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Introduction

Start with a set of sequences
In each column, residues are homolgous

Residues occupy similar positions in 3D structure
Residues diverge from a common ancestral residue
Figure 6.1

Can be done manually, but requires expertise and is
very tedious
Often there is no single, unequivocally “correct”
alignment

Problems from low sequence identity & structural
evolution
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Outline

Scoring a multiple alignment
Minimum entropy scoring
Sum of pairs (SP) scoring

Multidimenisonal dynamic programming
Standard MDP algorithm
MSA

Progressive alignment methods
Feng-Doolittle
Profile alignment
CLUSTALW
Iterative refinement

Multiple alignment via profile HMMs
Multiple alignment with known profile HMM
Profile HMM training from unaligned sequences

Initial model
Baum-Welch
Avoiding local maxima
Model surgery
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Scoring a Multiple Alignment

Ideally, is based in evolution, as in e.g., PAM and
BLOSUM matrices
Contrasts with pairwise alignments:

1 Position-specific scoring (some positions more
conserved than others)

2 Ideally, need to consider entire phylogenetic tree to
explain evolution of entire family

I.e., build complete probabilistic model of evolution
Not enough data to parameterize such a model
) use approximations

Assume columns statistically independent:

S(m) = G +
X

i

S(m
i

)

m

i

is column i of MA m, G is (affine) score of gaps in m
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Scoring a Multiple Alignment
Minimum Entropy Scoring

m

j

i

= symbol in column i in sequence j, c

ia

= observed
count of residue a in column i

Assume sequences are statistically independent, i.e.,
residues independent within columns
Then probability of column m

i

is P(m
i

) =
Q

a

p

c

ia

ia

, where
p

ia

= probability of a in column i
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Scoring a Multiple Alignment
Minimum Entropy Scoring (2)

Set score to be S(m
i

) = � log P(m
i

) = �
P

a

c

ia

log p

ia

Propotional to Shannon entropy
Define optimal alignment as

m

⇤ = argmin

m

(
X

m

i

2m

S(m
i

)

)

Independence assumption valid only if all evolutionary
subfamilies are represented equally; otherwise bias
skews results
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Scoring a Multiple Alignment
Sum of Pairs (SP) Scores

Treat multiple alignment as
�

N

2

�
pairwise alignments

If s(a, b) = substitution score from e.g., PAM or
BLOSUM:

S(m
i

) =
X

k<`

s(mk

i

,m

`
i

)

Caveat: s(a, b) was derived for pairwise comparisons,
not N-way comparisons

correctz }| {
log

p

abc

q

a

q

b

q

c

vs.

SPz }| {
log

p

ab

q

a

q

b

+ log

p

bc

q

b

q

c

+ log

p

ac

q

a

q

c

= log

p

ab

p

bc

p

ac

q

2

a

q

2

b

q

2

c
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Scoring a Multiple Alignment
SP Problem

Given an alignment with only “L” in column i, using
BLOSUM50 yields an SP score of
S

1

= 5

�
N

2

�
= 5N(N � 1)/2

If one “L” is replaced with “G”, then SP score is
S

2

= S

1

� 9(N � 1)

Problem:

S

2

S

1

= 1 � 9(N � 1)

5N(N � 1)/2

= 1 � 18

5N

,

i.e., as N increases, S

2

/S

1

! 1

But large N should give more support for “L” in m

i

relative to S

2

, not less (i.e., should have S

2

/S

1

decreasing)
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Multidimensional Dynamic Programming

Generalization of DP for pairwise alignments
Assume statistical independence of columns and linear
gap penalty (can also handle affine gap penalties)
S(m) =

P
i

S(m
i

), and ↵
i

1

,i
2

,...,i
N

= max score of
alignment of subsequences x

1

1...i
1

, x

2

1...i
2

, . . ., x

N

1...i
N

↵
i

1

,i
2

,...,i
N

= max

8
>>>>>>>>>><

>>>>>>>>>>:

↵
i

1

�1,i
2

�1,i
3

�1,...,i
N

�1

+ S

�
x

1

i

1

, x

2

i

2

, x

3

i

3

, . . . , x

N

i

N

�
,

↵
i

1

,i
2

�1,i
3

�1,...,i
N

�1

+ S

�
�, x

2

i

2

, x

3

i

3

, . . . , x

N

i

N

�
,

↵
i

1
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,i
3
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...

In each column, take all gap-residue combinations except
100% gaps
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Multidimensional Dynamic Programming (2)

Assume all N sequences are of length L

Space complexity = ⇥( )

Time complexity = ⇥( )

Is it practical?
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MSA [Carrillo & Lipman 88; Lipman et al. 89]

Uses MDP, but eliminates many entries from
consideration to save time
Can optimally solve problems with L = 300 and N = 7

(old numbers), L = 150 and N = 50, L = 500 and
N = 25, and L = 1000 and N = 10 (newer numbers)
Uses SP scoring: S(a) =

P
k<` S(ak`), where a is any

MA and a

k` is PA between x

k and x

` induced by a

If â

k` is optimal PA between x

k and x

` (easily computed),
then S(ak`)  S(âk`) for all k and `
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MSA (2)

