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Lecture 3:
Markov
Chains and
Hidden

Markov @ Markov chains
Models

T—— @ Hidden Markov models (HMMs)

e Formal definition
Harkov e Finding most probable state path (Viterbi algorithm)
Hidden e Forward and backward algorithms

Markov

Models @ Specifying an HMM

Specifying an e State sequence known
FMM e State sequence unknown
e Structure
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Lecture 3:
Markov
Chains and
Hidden
Markov

Models @ Focus on nucleotide sequences
e @ The sequence “CG” (written “CpG”) tends to appear
Markos more frequently in some places than in others
iddon @ Such CpG islands are usually 10>-10* bases long

Markov

Models @ Questions:

Szl @ Given a short segment, is it from a CpG island?
@ Given a long segment, where are its islands?
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@ Model will be a CpG generator
@ Want probability of next symbol to depend on current

Stephen Scott

Markov

Chains SymbOI

ey @ Will use a standard (non-hidden) Markov model
Models e Probabilistic state machine

Specifying an e Each state emits a symbol

HMM
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The Markov Property
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Lecture 3:

15 @ A first-order Markov model (what we study) has the

Chains and

Hidden property that observing symbol x; while in state =;

Models depends only on the previous state 7;_; (which
Stephen Scott generated Xi—l)

@ Standard model has 1-1 correspondence between
symbols and states, thus

Markov
Chains

Hidden
Markov
Model
So - P(x; | Xi—1,-..,x1) = P(X; | X;—1)
pecifying an
HMM
and

L

P(xi,...,x;) = P(x)) [ [ P(xi | xi—1)

i=2
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Begin and End States

o @ For convenience, can add special “begin” (B) and “end”

Lecture $: (E) states to clarify equations and define a distribution

Mgrkov
N over sequence lengths

oo @ Emit empty (null) symbols xy and x; | to mark ends of

Stephen Scott sequence

Markov
Chains

Hidden
Markov
Models

Specifying an
HMM
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Markov Chains for Discrimination

s How do we use this to differentiate islands from

Lecture 3: non-islands?
Chains and o Define two Markov models: islands (“+") and
MKy non-islands (“-”)
e Each model gets 4 states (A, C, G, T)
e Take training set of known islands and non-islands

e Let c;f = number of times symbol ¢ followed symbol s in

Stephen Scott

Markov

Crans an island:
Hidden et
Markov P+(t| ) Cst
Models Zﬂ co
Bpecifying an @ Example probabilities in [Durbin et al., p. 51]
@ Now score a sequence X = (xi,...,x;) by summing the

log-odds ratios:

log (

/\ w>

L+1 X’X 1)
10 1 1
) Zg( xmw)
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Stephen Scott

Markov
Chains

Hidden
Markov
Models
Definition
Viterbi
Forward/Backward

Specifying an
HMM

@ Second CpG question: Given a long sequence, where
are its islands?

Hidden Markov Models

e Could use tools just presented by passing a fixed-width
window over the sequence and computing scores

e Trouble if islands’ lengths vary

e Prefer single, unified model for islands vs. non-islands

[complete connectivity
between all pairs]

e Within the + group, transition probabilities similar to
those for the separate + model, but there is a small
chance of switching to a state in the — group
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What's Hidden in an HMM?
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Markov
Chains and
Hidden

Markov @ No longer have one-to-one correspondence between
. Mh"“e'ss states and emitted characters
tephen Scott
° e E.g.,was C emittedby C, orC_?
Markov @ Must differentiate the symbol sequence X from the

Hidden
Markov
Models

state sequence 7 = (my,...,7L)

e State transition probabilities same as before:
P(mi =L | mioy =) (i.e., P(£])))
P——— e Now each state has a prob. of emitting any value:
P(x; = x| m =) (i.e. P(x| )

Specifying an
HMM
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Lecture 3:

Markov
Chains and
Hidden -
Markov
Models P(Z‘ 1) P(3|2)

Stephen Scott

Markov

snaine p(ll) p(2) pf3)
Hidden
Markov
Models
Definition
Viterbi
Forward/Backward
X X

Specifying an
HMM

[In CpG HMM, emission probs discrete and = 0 or 1]
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@ Assume that a casino is typically fair, but with
probability 0.05 it switches to a loaded die, and
switches back with probability 0.1

