

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction

Outline

Tree  
Representation

Learning  
Trees

Inductive Bias

Overfitting

Tree Pruning

# CSCE 478/878 Lecture 3: Learning Decision Trees

Stephen Scott

(Adapted from Ethem Alpaydin and Tom Mitchell)

[sscott@cse.unl.edu](mailto:sscott@cse.unl.edu)

# Introduction

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction  
Outline  
Tree Representation  
Learning Trees  
Inductive Bias  
Overfitting  
Tree Pruning

*Decision trees form a simple, easily-interpretable, hypothesis*

- Interpretability useful in independent validation and explanation

Quick to train

Quick to evaluate new instances

Effective “off-the-shelf” learning method

Can be combined with boosting, including using “stumps”

# Outline

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction

Outline

Tree  
Representation

Learning  
Trees

Inductive Bias

Overfitting

Tree Pruning

- Decision tree representation
- Learning trees (ID3/C4.5/CART)
  - Entropy as a splitting criterion
  - Example run of algorithm
  - Regression trees
  - Variations
- Inductive bias
- Overfitting and pruning
- Deriving rules from tree

Decision Tree for *PlayTennis* (Mitchell)CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction

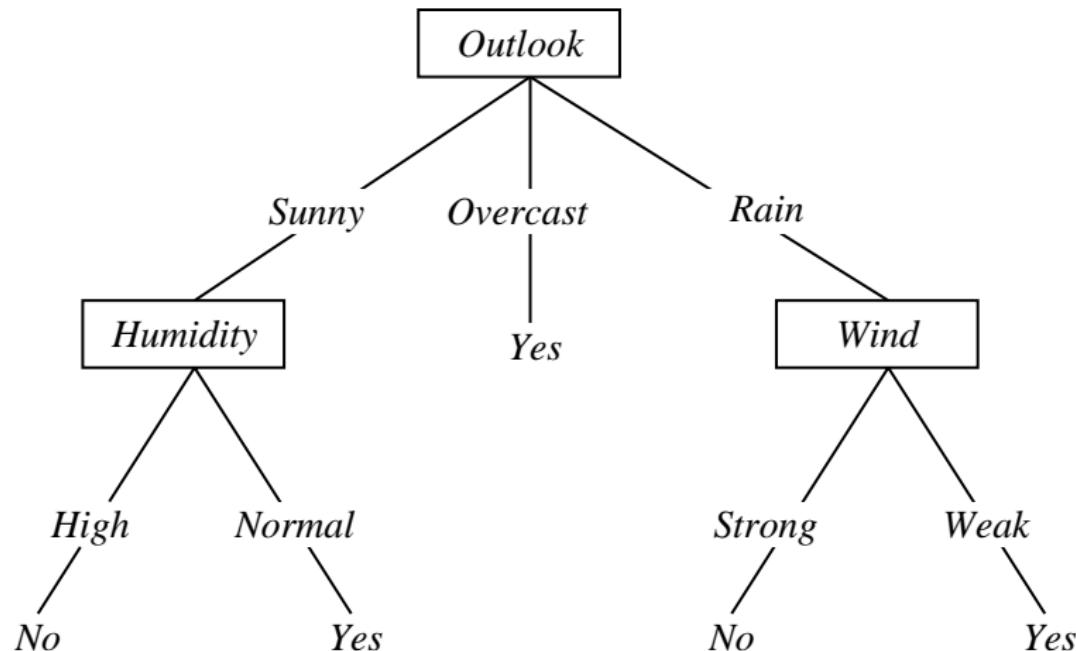
Outline

Tree  
RepresentationLearning  
Trees

Inductive Bias

Overfitting

Tree Pruning



