CSCE 471/871 Lecture 3: Markov Chains Hidden Markov Models

Stephen Scott

sscott@cse.unl.edu

4 D > 4 D > 4 E > 4 E > E 9 Q C

4 D > 4 B > 4 E > 4 E > E 9 Q C

Nebraska

Outline

- Markov chains
- Hidden Markov models (HMMs)
- Formal definition
 - Finding most probable state path (Viterbi algorithm)
 - Forward and backward algorithms
 - Specifying an HMM
 - State sequence known
 - State sequence unknown
 - Structure

(ロ) (周) (注) (注) (注) のQ(C

Nebraska

Markov Chains An Example: CpG Islands

- Focus on nucleotide sequences
- The sequence "CG" (written "CpG") tends to appear more frequently in some places than in others
- Such CpG islands are usually $10^2 10^3$ bases long
- Questions:
 - Given a short segment, is it from a CpG island?
 - Given a long segment, where are its islands?

Nebraska

Modeling CpG Islands

Model will be a CpG generator

- Want probability of next symbol to depend on current
- Will use a standard (non-hidden) Markov model
 - Probabilistic state machine
 - Each state emits a symbol

4 D > 4 B > 4 E > 4 E > E 9 Q C

Nebraska

Modeling CpG Islands (2)

 $P(A \mid T)$ 4 D > 4 B > 4 E > 4 E > E 9 Q C Nebraska

The Markov Property

• A first-order Markov model (what we study) has the property that observing symbol \mathbf{x}_i while in state π_i depends only on the previous state π_{i-1} (which generated \mathbf{x}_{i-1})

• Standard model has 1-1 correspondence between symbols and states, thus

 $P(\mathbf{x}_i \mid \mathbf{x}_{i-1}, \dots, \mathbf{x}_1) = P(\mathbf{x}_i \mid \mathbf{x}_{i-1})$

and

 $P(\mathbf{x}_1,\ldots,\mathbf{x}_L) = P(\mathbf{x}_1) \prod_{i=2}^L P(\mathbf{x}_i \mid \mathbf{x}_{i-1})$

(ロ) (周) (注) (注) (注) のQ(C)

Begin and End States

• For convenience, can add special "begin" (B) and "end" (E) states to clarify equations and define a distribution over sequence lengths

• Emit empty (null) symbols \mathbf{x}_0 and \mathbf{x}_{L+1} to mark ends of sequence

Nebraska

Markov Chains for Discrimination

 How do we use this to differentiate islands from non-islands?

 Define two Markov models: islands ("+") and non-islands ("-")

• Each model gets 4 states (A, C, G, T)

Take training set of known islands and non-islands

• Let $c_{st}^+ = \text{number of times symbol } t \text{ followed symbol } s \text{ in }$ an island:

$$\hat{P}^{+}(t \mid s) = \frac{c_{st}^{+}}{\sum_{t'} c_{st'}^{+}}$$

• Example probabilities in [Durbin et al., p. 51]

• Now score a sequence $X = \langle \mathbf{x}_1, \dots, \mathbf{x}_L \rangle$ by summing the log-odds ratios:

$$\log\left(\frac{\hat{P}(X\mid+)}{\hat{P}(X\mid-)}\right) = \sum_{i=1}^{L+1} \log\left(\frac{\hat{P}^{+}(\mathbf{x}_{i}\mid\mathbf{x}_{i-1})}{\hat{P}^{-}(\mathbf{x}_{i}\mid\mathbf{x}_{i-1})}\right)$$

Nebraska

Hidden Markov Models

- Second CpG question: Given a long sequence, where are its islands?
 - · Could use tools just presented by passing a fixed-width window over the sequence and computing scores
 - Trouble if islands' lengths vary
 - Prefer single, unified model for islands vs. non-islands

• Within the + group, transition probabilities similar to those for the separate + model, but there is a small chance of switching to a state in the - group

Nebraska

What's Hidden in an HMM?

