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Introduction

unsupervised learning

@ If no label information is available, can still perform

@ Looking for structural information about instance space
instead of label prediction function

@ Approaches: density estimation, clustering,

dimensionality reduction

@ Clustering algorithms group similar instances together
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based on a similarity measure
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Introduction
@ Clustering background
Clustering o Similarity/dissimilarity measures

k-Means

Clustering @ k-means clustering

Outline

Hierarchical @ Hierarchical clustering

Clustering



Wevetel Clustering Background

Pt @ Goal: Place patterns into “sensible” clusters that reveal

Lecture 8:

Clustering similarities and differences
Stephen Scott @ Definition of “sensible” depends on application

Introduction sheep

dog

cat red-mullet

blue shark

Outline

Clustering

Measures:
Point-Point

Measures: Point-Set (a) (b)
Measures: Set-Set

k-Means
Clustering

gold fish
red-mullet
blue shark

Hierarchical
Clustering

lizard

(© (d)

(a) How they bear young (b) Existence of lungs
(c) Environment (d) Both (a) & (b)
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Lincoln (CO nt’d)

CSCE
478/878
Lecture 8:
Clustering

Stephen Scot Types of clustering problems:

Introduction @ Hard (crisp): partition data into non-overlapping

Outline clusters; each instance belongs in exactly one cluster
= L @ Fuzzy: Each instance could be a member of multiple
clusters, with a real-valued function indicating the
AMean:S degree of membership

Clustering @ Hierarchical: partition instances into numerous small
Hierarchical clusters, then group the clusters into larger ones, and

Clustering

so on (applicable to phylogeny)
e End up with a tree with instances at leaves



ey Clustering Background

Bl  (Dis-)similarity Measures: Between Instances

CSCE issimilari - i -
oS Dissimilarity measure: Weighted L, norm:

Lecture 8:
Clustering l/p

n
Stephen Scott Lp(x, y) = Z wi |xi — yil”
i=1

Introduction

Outlne Special cases include weighted Euclidian distance (p = 2),
Pl weighted Manhattan distance

Measures:
Point-Point

Measures: Point-Set
Measures: Set-Set

n
k-Means L, (X7 Y) = Zwi ’xi - yl’ )
i=1

Clustering

Hierarchical

Clustering and weighted L., norm

Loo(x,y) = max {wi|xi — yil}

Similarity measure: Dot product between two vectors
(kernel)
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Bl (Dis-)similarity Measures: Between Instances (cont'd)
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Swmepsees  |f attributes come from {0, ...,k — 1}, can use measures for
real-valued attributes, plus:

Introduction

outine @ Hamming distance: DM measuring number of places
e where x and y differ

@ Tanimoto measure: SM measuring number of places

Measures: Set-Set

Moane where x and y are same, divided by total number of
Clustering p|aceS

Hierarchical @ Ignore places i where x; =y; =0

clustering @ Useful for ordinal features where x; is degree to which x
possesses ith feature
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Introduction
Outline

Clustering

Measures:
Point-Point

Measures: Point-Set
Measures: Set-Set

k-Means

Clustering

Hierarchical
Clustering

@ Might want to measure proximity of point x to existing

Clustering Background

(Dis-)similarity Measures: Between Instance and Set

@ Can measure proximity « by using all points of C or by
using a representative of C

@ If all points of C used, common choices:

aby (x,C) = max {a(x,y)}

yeC
oy (%, C) = ryrgn{a(x,y)}
afing (X, Z a(x,y)

yEC

where a(x,y) is any measure between x and y



ey Clustering Background

Bl  (Dis-)similarity Measures: Between Instance and Set (cont'd)

Sk Alternative: Measure distance between point x and a

Leoture &: representative of the cluster C
Clustering
Stephen Scott 1
® Mean vectorm, = — Yy
Introduction |C| yeC
Outiine @ Mean centerm, c C:
Clustering
= > dlme,y) <} d(zy) vzeC,
easures: oe( yeC yeC
k-Means where d(-,-) is DM (if SM used, reverse ineq.)
Clusteri . . . .
H.“S er:g | @ Median center: For each pointy € C, find median
lerarcnical . . . . H
Clustering dissimilarity from y to all other points of C, then take

min; SO m,,.; € C is defined as
medyeC {d(mmed7y)} < medYEC {d(za Y)} vzeC

Now can measure proximity between C’s representative and
x with standard measures
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Introduction
Outline

Clustering

Measures:
Point-Point

Measures: Point-Set
Measures: Set-Set

k-Means
Clustering

Hierarchical

Clustering

Given sets of instances C; and C; and proximity measure

a(.,.)

Clustering Background

(Dis-)similarity Measures: Between Sets

@ Max: a;,,,(Ci,Gj) = max {a(x,y)}

XECHYGC
e Min: o, (Ci, Cj) = xeg},lynecj {a(x,y)}
@ Average: a;,,(Ci, C;) = ICI1Ci| || | Z Z o(x,y)
I xeCiyeq

@ Representative (mean): aj,,,,(Ci, C;) = a(mc,, mc;),

mean



Ne‘BWERS\YV]or

Lincoln

k-Means Clustering

CSCE
478/878

Lecture 8: @ Very popular clustering algorithm

Clustering

Stephen Scott @ Represents cluster i (out of & total) by specifying its
representative m; (not necessarily part of the original
outine set of instances X))

Clustering @ Each instance x € X is assigned to the cluster with

Introduction

ieans nearest representative

ustering . . .

