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Outline @ Clustering background
o Similarity/dissimilarity measures

@ k-means clustering
@ Hierarchical clustering

Clustering

k-Means
Clustering

Hierarchical
Clustering

ey Clustering Background

Lincoln (CO nt'd)

CSCE
478/878
Lecture 8:
Clustering

Types of clustering problems:

Stephen Scott

Introduction @ Hard (crisp): partition data into non-overlapping
Outiine clusters; each instance belongs in exactly one cluster
@ Fuzzy: Each instance could be a member of multiple
clusters, with a real-valued function indicating the

degree of membership
@ Hierarchical: partition instances into numerous small
clusters, then group the clusters into larger ones, and
so on (applicable to phylogeny)
o End up with a tree with instances at leaves
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Introduction

CSCE
478/878 @ If no label information is available, can still perform

Lecture 8: 3 i
Clustering unsupervised learning
@ Looking for structural information about instance space
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Introduction instead of label prediction function
0““‘"9_ @ Approaches: density estimation, clustering,
C‘h‘f‘e””g dimensionality reduction
k-Means
Clustering @ Clustering algorithms group similar instances together
AT based on a similarity measure
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@ Goal: Place patterns into “sensible” clusters that reveal
similarities and differences
@ Definition of “sensible” depends on application
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Measures

Point-Set

(b)

‘gold fish
@ red-mullet

(© (d)

-Set
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(a) How they bear young
(c) Environment

(b) Existence of lungs
(d) Both (a) &(b)
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gz Dissimilarity measure: Weighted L, norm:
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Stephen Scott Lp(X, y) = <Z wi |xi - yiP)
Introduction i=1
Outline Special cases include weighted Euclidian distance (p = 2),

Clustering

weighted Manhattan distance

Measures:
Point-Point

Point-Set

W -Set

k-Means
Clustering

n
Li(x,y) = Y wil =i,
i=1

Hierarchical
Clustering

and weighted L., norm
Loo(x,y) = max {wi|x; —yil}

Similarity measure: Dot product between two vectors
(kernel)
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(Dis-)similarity Measures: Between Instances (cont'd)
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If attributes come from {0, .. .,
real-valued attributes, plus:

k — 1}, can use measures for

Stephen Scott

Introduction
Outline @ Hamming distance: DM measuring number of places
G where x and y differ
Point-Point . .

@ Tanimoto measure: SM measuring number of places
" where x and y are same, divided by total number of
k-Means
Clustering places

o Ignore places i where x; = y; =0
@ Useful for ordinal features where x; is degree to which x
possesses ith feature
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(Dis-)similarity Measures: Between Instance and Set (cont'd)
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@ Mean vectorm, =

Introduction yeC
Outiine @ Mean centerm, € C:
Clustering
e Zd(mmy)gzd(zvy) vzecv
essuro: P St yec yecC

where d(-,-) is DM (if SM used, reverse ineq.)

@ Median center: For each pointy € C, find median
dissimilarity from y to all other points of C, then take
min; so m,,,; € C is defined as

y)} < medyec {d(z,y)} VzeC

Now can measure proximity between C’s representative and
x with standard measures
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s Very popular clustering algorithm

Stephen Scott @ Represents cluster i (out of & total) by specifying its
representative m; (not necessarily part of the original
outine set of instances X))

Clustering @ Each instance x € X is assigned to the cluster with

Introduction

itreans nearest representative
ustering . . H
@ Goal is to find a set of k representatives such that sum

Example

of distances between instances and their
representatives is minimized
o NP-hard in general
@ Will use an algorithm that alternates between
determining representatives and assigning clusters
until convergence (in the style of the EM algorithm)
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@ Might want to measure proximity of point x to existing
cluster C

@ Can measure proximity « by using all points of C or by
using a representative of C

@ If all points of C used, common choices:
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Measures:
Point-Point

= (%, C) = max {a(x,y)}
e-M
Chstoring Din (%, €) = min {a(x, y)}
Hierarchical y
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Wag (X, € I Z

yeC

where «a(x,y) is any measure between x and y
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Given sets of instances C; and C; and proximity measure
a(" )
@ Max: a,,,.(Ci, Cj) =

Introduction
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max {a(x,y)}

pax .