 No longer have one-to-one correspondence between states and emitted characters

- E.g., was C emitted by C₊ or C₋?
- Must differentiate the symbol sequence X from the state sequence $\pi = \langle \overline{\pi_1, \dots, \pi_L} \rangle$
 - State transition probabilities same as before: $P(\pi_i = \ell \mid \pi_{i-1} = j)$ (i.e., $P(\ell \mid j)$)
 - Now each state has a prob. of emitting any value: $P(\mathbf{x}_i = \mathbf{x} \mid \pi_i = j)$ (i.e., $P(\mathbf{x} \mid j)$)

Nebraska

What's Hidden in an HMM? (2)

P(1|1)P(2|2)P(3|3)P(2|1)P(3|2)

[In CpG HMM, emission probs discrete and = 0 or 1]

4 D > 4 B > 4 E > 4 E > E 9 Q C

Nebraska

Example: The Occasionally Dishonest Casino

 Assume that a casino is typically fair, but with probability 0.05 it switches to a loaded die, and switches back with probability 0.1

• Given a sequence of rolls, what's hidden?

The Viterbi Algorithm

 Probability of seeing symbol sequence X and state sequence π is

$$P(X, \pi) = P(\pi_1 \mid 0) \prod_{i=1}^{L} P(\mathbf{x}_i \mid \pi_i) P(\pi_{i+1} \mid \pi_i)$$

Can use this to find most likely path:

$$\pi^* = \operatorname*{argmax}_{\pi} P(X, \pi)$$

and trace it to identify islands (paths through "+" states)

• There are an exponential number of paths through chain, so how do we find the most likely one?

4 D > 4 D > 4 E > 4 E > E 9 Q C

Nebraska

The Viterbi Algorithm (2)

most likely path ending in state k with observation \mathbf{x}_i Then

• Assume that we know (for all k) $v_k(i) =$ probability of

$$v_{\ell}(i+1) = P(\mathbf{x}_{i+1} \mid \ell) \max_{k} \{v_{k}(i) P(\ell \mid k)\}$$

All states at i

Nebraska

The Viterbi Algorithm (3)

Given the formula, can fill in table with dynamic programming:

- $v_0(0) = 1$, $v_k(0) = 0$ for k > 0
- For i = 1 to L; for $\ell = 1$ to M (# states)
 - $\bullet \ v_{\ell}(i) = P(\mathbf{x}_i \mid \ell) \ \max_{k} \{v_k(i-1) P(\ell \mid k)\}\$
 - $\operatorname{ptr}_{i}(\ell) = \operatorname{argmax}_{k} \{ v_{k}(i-1) P(\ell \mid k) \}$
- $P(X, \pi^*) = \max_k \{v_k(L) P(0 \mid k)\}$
- $\bullet \ \pi_L^* = \operatorname{argmax}_k \{ v_k(L) P(0 \mid k) \}$
- For i = L to 1
 - $\bullet \ \pi_{i-1}^* = \operatorname{ptr}_i(\pi_i^*)$

To avoid underflow, use $\log(v_{\ell}(i))$ and add

Nebraska

The Forward Algorithm

Given a sequence X, find $P(X) = \sum_{\pi} P(X, \pi)$

Use dynamic programming like Viterbi, replacing max with sum, and $v_k(i)$ with $f_k(i) = P(\mathbf{x}_1, \dots, \mathbf{x}_i, \pi_i = k)$ (= prob. of observed sequence through x_i , stopping in state k)

- $f_0(0) = 1, f_k(0) = 0$ for k > 0
- For i = 1 to L; for $\ell = 1$ to M (# states)
 - $f_{\ell}(i) = P(\mathbf{x}_i \mid \ell) \sum_{k} f_k(i-1) P(\ell \mid k)$
- $P(X) = \sum_{k} f_k(L) P(0 \mid k)$

To avoid underflow, can again use logs, though exactness of results compromised (Section 3.6)

Nebraska

The Backward Algorithm

Given a sequence X, find the probability that \mathbf{x}_i was emitted by state k, i.e.,

$$P(\pi_i = k \mid X) = \frac{P(\pi_i = k, X)}{P(X)}$$

$$= \underbrace{\frac{f_k(i)}{P(\mathbf{x}_1, \dots, \mathbf{x}_i, \pi_i = k)} \underbrace{P(\mathbf{x}_{i+1}, \dots, \mathbf{x}_L \mid \pi_i = k)}_{P(X)}}_{\text{computed by forward alg}}$$

Algorithm:

- $b_k(L) = P(0 \mid k)$ for all k
- For i = L 1 to 1; for k = 1 to M (# states)

• $b_k(i) = \sum_{\ell} P(\ell \mid k) P(\mathbf{x}_{i+1} \mid \ell) b_{\ell}(i+1)$