@ Goal is to find a set of k representatives such that sum
e of distances between instances and their

Hierarchical . . . .

Clustering representatives is minimized

e NP-hard in general
@ Will use an algorithm that alternates between

determining representatives and assigning clusters
until convergence (in the style of the EM algorithm)
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Bl Algorithm
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@ Choose value for parameter &
@ Initialize k arbitrary representatives my, ..., my
Introduction e E.g., k randomly selected instances from X

Stephen Scott

outine @ Repeat until representatives my, ..., m; don’t change
Clustering
eans @ Forall x'e X
Clustering @ Assign x to cluster C; such that ||x — mj|| (or other
measure) is minimized
i . @ |.e., nearest representative
|erarc_h|ca|
Clustering @ Foreachje {1,...,k}

Zy

YEG;
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Outline

Clustering

k-Means

Clustering
Algorithm
Example

Hierarchical
Clustering

k-Means Clustering

Example with k = 2

k-means: Initial

-20 0 20
1

After 2 iterations

After 1 iteration

-20 0 20
1

Atfter 3 iterations

@)
o [¢]
O (6]
s 3
[¢]
x
-20 0 20
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Iriess @ Useful in capturing hierarchical relationships, e.g.,
Outline evolutionary tree of biological sequences

Clustering

CMoans @ End result is a sequence (hierarchy) of clusterings
Clustering @ Two types of algorithms:

Hierarchical

Clustering e Agglomerative: Repeatedly merge two clusters into one
Defnitons e Divisive: Repeatedly divide one cluster into two

Pseudocode
Example
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Stephen Seol e LetC, ={C,...,C,} be a levelt clustering of

Introduction X ={xyq,...,xy}, where C; meets definition of hard

Outiine clustering

Gl @ C, is nestedin Cy (written C, C Cy) if each cluster in C, is
k-Means . .
Clustering a subset of a cluster in C» and at least one cluster in C;
Hierarchical is a proper subset of some cluster in C,

Clustering
Definitions

i Ci = {{x1,x3}, {x4}, {x0,x5}} C {{x1,x3,%4}, {x2,X5}}
G {{x1,xa}, {x3}, {x2,xs}}
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CSCE
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Clustering @ Agglomerative algorithms start with
Stephen Scott Co={{x1},...,{xn}} and at each step r merge two

rodustion clusters into one, yielding |C.+1| = |C:| — 1 and C, C Cyyy

Outline @ Atfinal step (step N — 1) have hierarchy:

Clustering

I\CflMean.s CO = {{Xl} [ {XN}} C Cl C---C CN—I = {{X17 ce 7XN}}
ustering

T @ Divisive algorithms start with Cp = {{xi,...,xy}} and at
each step ¢ split one cluster into two, yielding

EEb |Ct+]| — |C[| + 1 and C;+1 [: Ct

@ At step N — 1 have hierarchy:

Cvor={{x1},....{xn}} - CCo={{x1,....xn}}
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Rl Q Initialize Co = {{x;},...,{xy}},1=0

Introduction e Forr=1toN -1

Outline e Find closest pair of clusters:

Clustering (Ci’ C]) = argmin {d (CS, Cr)}

k-Means Cs,Cr€C—1,r#s

Clustering o C,=(C—y —{Ci,C;}) U {{C:UC;}} and update
Hierarchical representatives if necessary

Clustering
Definitions

Pseudocode

Exampe If SM used, replace argmin with argmax

Number of calls to d (Cy, C,) is © (N?)
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Lecture 8: X| = [17 I]Ty Xy = [27 I]Ts X3 = [574]Ta X4 = [67 S]T’
Clustering XS — [6‘5’6]T, DM = EUCIidian/OLSs

min
Stephen Scott

An (N — 1) x (N —t) proximity matrix P, gives the proximity
between all pairs of clusters at level (iteration) ¢

Introduction
Outline

Clustering

Moane 0 1 5 64 74
Clustering 1 0 42 57 6.7
Hierarchical PO = 5 42 0 1 4 25

Clustering

Detniions 64 57 14 0 1.1

Pseudocode

Example 74 6.7 25 1.1 0

Each iteration, find minimum off-diagonal element (i, ) in
P;_1, merge clusters i and j, remove rows/columns i and j
from P,_;, and add new row/column for new cluster to get P;
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BN Pseudocode (cont'd)

Pt A proximity dendogram is a tree that indicates hierarchy of

S clusterings, including the proximity between two clusters
ssyss  when they are merged

L4 Ly L3 Ly Ly
Introduction
0 1 LJ
Outline
1 )
Clusterin
9 e
k-Means o
Clustering = 37T
2
Hierarchical o 4
Clustering =
= 5 —+
Definitions E
Pseudocode = L
Example g 6
2 .1
A
8 )
9 )
10 —

Cutting the dendogram at any level yields a single clustering
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