## CSCE 471/871 Lecture 4: Profile Hidden Markov Models

Stephen Scott

sscott@cse.unl.edu

4 D > 4 D > 4 E > 4 E > E 990

4D> 4B> 4B> B 990

## Nebraska

Introduction

Building Models

- Designed to model (profile) a multiple alignment of a protein family (e.g., Fig. 5.1)
- Gives a probabilistic model of the proteins in the family
- Useful for searching databases for more homologues and for aligning strings to the family

## Nebraska

#### Outline

Searching

- Organization of a profile HMM
  - Ungapped regions
  - Insert and delete states
  - Non-global alignments
- Building a model
  - Determining states: match, insert, delete
  - Estimating probabilities
  - Pseudocounts
- Searching and aligning with HMMs
  - Viterbi
  - Forward

## Nebraska

#### Organization of a Profile HMM Match States

Start with a trivial HMM M (not really hidden at this point)  $B \longrightarrow M_1 \longrightarrow \bullet \bullet \bullet \longrightarrow M_i \longrightarrow \bullet \bullet \longrightarrow E$ 

Each match state has its own set of emission probabilities, so we can compute probability of a new sequence x being part of this family:

$$P(x \mid M) = \prod_{i=1}^{L} e_i(x_i)$$

Can, as usual, convert probabilities to log-odds score

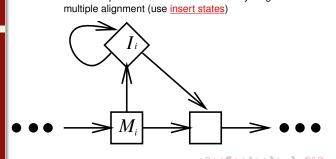
4 D > 4 B > 4 B > 4 B > 8 9 9 9

#### Nebraska

#### Organization of a Profile HMM (2) Insertion States

• But this assumes ungapped alignments! • To handle gaps, consider insertions and deletions

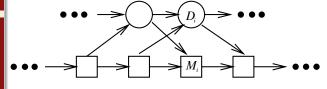
• Insertion: part of x that doesn't match anything in



## Nebraska

#### Organization of a Profile HMM (3) **Deletion States**

• Deletion: parts of multiple alignment not matched by any residue in x (use silent delete states)



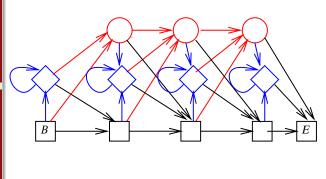
4 D > 4 B > 4 E > 4 E > 9 Q @

#### General Profile HMM Structure







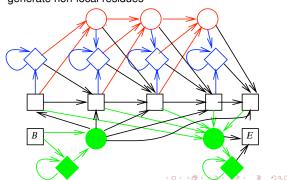


## Nebraska

### Handling non-Global Alignments

Original profile HMMs model entire sequence

 Add flanking model states (or free insertion modules) to generate non-local residues



#### Building a Model Determining States

Nebraska

• Given a multiple alignment, how to build an HMM? General structure defined, but how many match states? A - - H A G E YV D E V A G Y Y E Ν Ι P K

GAD

Ν

GAG

V

Nebraska

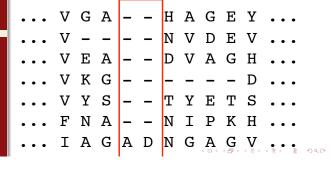
#### Building a Model (2) Determining States

CSCE 471/871 Lecture 4: rofile Hidd Markov Models

earching

Given a multiple alignment, how to build an HMM?

- General structure defined, but how many match states?
- Heuristic: if more than half of characters in a column are non-gaps, include a match state for that column



Nebraska

#### Building a Model (3) Determining States

- Now, find parameters
- ullet Multiple alignment + HMM structure o state sequence

M1 D3 I3 ... V G A - - H A G E Y ... V - - N V D E V ... ... V E A - - D V A G H ... ... V K G - - - - - D ... ... V Y S - - T Y E T S ... ... F N A - - N I P K H ... ... I A G A D N G A G V ...