Nebraska

Example Use of Forward/Backward Algorithm

Define g(k) = 1 if $k \in \{A_+, C_+, G_+, T_+\}$ and 0 otherwise Then $G(i \mid X) = \sum_{k} P(\pi_i = k \mid X) g(k) = \text{probability that } \mathbf{x}_i \text{ is}$

in an island For each state k, compute $P(\pi_i = k \mid X)$ with

forward/backward algorithm Technique applicable to any HMM where set of states is

partitioned into classes

Use to label individual parts of a sequence

Specifying an HMM

- Two problems: defining structure (set of states) and parameters (transition and emission probabilities)
- Start with latter problem, i.e., given a training set X_1, \ldots, X_N of independently generated sequences, learn a good set of parameters $\boldsymbol{\theta}$
- Goal is to maximize the (log) likelihood of seeing the training set given that θ is the set of parameters for the HMM generating them:

$$\sum_{j=1}^{N} \log(P(X_j; \theta))$$

Nebraska

When State Sequence Known

- Estimating parameters when e.g., islands already identified in training set
- Let $A_{k\ell} =$ number of $k \to \ell$ transitions and $E_k(b) =$ number of emissions of b in state k

$$P(\ell \mid k) = A_{k\ell} / \left(\sum_{\ell'} A_{k\ell'} \right)$$

$$P(b \mid k) = E_k(b) / \left(\sum_{b'} E_k(b') \right)$$

Nebraska

When State Sequence Known (2)

Be careful if little training data available

- E.g., an unused state k will have undefined parameters
- Workaround: Add pseudocounts $r_{k\ell}$ to $A_{k\ell}$ and $r_k(b)$ to $E_k(b)$ that reflect prior biases about probabilities
- Increased training data decreases prior's influence
- [Sjölander et al. 96]

Nebraska

The Baum-Welch Algorithm

- Estimating parameters when state sequence unknown
- Special case of expectation maximization (EM) alg
- Start with arbitrary $P(\ell \mid k)$ and $P(b \mid k)$, and use to estimate $A_{k\ell}$ and $E_k(b)$ as expected number of occurrences given the training set1:

$$A_{k\ell} = \sum_{j=1}^{N} \frac{1}{P(X_j)} \sum_{i=1}^{L} f_k^j(i) P(\ell \mid k) P(\mathbf{x}_{i+1}^j \mid \ell) b_\ell^j(i+1)$$

(Prob. of transition from k to ℓ at position i of sequence *i*, summed over all positions of all sequences)

$$E_k(b) = \sum_{j=1}^{N} \sum_{i: \mathbf{x}_j^i = b} P(\pi_i = k \mid X_j) = \sum_{j=1}^{N} \frac{1}{P(X_j)} \sum_{i: \mathbf{x}_j^i = b} f_k^j(i) b_k^j(i)$$

¹Superscript *j* corresponds to *j*th train example

Nebraska

The Baum-Welch Algorithm (2)

 $E_k(b) = \sum_{i=1}^{N} \sum_{i \cdot \mathbf{x}^j = b} P(\pi_i = k \mid X_j) = \sum_{j=1}^{N} \frac{1}{P(X_j)} \sum_{i : \mathbf{x}^j = b} f_k^j(i) b_k^j(i)$

 $A_{k\ell} = \sum_{i=1}^{N} \frac{1}{P(X_j)} \sum_{i=1}^{L} f_k^j(i) P(\ell \mid k) P(\mathbf{x}_{i+1}^j \mid \ell) b_\ell^j(i+1)$

- Use these (& pseudocounts) to recompute $P(\ell \mid k)$ and
- After each iteration, compute log likelihood and halt if no improvement

Nebraska

HMM Structure

How to specify HMM states and connections?

States come from background knowledge on problem, e.g., size-4 alphabet, +/-, \Rightarrow 8 states

Connections:

- Tempting to specify complete connectivity and let Baum-Welch sort it out
- Problem: Huge number of parameters could lead to local max
- Better to use background knowledge to invalidate some connections by initializing $P(\ell \mid k) = 0$
 - Baum-Welch will respect this

Silent States

May want to allow model to generate sequences with certain parts deleted

• E.g., when aligning sequences against a fixed model, some parts of the input might be omitted

Problem: Huge number of connections, slow training, local maxima

Nebraska

Silent States (2)

• Silent states (like begin and end states) don't emit symbols, so they can "bypass" a regular state

- If there are no purely silent loops, can update Viterbi, forward, and backward algorithms to work with silent states [Durbin et al., p. 72]
- Used extensively in profile HMMs for modeling sequences of protein families (aka multiple alignments)

