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@ Focus on nucleotide sequences

@ The sequence “CG” (written “CpG”) tends to appear
more frequently in some places than in others

@ Such CpG islands are usually 10>-10° bases long

@ Questions:

@ Given a short segment, is it from a CpG island?
@ Given a long segment, where are its islands?
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@ Markov chains
@ Hidden Markov models (HMMs)
e Formal definition
e Finding most probable state path (Viterbi algorithm)
e Forward and backward algorithms
@ Specifying an HMM
o State sequence known
e State sequence unknown
e Structure
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@ Model will be a CpG generator

@ Want probability of next symbol to depend on current
symbol

@ Will use a standard (non-hidden) Markov model

@ Probabilistic state machine
o Each state emits a symbol
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@ A first-order Markov model (what we study) has the
property that observing symbol x; while in state =;
depends only on the previous state m;_; (which
generated x;_1)

@ Standard model has 1-1 correspondence between
symbols and states, thus
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x1) = P(xi) [ P(xi [ xi-1)

i=2
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Begin and End States Nebidska

@ For convenience, can add special “begin” (B) and “end” p
(E) states to clarify equations and define a distribution s

Chains and

over sequence lengths Hidden
@ Emit empty (null) symbols x, and x;; to mark ends of e
sequence
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@ Second CpG question: Given a long sequence, where
are its islands?
e Could use tools just presented by passing a fixed-width Chiaiislard
window over the sequence and computing scores Markov
o Trouble if islands’ lengths vary Models
e Prefer single, unified model for islands vs. non-islands
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e Within the + group, transition probabilities similar to
those for the separate + model, but there is a small
chance of switching to a state in the — group
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[In CpG HMM, emission probs discrete and = 0 or 1]

Markov Chains for Discrimination

@ How do we use this to differentiate islands from
non-islands?
@ Define two Markov models: islands (“+”) and
non-islands (“—")
e Each model gets 4 states (A, C, G, T)
o Take training set of known islands and non-islands
e Let ¢} = number of times symbol ¢ followed symbol s in
an island:

- o
Pi(t]s) = ==
v Cott

@ Example probabilities in [Durbin et al., p. 51]
@ Now score a sequence X = (xi, ..., x.) by summing the
log-odds ratios:

X)) - <P+(x,-x,-_1>>
10g< x| )> ;log Pi(Xz‘ | xi—1)

~| ~>

What’s Hidden in an HMM?

@ No longer have one-to-one correspondence between
states and emitted characters
e E.g., was C emittedby C; orC_?
@ Must differentiate the symbol sequence X from the
state sequence m = (my,...,7L)
o State transition probabilities same as before:
P(mi =] mi_y =) (i.e., P(€] )
e Now each state has a prob. of emitting any value:
P(x; =x | m =) (i.e., P(x|]))

Example: The Occasionally Dishonest Casino

@ Assume that a casino is typically fair, but with
probability 0.05 it switches to a loaded die, and
switches back with probability 0.1

Fair Loaded
1: 1/6 1: 1/10
2:1/6 005 _|2:1/10
3:1/6 3:1/10
4:1/6 4:1/10
5:1/6 01 5:1/10
6:1/6 ' 6:1/2

00.95 0.9U

@ Given a sequence of rolls, what’s hidden?
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sequence  is il o Then

Markov Markov

Models Models

L . .
ve(i + 1) = P(xi41 | £) max{ve(i) P(¢ | k)}

Stephen Scott P(X, 71') _ P(TI’] | 0) HP(XI ‘ 7Ti) P(7ri+l ‘ 7Ti) Stephen Scott k
Markov i=1 Markov All states at i
Chains Chains | . f
Hidden @ Can use this to find most likely path: Hidden

Markov
Models

Markov
Models
State [ at
7 = argmax P(X, ) i1
™
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Specifying an
M and trace it to identify islands (paths through “+” states)

@ There are an exponential number of paths through
chain, so how do we find the most likely one?
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prisedll  Given the formula, can fill in table with dynamic N Given a sequence X, find PX) =3 P(X,7)
ains an H . ains an ’ ™ ’
CT—hdden d programmlng' CT—hdden o . . . . . . .
Markov Use dynamic programming like Viterbi, replacing max with
Models .
sum, and vi (i) with (i) = P(xi, ..., x;, m = k) (= prob. of

observed sequence through x;, stopping in state k)

Markov
Models

@ 1(0) = 1, v (0) = 0 for k > 0

@ Fori=1toL;for¢ =110 M (# states)
Markov . . Markov
Chains ° Vf(l) = P(X,‘ ‘ Z) maxk{vk(l - 1) P(/ ‘ k)} Chains
Hidden o ptr;(¢) = argmax,{v(i — 1) P(¢ | k)} Hidden © fo(0) =1, /i(0) = 0fork > 0

ey o P(X,7*) = maxg{vk(L) P(0 | k)} ey @ Fori=1toL;for¢=1to M (# states)
o 7 = argmax, {v(L) P(0 | )} © Juld) = Pl | O) 2 feli = ) P(ET K)