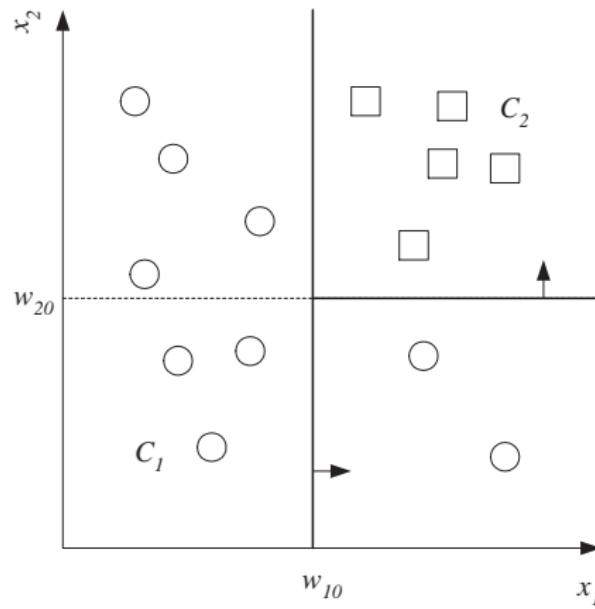
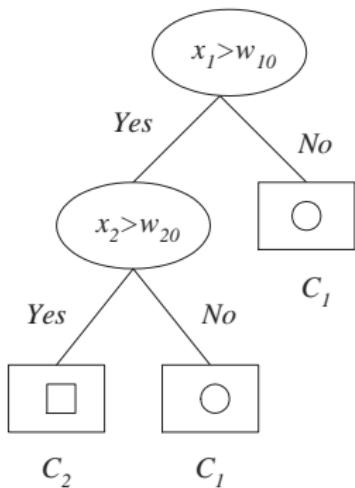
## With Numeric Attributes

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction  
OutlineTree  
RepresentationLearning  
TreesInductive Bias  
Overfitting

Tree Pruning



# Decision Tree Representation

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction  
Outline

Tree  
Representation

Learning  
Trees

Inductive Bias

Overfitting

Tree Pruning

- Each internal node tests an attribute
- Each branch corresponds to attribute value
- Each leaf node assigns a classification

How would we represent:

- $\wedge, \vee, \text{XOR}$
- $(A \wedge B) \vee (C \wedge \neg D \wedge E)$

# High-Level Learning Algorithm

(ID3, C4.5, CART)

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction

Outline

Tree  
Representation

Learning  
Trees

High-Level Algorithm

Entropy  
Learning Algorithm  
Example Run  
Regression Trees  
Variations

Inductive Bias

Overfitting

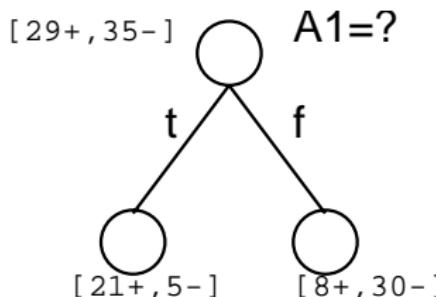
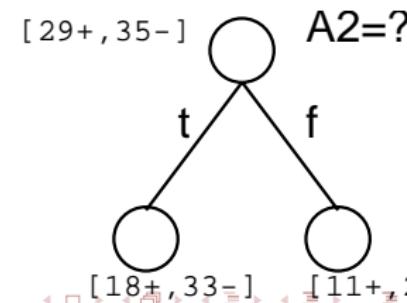
Tree Pruning

7/26

Main loop:

- 1  $A \leftarrow$  the “best” decision attribute for next node  $m$
- 2 Assign  $A$  as decision attribute for  $m$
- 3 For each value of  $A$ , create new descendant of  $m$
- 4 Sort (*partition*) training examples over children based on  $A$ ’s value
- 5 If training examples perfectly classified, Then STOP,  
Else recursively iterate over new child nodes