@ Min: a;y;,(Ci, Cj) = _min {(’(X v)}
BAS

Measures: Set-Set xeC;
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Measures

Point-Set
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Clustering

@ Average: o, ,(Ci, Cj)

av, (
8
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@ Representative (mean): cyy,,,(Ci, C;) = a(mc;, mg;),

[Beay k-Means Clustering
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@ Choose value for parameter k
@ Initialize k arbitrary representatives my, ..., m;
e E.g., k randomly selected instances from X
@ Repeat until representatives my, ..., m; don’t change
@ Forallxex
@ Assign x to cluster C; such that ||x — my|| (or other

measure) is minimized
@ l.e., nearest representative

@ Foreachjc {1,...,k}
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[Beaey k-Means Clustering

Bl Example with k = 2

k-means: Initial

After 1 iteration
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@ LetC, ={C,...,Cy} be a level+ clustering of
X = {xq,...,xn}, Where C; meets definition of hard

Outline clustering

e @ C, is nestedin C, (written C, C Cy) if each cluster in C; is

a subset of a cluster in C, and at least one cluster in C;

is a proper subset of some cluster in Cy

C = {{X],X3} 5 {X4} 5 {X27X5}} C {{X17X37X4} 5 {X27X5}}
Cr ¢ {{x1, x4}, {x3}, {x2,xs}}
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@ Initialize Co = {{x1},..., {xn}}, =0

Introduction Q@ Forr=1toN—-1

Cuiiiie o Find closest pair of clusters:

Clustering (Ch C]) — argmin {d (C“ Cr)}

k-Means Cy,CrEC— 1 s

CLecrny e C = (C—1 — {Ci, G;}) U{{C; U C;}} and update

Hierarchical

oo representatives if necessary

If SM used, replace argmin with argmax
Number of calls to d (Cy, C;) is © (N?)
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@ Useful in capturing hierarchical relationships, e.g.,
evolutionary tree of biological sequences

@ End result is a sequence (hierarchy) of clusterings

@ Two types of algorithms:

o Agglomerative: Repeatedly merge two clusters into one
o Divisive: Repeatedly divide one cluster into two

Outline

Clustering

k-Means
Clustering

Hierarchical
Clustering

j\Aeaey Hierarchical Clustering

BRIl Definitions (cont'd)

CSCE
478/878
Lecture 8:
Clustering

@ Agglomerative algorithms start with
Co={{x1},...,{xn}} and at each step r merge two
nroducton clusters into one, yielding |C;+1| = |G| — 1 and C, T Ci4y

Outline @ At final step (step N — 1) have hierarchy:

Clustering

Stephen Scott

Co={{xi},....{xn}}cCCCCyor = {{x1,....xn}}

k-Means
Clustering

Hierarchical

Clustodng @ Divisive algorithms start with Co = {{x;,...,xy}} and at
each step 7 split one cluster into two, yielding

|Crr1| = |C| + 1 and Cpy1 C Cy
@ Atstep N — 1 have hierarchy:

CN,1 I{{Xl},...,{XN}}I:-"EC():{{XI,...7XN}}
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xi = [1L,1]7, % = 2,17, x3 = [5,4]", x4 = [6,5]",
xs = [6.5,6]7, DM = Euclidian/a%,,
Stephen Scott

An (N — 1) x (N — 1) proximity matrix P, gives the proximity

Introduction . . .
outine between all pairs of clusters at level (iteration) ¢
f‘M“’ 0 1 5 64 74
Clustering 1 0 42 57 67
Hierarchical PO = 5 4.2 0 14 25
Clustering

64 57 14 0 1.1

74 67 25 1.1 0

Each iteration, find minimum off-diagonal element (i,;) in
P;_1, merge clusters i and j, remove rows/columns i and j
from P,_;, and add new row/column for new cluster to get P,
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Hierarchical Clustering

Pseudocode (cont'd)

A proximity dendogram is a tree that indicates hierarchy of
clusterings, including the proximity between two clusters
when they are merged

X X, Xy x, X

o S R

Dissimilarity scale
W
|
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Cutting the dendogram at any level yields a single clustering




