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@ Designed to model (profile) a multiple alignment of a
protein family (e.g., Fig. 5.1)

@ Gives a probabilistic model of the proteins in the family

@ Useful for searching databases for more homologues
and for aligning strings to the family
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Motk @ Organization of a profile HMM Martoy Start with a trivial HMM M (not really hidden at this point)

Stephen Scott o Ungapped regions Stephen Scott E 1 1 ooe ! 1 coeoe !

e Insert and delete states

Organization o Non-global alignments Organization Each match state has its own set of emission probabilities,

Match States

Buildit g
Models @ Building a model

Searching o Determining states: match, insert, delete
o Estimating probabilities Mogels. L
@ Pseudocounts Searching P(x| M) = H ei(x;)
@ Searching and aligning with HMMs iy
o Viterbi
o Forward

so we can compute probability of a new sequence x being
part of this family:

Can, as usual, convert probabilities to log-odds score
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Organization of a Profile HMM (2)
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e @ But this assumes ungapped alignments! e
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Models @ To handle gaps, consider insertions and deletions Models

Stephen Scott o Insertion: part of x that doesn’t match anything in Stephen Scot @ Deletion: parts of multiple alignment not matched by
multiple alignment (use insert states) any residue in x (use silent delete states)
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p ) @ Original profile HMMs model entire sequence

e @ Add flanking model states (or free insertion modules) to
Ty generate non-local residues
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Lecture 4: @ Given a multiple alignment, how to build an HMM? Lecture 4: )
A o General structure defined, but how many match states? A e @ General structure defined, but how many match states?
Models Models @ Heuristic: if more than half of characters in a column
sy, .. VGA - -HAGEY ... Stephen Scoft are non-gaps, include a match state for that column
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Models @ Now, find parameters

SEIEIEE @ Multiple alignment + HMM structure — state sequence Staphen Soot @ Count number of transitions and emissions and
Organization M1 D313 Non—gap in match column -> Organization CompUte: A
Building match state Building ay = Kl
‘S T ¢ |-HAGEY ... Gap in match column -> MOde‘S 2o Awr
X }'3 A -7 I[\)] g 2 g X . delete state = Ey(b)
i Tt -7 ° Non-gap in insert column -> i ek(b) ==
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cee VYIS --TYETS .. Gap in insert column -> @ Still need to beware of some counts = 0
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@ Let ¢j, = observed count of residue a in position j of
multiple alignment

Stephen Scott
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Building ( ) Cja + Aqa
ey\d) = —<——
J .
Za’ Cia' + A
Pseudocounts.

@ g, = background probability of ¢, A = weight placed on
pseudocounts (sometimes use A ~ 20)

@ Background probabilities also called a prior distribution
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Dirichlet Mixtures (2)
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Models @ Each component k consists of a vector of
pseudocounts @ (so aX corresponds to Ag,) and a
mixture coefficient (my, for now) that is the probability

that component k is selected

@ Pseudocount model k is the “correct” one with
probability my

@ We'll set the mixture coefficients for each column based
on which vectors best fit the residues in that column

e E.g, first column of alignment on slide 10 is dominated
by V, so any vector a* that favors V will get a higher my
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@ I'is gamma function, and InT' is computed via 1 gamma
Profile Hidden and related functions in C

Markov

Models @ myy is prior probability of component k (= ¢ below)

Stephen Scott

[ Parameters of Dirichlet mixture prior Blocks9

) Comp. 1 | Comp. 2 | Comp. 3 | Comp. 4 | Comp. 5 | Comp. 6 | Comp. 7 | Comp. 8 | Comp. 9
Organization q 0.1829 0.0576 0.0898 0.0792 0.0831 0.0911 0.1159 0.0660 0.2340
e |&] 1.1806 1.3558 6.6643 2.0814 2.0810 2.5681 1.7660 4.9876 0.0995
Building A 0.2706 0.0214 0.5614 0.0701 0.0411 0.1156 0.0934 0.4521 0.0051
Models C 0.0398 0.0103 0.0454 0.0111 0.0147 0.0373 0.0047 0.1146 0.0040
s D 0.0175 0.0117 0.4383 0.0194 0.0056 0.0124 0.3872 0.0624 0.0067

E 0.0164 0.0108 0.7641 0.0946 0.0102 0.0181 0.3478 0.1157 0.0061

1 0.0142 0.3856 0.0873 0.0131 0.1536 0.0517 0.0108 0.2842 0.0034

G 0.1319 0.0164 0.2591 0.0480 0.0077 0.0172 0.1058 0.1402 0.0169

Searching

0.0071 0.0049 0.0497 0.1003 0.0036
0.2996 0.7968 0.0149 0.5502 0.0021
0.0108 0.0170 0.0942 0.1439 0.0050
0.9994 0.2858 0.0277 0.7006 0.0059
0.2101 0.0758 0.0100 0.2765 0.0014
0.0061 0.0145 0.1878 0.1185 0.0041