*Which attribute is best?*



# Entropy

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction

Outline

Tree  
Representation

Learning  
Trees

High-Level Algorithm

Entropy

Learning Algorithm

Example Run

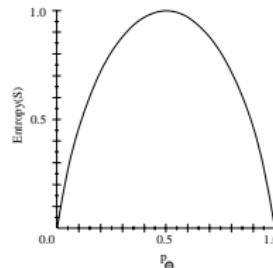
Regression Trees

Variations

Inductive Bias

Overfitting

Tree Pruning



- $\mathcal{X}_m$  is a sample of training examples reaching node  $m$
- $p_m^{\oplus}$  is the proportion of positive examples in  $\mathcal{X}_m$
- $p_m^{\ominus}$  is the proportion of negative examples in  $\mathcal{X}_m$
- *Entropy  $\mathcal{I}_m$  measures the impurity of  $\mathcal{X}_m$*

$$\mathcal{I}_m \equiv -p_m^{\oplus} \log_2 p_m^{\oplus} - p_m^{\ominus} \log_2 p_m^{\ominus}$$

or for  $K$  classes,

$$(9.3) \quad \mathcal{I}_m \equiv - \sum_{i=1}^K p_m^i \log_2 p_m^i$$

# Total Impurity

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction

Outline

Tree  
Representation

Learning  
Trees

High-Level Algorithm

Entropy

Learning Algorithm

Example Run

Regression Trees

Variations

Inductive Bias

Overfitting

Tree Pruning

- Now can look for an attribute  $A$ , when used to partition  $\mathcal{X}_m$  by value, produces the most pure (lowest-entropy) subsets
  - Weight each subset by relative size
  - E.g., size-3 subsets should carry less influence than size-300 ones
- Let  $N_m = |\mathcal{X}_m|$  = number of instances reaching node  $m$
- Let  $N_{mj}$  = number of these instances with value  $j \in \{1, \dots, n\}$  for attribute  $A$
- Let  $N_{mj}^i$  = number of these instances with label  $i \in \{1, \dots, K\}$
- Let  $p_{mj}^i = N_{mj}^i / N_{mj}$
- Then the *total impurity* is

$$(9.8) \quad \mathcal{I}'_m(A) \equiv - \sum_{j=1}^n \frac{N_{mj}}{N_m} \sum_{i=1}^K p_{mj}^i \log_2 p_{mj}^i$$

# Learning Algorithm

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction

Outline

Tree  
Representation

Learning  
Trees

High-Level Algorithm  
Entropy

Learning Algorithm

Example Run

Regression Trees

Variations

Inductive Bias

Overfitting

Tree Pruning

```
GenerateTree( $\mathcal{X}$ )
  If NodeEntropy( $\mathcal{X}$ )  $< \theta_I$  /* equation 9.3 */
    Create leaf labelled by majority class in  $\mathcal{X}$ 
    Return
   $i \leftarrow \text{SplitAttribute}(\mathcal{X})$ 
  For each branch of  $x_i$ 
    Find  $\mathcal{X}_i$  falling in branch
    GenerateTree( $\mathcal{X}_i$ )

SplitAttribute( $\mathcal{X}$ )
  MinEnt  $\leftarrow \text{MAX}$ 
  For all attributes  $i = 1, \dots, d$ 
    If  $x_i$  is discrete with  $n$  values
      Split  $\mathcal{X}$  into  $\mathcal{X}_1, \dots, \mathcal{X}_n$  by  $x_i$ 
       $e \leftarrow \text{SplitEntropy}(\mathcal{X}_1, \dots, \mathcal{X}_n)$  /* equation 9.8 */
      If  $e < \text{MinEnt}$   $\text{MinEnt} \leftarrow e$ ;  $\text{bestf} \leftarrow i$ 
    Else /*  $x_i$  is numeric */
      For all possible splits
        Split  $\mathcal{X}$  into  $\mathcal{X}_1, \mathcal{X}_2$  on  $x_i$ 
         $e \leftarrow \text{SplitEntropy}(\mathcal{X}_1, \mathcal{X}_2)$ 
        If  $e < \text{MinEnt}$   $\text{MinEnt} \leftarrow e$ ;  $\text{bestf} \leftarrow i$ 
  Return  $\text{bestf}$ 
```