Assume we have lower bound �(a⇤) on score of optimal
alignment a

⇤:

�(a⇤)  S(a⇤) =
X

k<`

S(a⇤ k`)

= S(a⇤ k`) +
X

k

0 < `0
(k

0,`0) 6=(k,`)

S(a⇤ k

0`0)  S(a⇤ k`) +
X

k

0 < `0
(k

0,`0) 6=(k,`)

S(âk

0`0)

Thus S(a⇤ k`) � �k` = �(a⇤)�
P

k

0<`0
(k0,`0) 6=(k,`)

S(âk

0`0)

When filling in matrix, only need to consider PAs that
score at least �k` (Figure 6.3)
Can get �(a⇤) from other (heuristic) alignment methods
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Progressive Alignment Methods

Repeatedly perform pairwise alignments until all
sequences are aligned
Start by aligning the most similar pairs of sequences
(most reliable)

Often start with a “guide tree”

Heuristic method (suboptimal), though generally pretty
good
Differences in the methods:

1 Choosing the order to do the alignments
2 Are sequences aligned to alignments or are sequences

aligned to sequences and then alignments aligned to
alignments?

3 Methods used to score and build alignments
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Progressive Alignment Methods
Feng-Doolittle

1 Compute a distance matrix by aligning all pairs of
sequences

Convert each pairwise alignment score to distance:

D = � log

S

obs

� S

rand

S

max

� S

rand

S

obs

= observed alignment score between the two
sequences, S

max

= average score of aligning each of the
two sequences to itself, S

rand

= expected score of
aligning two random sequences of same composition
and length

2 Use a hierarchical clustering algorithm [Fitch &
Margoliash 67] to build guide tree based on distance
matrix
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Progressive Alignment Methods
Feng-Doolittle (2)

3 Build multiple alignment in the order that nodes were
added to the guide tree in Step 2

Goes from most similar to least similar pairs
Aligning two sequences is done with DP
Aligning sequence x with existing alignment a done by
pairwise aligning x to each sequence in a

Highest-scoring PA determines how to align x with a

Aligning existing alignment a with existing alignment a

0

is done by pairwise aligning each sequence in a to each
sequence in a

0

Highest-scoring PA determines how to align a with a

0

After each alignment formed, replace gaps with “X”
character that scores 0 with other symbols and gaps

“Once a gap, always a gap”
Ensures consistency between PAs and corresponding
MAs
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Progressive Alignment Methods
Profile Alignment

Allows for position-specific scoring, e.g.:
Penalize gaps more in a non-gap column than in a
gap-heavy column
Penalize mismatches more in a highly-conserved
column than a heterogeneous column

If gap penalty is linear, can use SP score with
s(�, a) = s(a,�) = �g and s(�,�) = 0

Given two MAs (profiles) a

1

(over x

1, . . . , x

n) and a

2

(over x

n+1, . . . , x

N), align a

1

with a

2

by not altering the
fundamental structure of either

Insert gaps into entire columns of a

1

and a

2

s(�,�) = 0 implies that this doesn’t affect score of a

1

or
a

2
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Progressive Alignment Methods
Profile Alignment (2)

Score:
X

i

S(m
i

) =
X

i

X

k,`:1k<`N

s(mk

i

,m

`
i

)

=
X

i

X

k

1

,`
1

2a

1

s(mk

1

i

,m

`
1

i

)+
X

i

X

k

2

,`
2

2a

2

s(mk

2

i

,m

`
2

i

)+

z }| {X

i

X

k2a

1

,`2a

2

s(mk

i

,m

`
i

)

Only the last term is affected by the alignment
procedure, so it’s the only one that needs to be
optimized
Thus alignment of profiles is similar to pairwise
alignment, solved optimally via DP
One profile can be single sequence
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Progressive Alignment Methods
CLUSTALW

Similar to Feng-Doolittle, but tuned to use profile alignment
methods

1 Compute distance matrix via pairwise DP and convert
to distances via Kimura [83]

Score with substitution matrix based on expected
similarity of final alignment

2 Use hierarchical clustering algorithm [Saitou & Nei 87]
to build guide tree
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Progressive Alignment Methods
CLUSTALW (2)

3 Build multiple alignment in the order that nodes were
added to the guide tree in Step 2

Use sequence-sequence, sequence-profile, or
profile-profile as necessary
Weight sequences to compensate for bias in SP scoring
Use position-specific gap-open profile penalties; e.g.,
more likely to allow new gap in hydrophilic regions
Adjusts gap penalties to concentrate gaps in a few
regions
Dynamically adjusts guide tree to defer low-scoring
alignments until later
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Progressive Alignment Methods
Iterative Refinement Methods [Barton & Sternberg 87]

Start with MA, then iteratively remove one sequence (or
subset) x at a time and realign to profile of remaining
sequences
) will increase score or not change it
Repeat with other sequences until alignment remains
unchanged
Guaranteed to reach local max if all sequences tried
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Progressive Alignment Methods
Iterative Refinement Methods (2)

1 Pairwise align the two most similar sequences
2 Sequence-profile align the profile of current MA to most

similar sequence; repeat until all sequences aligned
3 Remove sequence x

1 and sequence-profile realign it to
profile of rest; repeat for x

2, . . . , x

N

4 Repeat above step until convergence
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MA via Profile HMMs

Replace SP scoring with more statistically valid HMM
scheme ··

^

But don’t we need a multiple alignment to build the
profile HMM?

