

CSCE 478/878 Lecture 4: Experimental Design and Analysis

Stephen Scott

(Adapted from Ethem Alpaydin and Tom Mitchell)

sscott@cse.unl.edu

Outline

- Goals of performance evaluation
- Estimating error and confidence intervals
- Paired t tests and cross-validation to compare learning algorithms
- Other performance measures
 - Confusion matrices
 - ROC analysis
 - Precision-recall curves

Setting Goals (cont'd)

- Need to note that, in addition to statistical variations, what we determine is limited to the application that we are studying
 - E.g., if naïve Bayes better than ID3 on spam filtering, that means nothing about face recognition
- In planning experiments, need to ensure that training data not used for evaluation
 - I.e., *don't test on the training set!*
 - Will bias the performance estimator
 - Also holds for *validation set* used to prune DT, tune parameters, etc.
 - Validation set serves as part of training set, but not used for model building

Introduction

In Homework 1, you are (supposedly)

- 1 Choosing a data set
- 2 Extracting a test set of size > 30
- 3 Building a tree on the training set
- 4 Testing on the test set
- 5 Reporting the accuracy

Does the reported accuracy exactly match the generalization performance of the tree?

If a tree has error 10% and an ANN has error 11%, is the tree absolutely better?

- Why or why not?

How about the algorithms in general?

Setting Goals

- Before setting up an experiment, need to understand exactly what the goal is
 - Estimate the generalization performance of a hypothesis
 - Tuning a learning algorithm's parameters
 - Comparing two learning algorithms on a specific task
 - Etc.
- Will never be able to answer the question with 100% certainty
 - Due to variances in training set selection, test set selection, etc.
 - Will choose an *estimator* for the quantity in question, determine the probability distribution of the estimator, and bound the probability that the estimator is way off
 - Estimator needs to work regardless of distribution of training/testing data

Types of Error

- For now, focus on straightforward, 0/1 *classification error*
- For hypothesis h , recall the two types of classification error from Chapter 2:
 - *Empirical error* (or *sample error*) is fraction of set \mathcal{V} that h gets wrong:

$$\text{error}_{\mathcal{V}}(h) \equiv \frac{1}{|\mathcal{V}|} \sum_{x \in \mathcal{V}} \delta(C(x) \neq h(x))$$
 where $\delta(C(x) \neq h(x))$ is 1 if $C(x) \neq h(x)$, and 0 otherwise
 - *Generalization error* (or *true error*) is probability that a new, randomly selected, instance is misclassified by h

$$\text{error}_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}} [C(x) \neq h(x)]$$
 where \mathcal{D} is probability distribution instances are drawn from
- Why do we care about $\text{error}_{\mathcal{V}}(h)$?

Estimating True Error

- **Bias:** If \mathcal{T} is training set, $error_{\mathcal{T}}(h)$ is optimistically biased

$$bias \equiv E[error_{\mathcal{T}}(h)] - error_{\mathcal{D}}(h)$$

For unbiased estimate ($bias = 0$), h and \mathcal{V} must be chosen independently \Rightarrow *Don't test on training set!* (Don't confuse with inductive bias!)

- **Variance:** Even with unbiased \mathcal{V} , $error_{\mathcal{V}}(h)$ may still vary from $error_{\mathcal{D}}(h)$

Confidence Intervals

If

- \mathcal{V} contains N examples, drawn independently of h and each other
- $N \geq 30$

Then with approximately 95% probability, $error_{\mathcal{D}}(h)$ lies in

$$error_{\mathcal{V}}(h) \pm 1.96 \sqrt{\frac{error_{\mathcal{V}}(h)(1 - error_{\mathcal{V}}(h))}{N}}$$

E.g. hypothesis h misclassifies 12 of the 40 examples in test set \mathcal{V} :

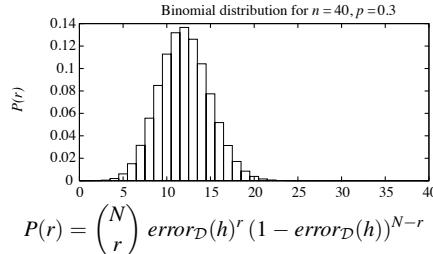
$$error_{\mathcal{V}}(h) = \frac{12}{40} = 0.30$$

Then with approx. 95% confidence, $error_{\mathcal{D}}(h) \in [0.158, 0.442]$

 $error_{\mathcal{V}}(h)$ is a Random Variable

Repeatedly run the experiment, each with different randomly drawn \mathcal{V} (each of size N)

Probability of observing r misclassified examples:



I.e., let $error_{\mathcal{D}}(h)$ be probability of heads in biased coin, then $P(r) = \text{prob. of getting } r \text{ heads out of } N \text{ flips}$

Estimating True Error (cont'd)

Experiment:

- 1 Choose sample \mathcal{V} of size N according to distribution \mathcal{D}
- 2 Measure $error_{\mathcal{V}}(h)$

$error_{\mathcal{V}}(h)$ is a random variable (i.e., result of an experiment)

$error_{\mathcal{V}}(h)$ is an *unbiased estimator* for $error_{\mathcal{D}}(h)$

Given observed $error_{\mathcal{V}}(h)$, what can we conclude about $error_{\mathcal{D}}(h)$?

Confidence Intervals (cont'd)

If

- \mathcal{V} contains N examples, drawn independently of h and each other
- $N \geq 30$

Then with approximately $c\%$ probability, $error_{\mathcal{D}}(h)$ lies in

$$error_{\mathcal{V}}(h) \pm z_c \sqrt{\frac{error_{\mathcal{V}}(h)(1 - error_{\mathcal{V}}(h))}{N}}$$

$N\%:$	50%	68%	80%	90%	95%	98%	99%
$z_c:$	0.67	1.00	1.28	1.64	1.96	2.33	2.58

Why?

Binomial Probability Distribution

$$P(r) = \binom{N}{r} p^r (1-p)^{N-r} = \frac{N!}{r!(N-r)!} p^r (1-p)^{N-r}$$

Probability $P(r)$ of r heads in N coin flips, if $p = \Pr(\text{heads})$

- Expected, or mean value of X , $E[X]$ (= # heads on N flips = # mistakes on N test exs), is

$$E[X] \equiv \sum_{i=0}^N iP(i) = Np = N \cdot error_{\mathcal{D}}(h)$$

- Variance of X is

$$Var(X) \equiv E[(X - E[X])^2] = Np(1-p)$$

- Standard deviation of X , σ_X , is

$$\sigma_X \equiv \sqrt{E[(X - E[X])^2]} = \sqrt{Np(1-p)}$$