# Example Run

## Training Examples

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction

Outline

Tree  
Representation

Learning  
Trees

High-Level Algorithm

Entropy

Learning Algorithm

Example Run

Regression Trees

Variations

Inductive Bias

Overfitting

Tree Pruning

| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
|-----|----------|-------------|----------|--------|------------|
| D1  | Sunny    | Hot         | High     | Weak   | No         |
| D2  | Sunny    | Hot         | High     | Strong | No         |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |
| D4  | Rain     | Mild        | High     | Weak   | Yes        |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool        | Normal   | Strong | No         |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild        | High     | Weak   | No         |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes        |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes        |
| D12 | Overcast | Mild        | High     | Strong | Yes        |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes        |
| D14 | Rain     | Mild        | High     | Strong | No         |

# Example Run

## Selecting the First Attribute

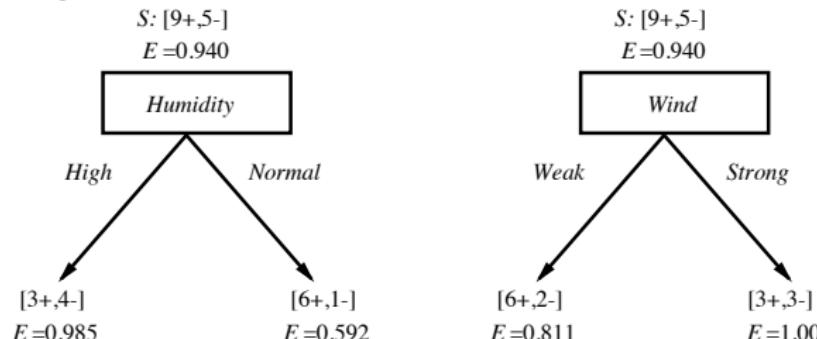
CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction  
Outline  
Tree  
RepresentationLearning  
Trees  
High-Level Algorithm  
Entropy  
Learning AlgorithmExample Run  
Regression Trees  
VariationsInductive Bias  
Overfitting

Tree Pruning

### Comparing *Humidity* to *Wind*:



$$\mathcal{I}'_m(\text{Humidity}) = (7/14)0.985 + (7/14)0.592 = 0.789$$

$$\mathcal{I}'_m(\text{Wind}) = (8/14)0.811 + (6/14)1.000 = 0.892$$

$$\mathcal{I}'_m(\text{Outlook}) = (5/14)0.971 + (4/14)0.0 + (5/14)0.971 = 0.694$$

$$\mathcal{I}'_m(\text{Temp}) = (4/14)1.000 + (6/14)0.918 + (4/14)0.811 = 0.911$$