A o Fori— Lo . © P(X) = X, iL)PO[K)

HMM € _ % HMM X .
o my = ptr() To avoid underflow, can again use logs, though exactness of
results compromised (Section 3.6)

Stephen Scott Stephen Scott

To avoid underflow, use log(v,(i)) and add
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CocE Given a sequence X, find the probability that x; was emitted

471/871
Lecture 3: i
eclure 3 by state , i.e.,
Chains and
Hidden

Markov P(’Tl'l' = k,X) Markov
Madels P(mi=k|X)= X RE=S Then G(i | X) = 3, P(m; = k | X) g(k) = probability that x; is
Stephen Scott Stephen Scott in an island
o fie(i) bi (i) ok
Chains P(x1,....x, 1 = k) P(Xis1,....%X, | 7 = k) Chains For each state k, compute P(m; = k | X) with
Hiden = P(X) bicey forward/backward algorithm

Models Models

computed by forward alg Technique applicable to any HMM where set of states is
partitioned into classes

Specifying an Algorithm: Specifying an
i FvM @ Use to label individual parts of a sequence

@ bi(L) = P(0 | k) for all k
@ Fori=L—1to1;fork=1to M (# states)
0 bi(i) =22, P(C] k) P(xipy [ £) be(i + 1)
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State Sequence

Specifying an HMM

@ Two problems: defining structure (set of states) and
parameters (transition and emission probabilities)

@ Start with latter problem, i.e., given a training set
X1, ..., Xy of independently generated sequences,
learn a good set of parameters ¢

@ Goal is to maximize the (log) likelihood of seeing the
training set given that 6 is the set of parameters for the
HMM generating them:

N
Z log(P(Xj; 0))
j=1

When State Sequence Known (2)

Be careful if little training data available

@ E.g., an unused state k will have undefined parameters

@ Workaround: Add pseudocounts ry, to Az and ri(b) to
Ey(D) that reflect prior biases about probabilities

@ Increased training data decreases prior’s influence
@ [Sjolander et al. 96]

The Baum-Welch Algorithm (2)

L

@ Use these (& pseudocounts) to recompute P(¢ | k) and
P(b | k)

@ After each iteration, compute log likelihood and halt if
no improvement
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Models identified in training set

Stz e @ Let Ay, = number of k — ¢ transitions and E(b) =
- number of emissions of b in state k

Chains

Hidden

e P(0| k) = Ape / (Z Aw>
(/

P(b | k) = Ex(b) / <Z Ek(b’)>
b/

State Sequence
Kn
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The Baum-Welch Algorithm
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e @ Estimating parameters when state sequence unknown
ecture 3:

Markov @ Special case of expectation maximization (EM) alg

Chains and

hicklen @ Start with arbitrary P(¢ | k) and P(b | k), and use to
Models estimate Ay, and E;(b) as expected number of
SIS occurrences given the training set':
et N L , ,
iden A=) oo ) S AGPE] k)P, | 0B+ 1)
Modsts j=1 1) i=1
e (Prob. of transition from k to ¢ at position i of sequence

J» summed over all positions of all sequences)

N N
E(b) =) > P(mi=k|X;)= Z% Zﬂc‘(’.)bll.c(i)
J=1 J i:x§:b

Jj=1 ix|=b

State Sequence
Unknown

Superscript j corresponds to jth train example

e o

HMM Structure

Lincoln

CSCE
471/871
Lecture 3:
Markov
Chains and
Hidden
Markov
Models

How to specify HMM states and connections?

States come from background knowledge on problem, e.g.,
size-4 alphabet, +/—, = 8 states

Stephen Scott

Connections:

Markov
Chains

@ Tempting to specify complete connectivity and let
Baum-Welch sort it out
@ Problem: Huge number of parameters could lead to
local max
@ Better to use background knowledge to invalidate some
connections by initializing P(¢ | k) =0
o Baum-Welch will respect this
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oo May want to allow model to generate sequences with

Leclure o certain parts deleted
Chains and

Hidd . . . .
Markov @ E.g., when aligning sequences against a fixed model,

Models some parts of the input might be omitted
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Structure

Problem: Huge number of connections, slow training, local
maxima
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@ If there are no purely silent loops, can update Viterbi,

. forward, and backward algorithms to work with silent

siure states [Durbin et al., p. 72]

@ Used extensively in profile HMIMs for modeling
sequences of protein families (aka multiple alignments)