Example: The Occasionally Dishonest Casino

Fair Loaded
1: 1/6 1: 1/10
216005 _|2:1/10
3:1/6 3:1/10
4:1/6 4:1/10
5:1/6 W 5:1/10
6:1/6 ' 6: 1/2

&)

0.95 0.9@

@ Given a sequence of rolls, what’s hidden?
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The Viterbi Algorithm

CSCE
471/871

Lomture & @ Probability of seeing symbol sequence X and state

Markov

Chane and sequence 7 is

Markov
Models L

Stephen Scott P(X, 7T) — P(T['l | O) HP(Xi | 7Ti) P(7Ti+l | 7Ti)

Markov i=1
Chains

Hidcn @ Can use this to find most likely path:
Models

7 = argmax P(X, )
m

Specifying an
HMM

and trace it to identify islands (paths through “+” states)

@ There are an exponential number of paths through
chain, so how do we find the most likely one?
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4318/251_ @ Assume that we know (for all k) v, (i) = probability of
“Markor most likely path ending in state k with observation x;
*idden " e Then

Markov

Models

veli+1) = Plxicr | 0) max{(i) P(C | K)}

Markov All states at i
Chains | N

Stephen Scott

Hidden
Markov
Models
Definition
Viterbi

1
|
! State [ at
! i+1
Forward/Backward 1
1
1
1

Specifying an
HMM




NeBWERSWV ] OF

Lincoln

The Viterbi Algorithm (3)

CSCE
471/871
e Given the formula, can fill in table with dynamic

Markov
Chains and H .
e programming:
Markov
Models

@ 1p(0) =1, %(0)=0fork >0
@ Fori=1toL;for/ =110 M (# states)

Stephen Scott

Chetns ® vy(i) = P(x; | £) maxi{vi(i — 1) P(£ [ k)}
Hidden o ptr;(¢) = argmax, {v¢(i — 1) P(¢ | k)}
Modets o P(X,n*) = max;{v(L) P(0 | k)}

@ 7} = argmax,{vi(L) P(0 | k)}
@ Fori=Lto1
o m | = ptr,(7})

kward

Specifying an
HMM

To avoid underflow, use log(v,(i)) and add
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The Forward Algorithm

CSCE

471/871

Lecture 3: G f d

Marki —

ey iven a sequence X, find P(X) = > _P(X, )
Hidden . . . . . . )
Markov Use dynamic programming like Viterbi, replacing max with

BN sum, and v (i) with f(i) = P(xi, ..., x;, 7 = k) (= prob. of
observed sequence through x;, stopping in state k)

Stephen Scott

Markov
Chains

Hidden ® f0(0)=1,£(0)=0fork >0
Miodes @ Fori=1toL;for¢=1to M (# states)

Models

o fi(i)=P(x; | €)X, fili — 1) P(£ | k)

Viterbi

Forward/Backward Y P(X) = Zk fk(L) P(O | k)

Specifying an

HMM

To avoid underflow, can again use logs, though exactness of
results compromised (Section 3.6)
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The Backward Algorithm

s Given a sequence X, find the probability that x; was emitted

Lecture 3: by state k, Ie,

Markov

Chains and

Hidden

Mark?)v P(7Tl' = k,X)

Models P(ﬂ'l:k’X):i
Stephen Scott P(X)

fili) bi (1)

Markov h
Clhains _ P(X], X, T = k) P(Xi+17 - XL ’ = k)
far P(X)
Models
Dsiter computed by forward alg

ac)

Specifyi i -
speaiying an  SEN[eTelql(plagh

@ b (L) =P(0| k) forall
@ Fori=L—1to1;fork=11o M (# states)
© b(i) =, P(L|k)P(Xjp1 | £)be(i+ 1)



Ne‘BﬂvERSWV]or

Lincoln

Example Use of Forward/Backward Algorithm

CSCE
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Lecture 3:

Markov

Sl Define g(k) = 1ifk € {A;, Cy, G4, T1} and 0 otherwise
Markov

Models Then G(i | X) =, P(m = k | X) g(k) = probability that x; is
Stephen Scott in an iSIand

Markov

Chains For each state k, compute P(m; = k | X) with
Hidden forward/backward algorithm