# Example Run

## Selecting the Next Attribute

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

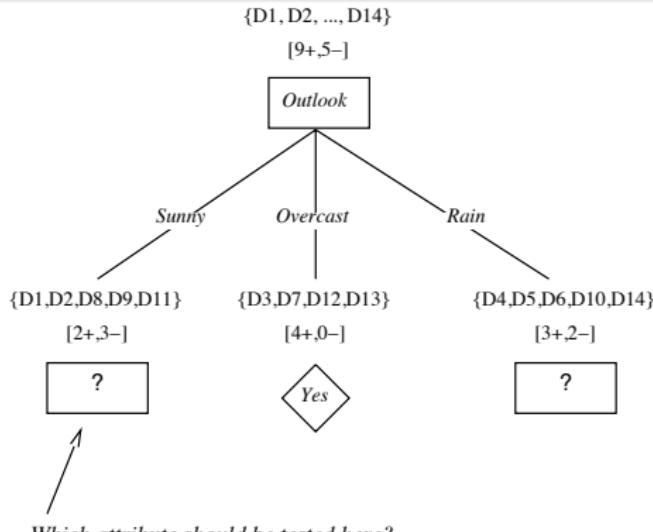
Stephen Scott

Introduction  
Outline  
Tree  
Representation

Learning  
Trees  
High-Level Algorithm  
Entropy  
Learning Algorithm

Example Run  
Regression Trees  
Variations

Inductive Bias  
Overfitting  
Tree Pruning



$$\mathcal{X}_m = \{D_1, D_2, D_8, D_9, D_{11}\}$$

$$\mathcal{I}'_m(\text{Humidity}) = (3/5)0.0 + (2/14)0.0 = 0.0$$

$$\mathcal{I}'_m(\text{Wind}) = (2/5)1.0 + (3/5)0.918 = 0.951$$

$$\mathcal{I}'_m(\text{Temp}) = (2/5)0.0 + (2/5)1.0 + (1/5)0.0 = 0.400$$

# Regression Trees

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction  
Outline  
Tree  
Representation

Learning  
Trees  
High-Level Algorithm  
Entropy  
Learning Algorithm  
Example Run  
Regression Trees  
Variations

Inductive Bias  
Overfitting  
Tree Pruning

- A *regression tree* is similar to a decision tree, but with real-valued labels at the leaves
- To measure impurity at a node  $m$ , replace entropy with variance of labels:

$$E_m \equiv \frac{1}{N_m} \sum_{(\mathbf{x}^t, r^t) \in \mathcal{X}_m} (r^t - g_m)^2 ,$$

where  $g_m$  is the mean (or median) label in  $\mathcal{X}_m$

# Regression Trees (cont'd)

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction  
Outline  
Tree  
Representation

Learning  
Trees  
High-Level Algorithm  
Entropy  
Learning Algorithm  
Example Run  
Regression Trees

Variations

Inductive Bias  
Overfitting  
Tree Pruning

- Now can adapt Eq. (9.8) from classification to regression:

$$E'_m(A) \equiv \sum_{j=1}^n \frac{N_{mj}}{N_m} \left( \frac{1}{N_{mj}} \sum_{(\mathbf{x}^t, r^t) \in \mathcal{X}_{mj}} (r^t - g_{mj})^2 \right)$$

$$(9.14) \quad = \frac{1}{N_m} \sum_{j=1}^n \sum_{(\mathbf{x}^t, r^t) \in \mathcal{X}_{mj}} (r^t - g_{mj})^2 ,$$

where  $j$  iterates over the values of attribute  $A$

- When variance of a subset is sufficiently low, insert leaf with mean or median label as constant value

# Continuous-Valued Attributes

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction

Outline

Tree  
Representation

Learning  
Trees

High-Level Algorithm

Entropy

Learning Algorithm

Example Run

Regression Trees

Variations

Inductive Bias

Overfitting

Tree Pruning

Use threshold to map continuous to boolean, e.g.

$(Temperature > 72.3) \in \{t, f\}$

|                     |    |    |     |     |     |    |
|---------------------|----|----|-----|-----|-----|----|
| <i>Temperature:</i> | 40 | 48 | 60  | 72  | 80  | 90 |
| <i>PlayTennis:</i>  | No | No | Yes | Yes | Yes | No |

- Can show that threshold minimizing impurity must lie between two adjacent attribute values in  $\mathcal{X}$  such that label changed, so try all such values, e.g.,  $(48 + 60)/2 = 54$  and  $(80 + 90)/2 = 85$
- Now (dynamically) replace continuous attribute with boolean attributes  $Temperature_{>54}$  and  $Temperature_{>85}$  and run algorithm normally
- Other options: Split into multiple intervals rather than two; use thresholded linear combinations of continuous attributes (Sec 9.6)

# Attributes with Many Values

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction  
Outline  
Tree  
Representation

Learning  
Trees  
High-Level Algorithm  
Entropy  
Learning Algorithm  
Example Run

Regression Trees  
Variations

Inductive Bias

Overfitting

Tree Pruning

## Problem:

- If attribute  $A$  has many values, it might artificially minimize  $\mathcal{I}'_m(A)$
- E.g., if  $Date$  is attribute,  $\mathcal{I}'_m(A)$  will be low because several very small subsets will be created