Use heuristics to set architecture, Baum-Welch to find
parameters
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Multiple Alignment with Known Profile HMM

Find most likely (Viterbi) path and line up residues from
same match states
Insert state emissions are not aligned (Figs. 6.4–6.6)

OK so long as residues are true insertions (not
conserved or meaningfully alignable)
Other MA algorithms align entire sequences
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Profile HMM Training from Unaligned
Sequences

Used by SAM

1 Choose length of model (number of match states) and
initialize parameters

2 Set parameters via Baum-Welch
Use heuristics to avoid local optima

3 Check length of model from Step 1 and update if
necessary

Repeat Step 2 if model length changed
4 Align all sequences to final model using Viterbi

algorithm and build MA
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Choosing Initial Model

Architecture completely set once we choose number
match states M

When we started with MA, we applied heuristics to set
M

But we don’t have MA!
Heuristic: Let M = average sequence length
If prior information known, use that instead

For initial parameters, complexity of B-W search makes
us want to start near good local optimum

Start with reasonable initial values of parameters (e.g.,
transitions into match states relatively large):

Sample from Dirichlet prior
Start with guess of MA
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Baum-Welch: Forward Equations
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Baum-Welch: Backward Equations
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Baum-Welch: Re-estimation Equations
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Avoiding Local Maxima

B-W will converge to local maximum likelihood model,
but how good is that globally?
Long sequences ) many parameters to optimize )
increased risk of getting stuck in local minimum
Methods to avoid this:

Multiple runs from random start points (sometimes
done in training artificial neural networks)
Use random pertubations of current solution to nudge it
into different parts of the search space, e.g.,
simulated annealing
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Simulated Annealing

Based on annealing process to crystallize compounds
In optimization, this involves occasionally selecting
worse solutions to allow movement to a region of the
search space where a better local optimum exists
Movement is done probabilistically (so optimization can
be thought of as a Markov process), and probability of
worse choice decreases as optimization progresses
Probability of a particular solution x is
P(x) = (1/Z) exp (�E(x)/T); Z =

R
exp (�E(x)/T) is

normalizer, E(x) is energy (objective) function to be
minimized, and T is temperature parameter that is
reduced based on annealing schedule
T ! 1 ) P(x) ! uniform, T ! 0 ) P(x) ! peaks at
minimum values of E(x)

30 / 33



CSCE
471/871

Lecture 6:
Multiple

Sequence
Alignments

Stephen Scott

Introduction

Scoring

Multidimensional
DP

Progressive
Alignments

MA via Profile
HMMs
HMM Known

HMM Unknown

Local Maxima

Simulated Annealing

Model Surgery

Profile HMM Training from Unaligned
Sequences
Simulated Annealing (2)

For HMM, use as E(x) the negative log of likelihood:
� log P(X | ✓), so

P(x) =
exp

�
� 1

T

(� log P(X | ✓))
�

Z

=
P(X | ✓)1/T

R
P(X | ✓0)1/T

d✓0

To sample from this distribution, can use noise injection
or Viterbi estimation

Noise injection: Add noise to counts estimated in
forward-backward procedure, decreasing noise rate
slowly

31 / 33

CSCE
471/871

Lecture 6:
Multiple

Sequence
Alignments

Stephen Scott

Introduction

Scoring

Multidimensional
DP

Progressive
Alignments

MA via Profile
HMMs
HMM Known

HMM Unknown

Local Maxima

Simulated Annealing

Model Surgery

Profile HMM Training from Unaligned
Sequences
Simulated Annealing (3): Viterbi Estimation

Based on Viterbi alternative to B-W, in which emission
and transition counts come from most likely paths
rather than forward-backward expectation estimates

In SA approximation, rather than choosing most likely
path, choose a path probabilistically:

P(⇡) =
P(⇡, x | ✓)1/T

P
⇡0 P(⇡0, x | ✓)1/T

Denominator comes from modified forward algorithm
with exponentiated parameters
Use stochastic traceback to return ⇡: For i = L + 1

down to 1,

P(⇡
i�1

| ⇡
i

) =
f

i�1,⇡
i�1

â⇡
i�1

,⇡
iP

k

f

i�1,k â

i,⇡
i

,

â

ij

= a

1/T

ij
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Model Surgery

B-W should give reasonably good parameters to fit
architecture to data
But was the architecture accurate in the first place?

Too few match states ) overuse of insertion states,
incorrectly labeling some parts as non-matches
Too many match states ) overuse of deletion states

Model surgery (heuristically) identifies such problems
and updates model

Use f-b or Viterbi to compute usage of all the model’s
transitions
If a match state M

i

is used too infrequently, delete it and
collapse the model
If an insert state I

j

is used too frequently, expand it to a
sequence of match states (number = average length of
insertions)

Have to recompute parameters via B-W after surgery!
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