0.0123 0.0761 0.2149
I 0.0225 0.0353 0.1459
K 0.0203 0.0139 0.7622
0.0307 0.0935 0.2473
0.0153 0.0220 0.1186
0.0482 0.0285 0.4415

L

M

N

P 0.0538 0.0130 0.0130 0.0150 0.0500 0.0974 0.0090
Q 0.0206 0.0230 0.0197 0.0113 0.1100 0.1266 0.0036
R 0.0236 0.0188 0.0145 0.0126 0.0386 0.1436 0.0065
S 0.2161 0.0291 0.0120 0.0275 0.1194 0.2789 0.0031
T 0.0654 0.0181 0.0357 0.0883 0.0658 0.3584 0.0036
v 0.0654 0.0361 0.1800 0.9443 0.0254 0.6617 0.0029
W 0.0037 0.0717 0.0127 0.0043 0.0032 0.0615 0.0027
Y 0.0096 0.4196 0.0264 0.0167 0,0187 0.1993 0.0026
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e @ Can be thought of as a mixture of pseudocounts
@ The mixture has different components, each
representing a different context of a protein sequence

e E.g., in parts of a sequence folded near protein’s

Stephen Scott
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Models surface, more weight (higher g,) can be given to

States

hydrophilic residues
o But in other regions, may want to give more weight to
hydrophobic residues
@ Will find a different mixture for each position of the
alignment based on the distribution of residues in that
column
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@ Let ¢; be vector of counts in column j

Stephen Scott

@ P (k| c;) are the posterior mixture coefficients, which
are easily computed [Sj6lander et al. 1996], yielding:
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where

o + a4
X, = myo exp (InB (& + ;) — InB (& _ Gt %
a Xk: 0 ( ( .1) ( )) S (Cja' +a§,)

B = InT(x)—InT Y x

Nebiaska

Lincoln

Searching for Homologues

CSCE
471/871
Lecture 4:
Profile Hidden
Markov

Models @ P(x,7* | M) is probability that x came from model M via
Stephen Scott most likely path 7*
= Find using Viterbi

@ Pr(x| M) is probability that x came from model M
summed over all possible paths
= Find using forward algorithm

Harina @ score(x) =log(P(x | M)/P(x | ¢))

@ ¢ is a “null model”, which is often the distribution of
amino acids in the training set or AA distribution over
each individual column

o If x matches M much better than ¢, then score is large
and positive

Score a candidate match x by using log-odds:
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& ) VJM (i) = log-odds score of best path matching x;._; to ST,
ilo Hidd i imi i 1(; D(; ile Hiddk
EictlolHidn model, x; emitted by M; (similarly define V/(i) and V?(i)) EictlolHidn

Models Models

. eM»(Xi)>
FM(i)y=1log | =/ ) +1log[a ex i—1))+
o Bis Mo, VY(0) = 0, Eis My (VI = final) i) g( s e [ exp (F21 (= 1)

Stephen Scott Stephen Scott

ar_myexp (FI_ (i — 1)) +ap,_myexp (FP (i — 1))]

Organization VM (l 1) + IOg am. M. Organization
uilding . em;\Xi 171 e uilding
) o () e d VG- 1)+ oz s .
- o0 ot R 0= s (U)o g e 1)
. Xi
VMGi—1)+1
e (x) 7 (i = 1) + logayy, ayy, exp (F (i—1)) + ap,i; exp (F (i—1)]

Xi i
—/— ] + max V]D(z 1) +logayy,
V2(i— 1) +logapy, . Yo o
Fj (l) = lOg [anle,' exp (Fj—l (1)) + ar,_,p; exp (Fj—l (l))

V(i) + logay, b,
D .
V_/-D(i) = max \7171(1) +logay_,p, +ap,_,p; exp (F(i))]
V][il(l) + log ap;_,p;

e Aligning a Sequence with a Model
B (Multiple Alignment)
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Organization @ Given a string x, use Viterbi to find most likely path 7*
Building and use the state sequence as the alignment
Hodels @ More detail in Durbin, Section 6.5

e Also discusses building an initial multiple alignment and
HMM simultaneously via Baum-Welch

Searching

exp(-) needed for sums and logs (can still be fast; see p. 78)