One approach: penalize  $A$  with a measure of *split information*, which measures how broadly and uniformly attribute  $A$  splits data:

$$\mathcal{S}(A) \equiv - \sum_{j=1}^n \frac{N_{mj}}{N_m} \log_2 \frac{N_{mj}}{N_m} \in [0, \log_2 n]$$

# Unknown Attribute Values

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction  
Outline  
Tree  
Representation

Learning  
Trees  
High-Level Algorithm  
Entropy  
Learning Algorithm  
Example Run  
Regression Trees  
Variations

Inductive Bias  
Overfitting  
Tree Pruning

What if a training example is missing a value of  $A$ ?

Use it anyway (sift it through tree)

- If node  $m$  tests  $A$ , assign most common value of  $A$  among other training examples sifted to  $m$
- Assign most common value of  $A$  among other examples with same target value (either overall or at  $m$ )
- Assign probability  $p_j$  to each possible value  $v_j$  of  $A$ 
  - Assign fraction  $p_j$  of example to each descendant in tree

Classify new examples in same fashion

# Inductive Bias of Learning Algorithm

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction  
Outline  
Tree  
Representation

Learning  
Trees

Inductive Bias

Overfitting

Tree Pruning

- Hypothesis space  $\mathcal{H}$  is complete, in that *any* function can be represented
- Thus inductive bias does not come from restricting  $\mathcal{H}$ , but from *preferring* some trees over others
  - Tends to prefer shorter trees
  - Computationally intractable to find a guaranteed shortest tree, so heuristically apply greedy approach to locally minimize impurity

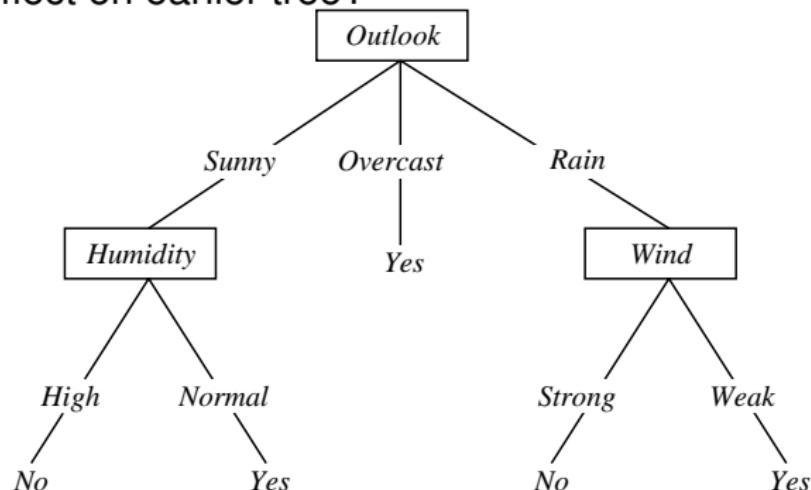
# Overfitting

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction  
Outline  
Tree  
Representation  
Learning  
Trees  
Inductive Bias  
Overfitting  
Tree Pruning

- Consider adding noisy training example #15:  
*Sunny, Hot, Normal, Strong, PlayTennis = No*
- What effect on earlier tree?



- Expect old tree to generalize better since new one fits noisy example

# Overfitting (cont'd)

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction  
Outline  
Tree  
Representation