Non-gap in match column -> match state

4 D > 4 B > 4 E > 4 E > 9 Q @

Gap in match column -> delete state

Non-gap in insert column -> insert state

Gap in insert column -> ignore Durbin Fig 5.4, p. 109

←□ → ←□ → ← □ → ← □ → へ○

Nebraska

#### Building a Model (4) Estimating Probabilities

tephen Sco

 Count number of transitions and emissions and compute:

$$a_{kl} = \frac{A_{kl}}{\sum_{l'} A_{kl'}}$$

$$E_k(b)$$

$$e_k(b) = \frac{E_k(b)}{\sum_{b'} E_k(b')}$$

Still need to beware of some counts = 0

## Weighted Pseudocounts

• Let  $c_{ja} =$  observed count of residue a in position j of multiple alignment

$$e_{M_j}(a) = \frac{c_{ja} + Aq_a}{\sum_{a'} c_{ja'} + A}$$

- $q_a =$ background probability of a, A =weight placed on pseudocounts (sometimes use  $A \approx 20$ )
- Background probabilities also called a prior distribution

4 D > 4 B > 4 B > 4 B > 8 9 9 9

## Nebraska

#### **Dirichlet Mixtures**

- Can be thought of as a mixture of pseudocounts
- The mixture has different components, each representing a different context of a protein sequence
  - E.g., in parts of a sequence folded near protein's surface, more weight (higher  $q_a$ ) can be given to hydrophilic residues
  - But in other regions, may want to give more weight to hydrophobic residues
- Will find a different mixture for each position of the alignment based on the distribution of residues in that column

## Nebraska

### Dirichlet Mixtures (2)

- Each component k consists of a vector of pseudocounts  $\vec{\alpha}^k$  (so  $\alpha_a^k$  corresponds to  $Aq_a$ ) and a mixture coefficient ( $m_k$ , for now) that is the probability that component k is selected
- Pseudocount model k is the "correct" one with probability  $m_k$
- We'll set the mixture coefficients for each column based on which vectors best fit the residues in that column
  - E.g., first column of alignment on slide 10 is dominated by V, so any vector  $\vec{\alpha}^k$  that favors V will get a higher  $m_k$



## Nebraska

## Dirichlet Mixtures (3)

• Let  $\vec{c}_i$  be vector of counts in column j

$$e_{M_j}(a) = \sum_{k} P\left(k \mid \vec{c}_j\right) \frac{c_{ja} + \alpha_a^k}{\sum_{a'} \left(c_{ja'} + \alpha_{a'}^k\right)}$$

•  $P(k \mid \vec{c_i})$  are the posterior mixture coefficients, which are easily computed [Sjölander et al. 1996], yielding:

$$e_{M_j}(a) = \frac{X_a}{\sum_{a'} X_{a'}} ,$$

where

$$X_{a} = \sum_{k} m_{k0} \exp\left(\ln B\left(\vec{\alpha}^{k} + \vec{c}_{j}\right) - \ln B\left(\vec{\alpha}^{k}\right)\right) \frac{c_{ja} + \vec{\alpha}_{a}^{k}}{\sum_{a'} \left(c_{ja'} + \alpha_{a'}^{k}\right)}$$

$$\ln B(\vec{x}) = \sum_{i} \ln \Gamma(x_i) - \ln \Gamma\left(\sum_{i} x_i\right)$$

## Nebraska

## Dirichlet Mixtures (4)

•  $\Gamma$  is gamma function, and  $\ln \Gamma$  is computed via lgamma and related functions in C