Markov
i Technique applicable to any HMM where set of states is

Viterbi

Peoscas | PArtitioned into classes

Specifying an
HMM

@ Use to label individual parts of a sequence



et Specifying an HMM

CSCE
471/871
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Markov

s @ Two problems: defining structure (set of states) and
pgen parameters (transition and emission probabilities)

Models @ Start with latter problem, i.e., given a training set

X1, ..., Xy of independently generated sequences,
Harkov learn a good set of parameters 6

Hidden @ Goal is to maximize the (log) likelihood of seeing the

Markov

Models training set given that 6 is the set of parameters for the
Specifying an HMM generating them:

Stephen Scott

N
> log(P(X;;6))
=1
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When State Sequence Known
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Lecture 3:
Markov
Chains and

Hidden @ Estimating parameters when e.g

Modls identified in training set

Stephen Scott

., islands already

@ Let Ay = number of k — ¢ transitions and Ey(b) =

N number of emissions of b in state k
Chains

Hidden
Markov

Models P(E ’ k) == Ak@/ <2Aké’>
. 7

Specifying an

HMM

State Sequence

Known /
P(b | k) § E (b))
Unknown

Structure
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When State Sequence Known (2)

CSCE
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Lecture 3:
Markov
Chains and
Hidden
Markov

Models Be careful if little training data available

S @ E.g., an unused state k will have undefined parameters
Chaing @ Workaround: Add pseudocounts ry to Ay, and r(b) to
bt E;(b) that reflect prior biases about probabilities

Z:z:;mg . @ Increased training data decreases prior’s influence

il @ [Sjolander et al. 96]

Known

State Sequence
Unknown

Structure
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The Baum-Welch Algorithm

CSCE . .
471871 @ Estimating parameters when state sequence unknown

Lecture 3:

Markov @ Special case of expectation maximization (EM) alg

Chains and

s @ Start with arbitrary P(¢ | k) and P(b | k), and use to

Markov

Models estimate Ay, and Ei(b) as expected number of
Stephen Seol occurrences given the training set':

Markov

Chains N . .
Hidden A = Z ka P(L] k) P(xiyy [ €) by(i+ 1)
Models
e (Prob. of transition from  to ¢ at position i of sequence
Rl J, summed over all positions of all sequences)
N ' .
=3 Sk IX) =S e SHHOH
P(Xj) 4
Jj=1 z.xé_b Jj=1 i:x;:b

'Superscript j corresponds to jth train example
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The Baum-Welch Algorithm (2)
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A = z ka P(L| k) P(x,, | ) b)(i+ 1)

Models

Stephen Scott

N N
b Eb) =Y Y Plmi=k|X) ZP D> i) B0
j=1

Hidden J=1 i:Xl,::b l.Xl,::b

Markov

Models

Specifying an

HMM @ Use these (& pseudocounts) to recompute P(¢ | k) and

State Sequence

— P(b|K)

@ After each iteration, compute log likelihood and halt if
no improvement
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Lecture 3:

. How to specify HMM states and connections?

Chains and

dcen States come from background knowledge on problem, e.g.,
Models size-4 alphabet, +/—, = 8 states
Stephen Scott
Connections:
Markov
Chains i . L.
Hidden @ Tempting to specify complete connectivity and let
Mark i
oo Baum-Welch sort it out
Speciying an @ Problem: Huge number of parameters could lead to
St Scuarce local max
S s @ Better to use background knowledge to invalidate some
Structure

connections by initializing P(¢ | k) =0
e Baum-Welch will respect this



Wever-Y Silent States

Py May want to allow model to generate sequences with

Lecture 3 certain parts deleted

Chains and
Hidden
Markov

Varko @ E.g., when aligning sequences against a fixed model,
Steph‘;d::m some parts of the input might be omitted

Markov
Chains
Hidden

Markov 9 i 9
Models

Specifying an
HMM

State Sequence
Known

State Sequence
Unknown

Structure

Problem: Huge number of connections, slow training, local
maxima
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Markov
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Models

Specifying an
HMM

State Sequence
Known

State Sequence
Unknown

Structure

Silent States (2)

@ Silent states (like begin and end states) don’t emit
symbols, so they can “bypass” a regular state

—

@ If there are no purely silent loops, can update Viterbi,
forward, and backward algorithms to work with silent
states [Durbin et al., p. 72]

@ Used extensively in profile HMMs for modeling
sequences of protein families (aka multiple alignments)
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