Learning  
Trees

Inductive Bias

Overfitting

Tree Pruning

- Consider error of hypothesis  $h$  over
  - training data (empirical error):  $error_{train}(h)$
  - entire distribution  $\mathcal{D}$  of data (generalization error):  $error_{\mathcal{D}}(h)$
- Hypothesis  $h \in \mathcal{H}$  *overfits* training data if there is an alternative hypothesis  $h' \in \mathcal{H}$  such that

$$error_{train}(h) < error_{train}(h')$$

and

$$error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h')$$

# Overfitting (cont'd)

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

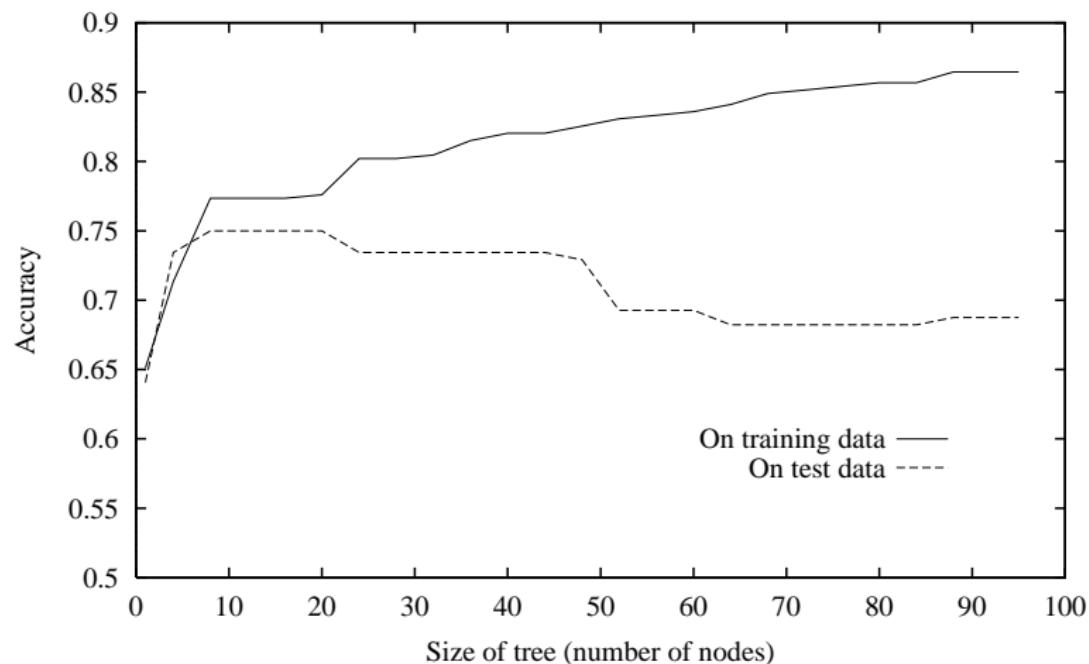
Introduction  
Outline  
Tree  
Representation

