1.96\/

which is approximately

errory(h)(1 — errory(h))
N

errory(h) £ 1 .96\/

(One-sided bounds yield upper or lower error bounds)

If vV contains N > 30 examples, indep. of » and each other
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Normal Probability Distribution

Normal distribution with mean 0, standard deviation 1

@ The probability that X will fall into the interval (a,b) is

given by fab p(x)dx
@ Expected, or mean value of X, E[X], is E[X] = ;1
@ Variance is Var(X) = o2, standard deviation is ox = o

Normal Probability Distribution (cont’d)

Can also have one-sided bounds:
04 ' '

035

03

025

02

0.15

0.1

005

0

-3 0 1 2 3

% of area lies < p + z.0 of > pu — z.0, where
7 = 2100—(100—c) /2

c%: | 50% 68% 80% 90% 95% 98% 99%
z: | 0.0 047 084 128 164 205 233

Central Limit Theorem

How can we justify approximation?

Consider set of iid random variables Y1, ..., Yy, all from
arbitrary probability distribution with mean x and finite
variance o2. Define sample mean ¥ = (1/N) 3", ¥;

Y is itself a random variable, i.e., result of an experiment
(e.g., errors(h) = r/N)

Central Limit Theorem: As N — oo, the distribution
governing Y approaches normal distribution with mean 1
and variance ¢?/N

Thus the distribution of errors(h) is approximately normal for
large N, and its expected value is errorp(h)

(Rule of thumb: N > 30 when estimator’s distribution is
binomial; might need to be larger for other distributions)
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Pick parameter to estimate: errorp(h)

Choose an estimator: errory(h)

Determine probability distribution that governs

estimator: errory(h) governed by binomial distribution,

N approximated by normal when N > 30

Error © Find interval (L, U) such that ¢% of probability mass
falls in the interval

Esimating Eror
ST

e Couldhave L= —ccorU =

o Use table of z. or z. values (if distribution normal)
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@ Partition data set X into K equal-sized subsets

Stephen Scott X1, Xa, ..., Xk, where |X;| > 30

Introduction e FOI’ l frOm 1 tO I_(! dO .

—— (Use A; for testing, and rest for training)
Goals o Vi = Azx

Estimating Q@ T=X \ X;

Error @ Train learning algorithm L' on V; to get 4!

Comparing @ Train learning algorithm L? on V) to get i?
o O Let p] be error of // on test set V;
et @ pi=p—1}

Divinion . : K
other © Error difference estimate p = (1/K) >_; pi
Performance

Measures
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Student’s ¢ Distribution (One-Sided Test)

CSCE df 0.600 0.900 0950 _ 0.975  0.990

478/878 1 0.325 0.727 371 078 6.314 12706 | 31821 63.657
Lecture 4: 2 0,289 0,617 06, 886 2,520 3303 | 6965 9.925
Experimental 3 0.277 0.584 0.57 638 353 3.182 4541 5.841
e 3 0271 | 0569 | 004 533 132 | 2776 747 604
4 5 0.267 0.559 0.920 476 015 2.571 3.365 032
StephieniScoft 6 0.26 0553 | 0.506 440 943 2.447 143 707
7 0.26 0.549 596 A5 695 2.365 2.950 EEE
8 0.26. 54E .85 397 860 2.306 2.896 355

Introduction g9 0.261 0.54 0.653 383 833 2,262 2,821 .250 |
Outiine 10 0.260 0.54 0.879 372 812 2.225 2764 169
1 0.260 0.540 0.876 363 796 2.201 2.718 106
Goals 12 0.259 0.539 873 356 782 2.179 2681 | 3.055
3 0.259 0.538 870 350 771 2.160 650 012

Estimating
Error

If p+ 1. xk—1 5, < 0 our assertion that L! has less error than
L? is supported with confidence ¢

Comparing
Learning
Algorithms
K-Fold OV,

Do So if K-fold CV used, compute p, look up 7. x—; and check if
Other p < — tc,Kfl sp

Performance
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One-sided test; says nothing about L* over L
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@ What if we want to compare two learning algorithms L!
and L? (e.g., ID3 vs k-nearest neighbor) on a specific

Outline application?

S:?:a‘mg o Insufficient to simply compare error rates on a single

Error test set

TS @ Use K-fold cross validation and a paired t test

Introduction

Learning
Algorithms
5 .

Other
Performance
Measures

Nebiaska

Lincoln

K-Fold Cross Validation (cont'd)

CSCE
478/878
Lecture 4:
Experimental
Design and
Analysis

@ Now want to determine confidence that p < 0
= Confidence that L! is better than L? on learning task

@ Use one-sided test, with confidence derived from
student’s t distribution with K — 1 degrees of freedom

Stephen Scott

Introduction
i @ With approximately ¢% probability, true difference of
Goals expected error between L! and L? is at most
Estimating
Error
Comparing 14 + tc,Kfl Sp
Learning
Algorithms
g oV where
Disrbuton | K

2
Oth = E —
Perv?)rrmance Sp - K(K - 1) N (pl p)

Measures
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@ Say you want to show that learning algorithm L!
performs better than algorithms 12, L3, 14, L3
@ If you use K-fold CV to show superior performance of
L! over each of L?,..., L’ at 95% confidence, there’s a
5% chance each one is wrong
= There’s a 20% chance that at least one is wrong
= Our overall confidence is only 80%
Algorithms @ Need to account for this
S @ Or, use other statistical tests to analyze multiple