•  $m_{k0}$  is prior probability of component k (= q below)

| Parameters of Dirichlet mixture prior Blocks9 |         |         |         |        |         |        |         |         |         |
|-----------------------------------------------|---------|---------|---------|--------|---------|--------|---------|---------|---------|
|                                               | Comp. 1 | Comp. 2 | Comp. 3 |        | Comp. 5 |        | Comp. 7 | Comp. 8 | Comp. 9 |
| q                                             | 0.1829  | 0.0576  | 0.0898  | 0.0792 | 0.0831  | 0.0911 | 0.1159  | 0.0660  | 0.2340  |
| $\vec{\alpha}$                                | 1.1806  | 1.3558  | 6.6643  | 2.0814 | 2.0810  | 2.5681 | 1.7660  | 4.9876  | 0.0995  |
| A                                             | 0.2706  | 0.0214  | 0.5614  | 0.0701 | 0.0411  | 0.1156 | 0.0934  | 0.4521  | 0.0051  |
| C                                             | 0.0398  | 0.0103  | 0.0454  | 0.0111 | 0.0147  | 0.0373 | 0.0047  | 0.1146  | 0.0040  |
| D                                             | 0.0175  | 0.0117  | 0.4383  | 0.0194 | 0.0056  | 0.0124 | 0.3872  | 0.0624  | 0.0067  |
| E                                             | 0.0164  | 0.0108  | 0.7641  | 0.0946 | 0.0102  | 0.0181 | 0.3478  | 0.1157  | 0.0061  |
| F                                             | 0.0142  | 0.3856  | 0.0873  | 0.0131 | 0.1536  | 0.0517 | 0.0108  | 0.2842  | 0.0034  |
| G                                             | 0.1319  | 0.0164  | 0.2591  | 0.0480 | 0.0077  | 0.0172 | 0.1058  | 0.1402  | 0.0169  |
| H                                             | 0.0123  | 0.0761  | 0.2149  | 0.0770 | 0.0071  | 0.0049 | 0.0497  | 0.1003  | 0.0036  |
| I                                             | 0.0225  | 0.0353  | 0.1459  | 0.0329 | 0.2996  | 0.7968 | 0.0149  | 0.5502  | 0.0021  |
| K                                             | 0.0203  | 0.0139  | 0.7622  | 0.5766 | 0.0108  | 0.0170 | 0.0942  | 0.1439  | 0.0050  |
| L                                             | 0.0307  | 0.0935  | 0.2473  | 0.0722 | 0.9994  | 0.2858 | 0.0277  | 0.7006  | 0.0059  |
| M                                             | 0.0153  | 0.0220  | 0.1186  | 0.0282 | 0.2101  | 0.0758 | 0.0100  | 0.2765  | 0.0014  |
| N                                             | 0.0482  | 0.0285  | 0.4415  | 0.0803 | 0.0061  | 0.0145 | 0.1878  | 0.1185  | 0.0041  |
| P                                             | 0.0538  | 0.0130  | 0.1748  | 0.0376 | 0.0130  | 0.0150 | 0.0500  | 0.0974  | 0.0090  |
| Q                                             | 0.0206  | 0.0230  | 0.5308  | 0.1850 | 0.0197  | 0.0113 | 0.1100  | 0.1266  | 0.0036  |
| Ŕ                                             | 0.0236  | 0.0188  | 0.4655  | 0.5067 | 0.0145  | 0.0126 | 0.0386  | 0.1436  | 0.0065  |
| S                                             | 0.2161  | 0.0291  | 0.5834  | 0.0737 | 0.0120  | 0.0275 | 0.1194  | 0.2789  | 0.0031  |
| Т                                             | 0.0654  | 0.0181  | 0.4455  | 0.0715 | 0.0357  | 0.0883 | 0.0658  | 0.3584  | 0.0036  |
| V                                             | 0.0654  | 0.0361  | 0.2270  | 0.0425 | 0.1800  | 0.9443 | 0.0254  | 0.6617  | 0.0029  |
| W                                             | 0.0037  | 0.0717  | 0.0295  | 0.0112 | 0.0127  | 0.0043 | 0.0032  | 0.0615  | 0.0027  |
| Y                                             | 0.0096  | 0.4196  | 0.1210  | 0.0287 | 0.0264  | 0.0167 | 0.0187  | 0.1993  | 0.0026  |

## Nebraska

#### Searching for Homologues

Score a candidate match x by using log-odds:

- $P(x, \pi^* \mid M)$  is probability that x came from model M via most likely path  $\pi^*$
- ⇒ Find using Viterbi
- $Pr(x \mid M)$  is probability that x came from model M summed over all possible paths
  - ⇒ Find using forward algorithm
- $score(x) = log(P(x \mid M)/P(x \mid \phi))$ 
  - $\bullet$   $\phi$  is a "null model", which is often the distribution of amino acids in the training set or AA distribution over each individual column
  - If x matches M much better than  $\phi$ , then score is large and positive

#### Viterbi Equations

•  $V_i^M(i) = \text{log-odds score of best path matching } x_{1...i}$  to model,  $x_i$  emitted by  $M_i$  (similarly define  $V_i^I(i)$  and  $V_i^D(i)$ )

$$ullet$$
  $B$  is  $M_0$ ,  $V_0^M(0) = 0$ ,  $E$  is  $M_{L+1}$  ( $V_{L+1}^M = \text{final}$ )

$$V_{j}^{M}(i) = \log\left(\frac{e_{M_{j}}(x_{i})}{q_{x_{i}}}\right) + \max \begin{cases} V_{j-1}^{M}(i-1) + \log a_{M_{j-1}M_{j}} \\ V_{j-1}^{I}(i-1) + \log a_{I_{j-1}M_{j}} \\ V_{j-1}^{D}(i-1) + \log a_{D_{j-1}M_{j}} \end{cases}$$

$$V_{j}^{I}(i) = \log\left(rac{e_{I_{j}}(x_{i})}{q_{x_{i}}}
ight) + \max \left\{egin{array}{l} V_{j}^{M}(i-1) + \log a_{M_{j}I_{j}} \ V_{j}^{D}(i-1) + \log a_{D_{j}I_{j}} \ V_{j}^{D}(i-1) + \log a_{D_{j}I_{j}} \end{array}
ight.$$

$$V^D_j(i) = \max \left\{ \begin{array}{l} V^M_{j-1}(i) + \log a_{M_{j-1}D_j} \\ V^L_{j-1}(i) + \log a_{I_{j-1}D_j} \\ V^D_{j-1}(i) + \log a_{D_{j-1}D_j} \end{array} \right.$$

Nebraska

#### Forward Equations

$$\begin{split} F_{j}^{M}(i) &= \log \left(\frac{e_{M_{j}}(x_{i})}{q_{x_{i}}}\right) + \log \left[a_{M_{j-1}M_{j}} \exp \left(F_{j-1}^{M}(i-1)\right) + \\ a_{I_{j-1}M_{j}} \exp \left(F_{j-1}^{I}(i-1)\right) + a_{D_{j-1}M_{j}} \exp \left(F_{j-1}^{D}(i-1)\right)\right] \end{split}$$

$$\begin{aligned} F_j^I(i) &= \log \left( \frac{e_{I_j}(x_i)}{q_{x_i}} \right) + \log \left[ a_{M_j I_j} \exp \left( F_j^M(i-1) \right) + a_{I_j I_j} \exp \left( F_j^I(i-1) \right) + a_{D_j I_j} \exp \left( F_j^D(i-1) \right) \right] \end{aligned}$$

$$F_{j}^{D}(i) = \log \left[ a_{M_{j-1}D_{j}} \exp \left( F_{j-1}^{M}(i) \right) + a_{I_{j-1}D_{j}} \exp \left( F_{j-1}^{I}(i) \right) + a_{D_{j-1}D_{j}} \exp \left( F_{j-1}^{D}(i) \right) \right]$$

exp(·) needed for sums and logs (can still be fast; see p. 78)



## Aligning a Sequence with a Model (Multiple Alignment)

• Given a string x, use Viterbi to find most likely path  $\pi^*$ and use the state sequence as the alignment

- More detail in Durbin, Section 6.5
  - Also discusses building an initial multiple alignment and HMM simultaneously via Baum-Welch

4 D > 4 D > 4 E > 4 E > E 90 C