Learning  
Trees

Inductive Bias

Overfitting

Tree Pruning



# Pruning to Avoid Overfitting

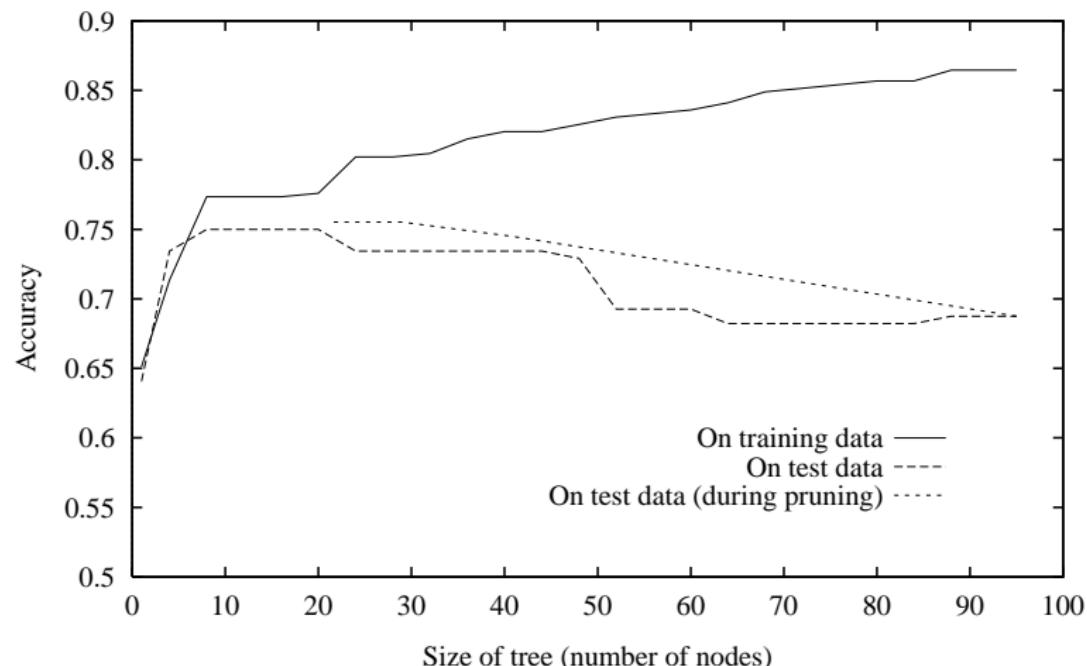
- To prevent trees from growing too much and overfitting the data, we can *prune* them
  - In spirit of Occam's Razor, minimum description length
- In *prepruning*, we allow skipping a recursive call on set  $\mathcal{X}_m$  and instead insert a leaf, even if  $\mathcal{X}_m$  is not pure
  - Can do this when entropy (or variance) is below a threshold ( $\theta_I$  in pseudocode)
  - Can do this when  $|\mathcal{X}_m|$  is below a threshold, e.g., 5
- In *postpruning*, we grow the tree until it has zero error on training set and then prune it back afterwards
  - First, set aside a *pruning set* not used in initial training
  - Then repeat until pruning is harmful:
    - 1 Evaluate impact on validation set of pruning each possible node (plus those below it)
    - 2 Greedily remove the one that most improves validation set accuracy

# Pruning Example

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction  
Outline  
Tree Representation  
Learning Trees  
Inductive Bias  
Overfitting  
Tree Pruning  
Rule Postpruning



# Rule Postpruning

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

Introduction  
Outline  
Tree  
Representation

Learning  
Trees

Inductive Bias  
Overfitting

Tree Pruning  
Rule Postpruning

- Convert tree to equivalent set of rules
- Prune each rule independently of others by removing selected preconditions (the ones that improve accuracy the most)
- Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g. C4.5)

# Converting A Tree to Rules

CSCE  
478/878  
Lecture 3:  
Learning  
Decision  
Trees

Stephen Scott

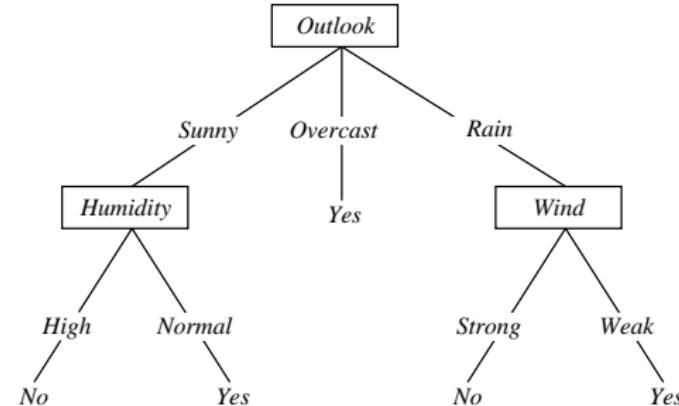
Introduction  
Outline  
Tree  
Representation

Learning  
Trees

Inductive Bias  
Overfitting

Tree Pruning

Rule Postpruning



**IF**  $(Outlook = \text{Sunny}) \wedge (Humidity = \text{High})$   
**THEN**  $\text{PlayTennis} = \text{No}$

**IF**  $(Outlook = \text{Sunny}) \wedge (Humidity = \text{Normal})$   
**THEN**  $\text{PlayTennis} = \text{Yes}$

...