Distribution

Other algorithms
Performance
Measures
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@ So far, we've looked at a single error rate to compare
hypotheses/learning algorithms/etc.
@ This may not tell the whole story:

Stephen Scott

Introduction o 1000 test examples: 20 positive, 980 negative

Outliine o 1! gets 2/20 pos correct, 965/980 neg correct, for

Goals accuracy of (2 +965)/(20 + 980) = 0.967

Estimating o Pretty impressive, except that always predicting

Error negative yields accuracy = 0.980

oo e Would we rather have h?, which gets 19/20 pos correct

Algorithms and 930/980 neg, for accuracy = 0.949?

Other o Depends on how important the positives are, i.e.,

Performance . .

Measures frequency in practice and/or cost (e.g., cancer
diagnosis)
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@ Consider an ANN or SVM
@ Normally threshold at 0, but what if we changed it?

@ Keeping weight vector constant while changing
threshold = holding hyperplane’s slope fixed while
moving along its normal vector

Stephen Scott
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Estimating N
Error -9

Comparing [ONRENY AN )
Learning ~ AN N
Algorithms 5

. O
Other pred all = O
Performance
M

@ l.e., get a set of classifiers, one per labeling of test set

@ Similar situation with any classifier with confidence
value, e.g., probability-based

ROC Curves

Nebiaska

BB  Plotting #p versus fp (cont'd)

CSCE
478/878
Lecture 4:
Experimental
Design and
Analysis

Stephen Scott

Introduction
Outline
Goals

Estimating
Error

Comparing
Learning
Algorithms

Other
Performance
Measures

Nebiaska

Lincoln

Confusion Matrices

CSCE
478/878
Lecture 4:
Experimental
Design and

Break down error into type: true positive, etc.

Analysis
Stephen Scott
Predicted Class

Introduction o 0
o True Class Positive \ Negative | Total
Goals Positive tp : true positive | fn : false negative | p
Estimating Negative fp : false positive | m : true negative n
Error 7 7

Total P n N

Comparing
Learning
Algorithms

i Generalizes to multiple classes

Performance
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Confusion Matrices

Allows one to quickly assess which classes are missed the
most, and into what other class

ey ROC Curves

Lincoln Plotting 7p versus fp
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@ Consider the “always —” hyp. What is fp? What is p?
What about the “always +” hyp?

S @ In between the extremes, we plot TP versus FP by

Introduction sorting the test examples by the confidence values
Outline
S:::aﬁng Ex | Confidence | label | Ex | Confidence | label
St X1 169.752 + X6 —12.640 -
Coamning x; | 109.200 + | x| —29.124 -
Algorithms X3 19.210 - X8 —83.222 -
gé?grmance X4 1.905 + X9 —91.554 +
X5 —2.75 + X10 —128.212 —

\evened ROC Curves

EIR  Convex Hull
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@ The convex hull of the ROC curve yields a collection of
classifiers, each optimal under different conditions
o If FP cost = FN cost, then draw a line with slope |N|/|P|
at (0, 1) and drag it towards convex hull until you touch
it; that’s your operating point
e Can use as a classifier any part of the hull since can
randomly select between two classifiers
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Coaring ° e -

Algorithms @ Can also compare curves against “single-point

Other classifiers when no curves

e o In plot, ID3 better than our SVM iff negatives scarce; nB
never better

ROC Curves

e ROC Curves

BB  Miscellany (cont'd)
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@ Can use ROC curve to modify classifiers, e.g., re-label
decision trees

@ What does “ROC” stand for?

o “Receiver Operating Characteristic” from signal
detection theory, where binary signals are corrupted by

Estimating nOiSe

Error o Use plots to determine how to set threshold to

Compar determine presence of signal

Algorithms e Threshold too high: miss true hits (sp low), too low: too

Other many false alarms (fp high)

Performance .
@ Alternative to ROC: cost curves

Measures
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Precision-Recall Curves (cont'd)

JCSCEN As with ROC, can vary threshold to trade off precision
against recall
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Can compare curves based on containment
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Use Fz-measure to combine at a specific point, where
weights precision vs recall:

precision - recall

Precision-Recall

s Fg=(1+ 52)

35/35

(B2 - precision) + recall

\even ROC Curves
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@ What is the worst possible ROC curve?
@ One metric for measuring a curve’s goodness: area
under curve (AUC):

Z)qEP Zx,EN I(h(x+) > h(x*))

Stephen Scott

Introduction ‘P| ‘N|
Guiti i.e., rank all examples by confidence in “+” prediction,
Goals count the number of times a positively-labeled example

Estimating
Error

(from P) is ranked above a negatively-labeled one (from
N), then normalize
o What is the best value?
o Distribution approximately normal if |P|, |N| > 10, so can
find confidence intervals
e Catching on as a better scalar measure of performance
than error rate
@ ROC analysis possible (though tricky) with multi-class
problems
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Consider information retrieval task, e.g., web search
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Confu

R

X not relevant

{Q retrieved

precision = 1p/p’ = fraction of retrieved that are positive

recall = tp/p = fraction of positives retrieved

Precision-Recall
Curves

34/35



