

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal Algorithm

Heuristic Algorithms

Statistical Validation

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

sscott@cse.unl.edu

Outline

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring Optimal

Algorithm

Heuristic Algorithms Statistical Validation

- What is a sequence alignment?
- Why should we care?
- How do we do it?
 - Scoring matrices
 - Algorithms for finding optimal alignments
 - Statistically validating alignments

What is a Sequence Alignment?

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

What

Why

Scoring

Optimal Algorithm

Heuristic Algorithms

- Given two nucleotide or amino acid sequences, determine if they are related (descended from a common ancestor)
- Technically, we can align any two sequences, but not always in a meaningful way
- In this lecture, we'll focus on AA sequences, but same alignment principles hold for DNA sequences

What is a Sequence Alignment? (cont'd)

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alianments

What

Why How

Scoring

Optimal Algorithm

Heuristic Algorithms

Statistical Validation HIGHLY RELATED:

HBA HUMAN GSAOVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL

G+ +VK+HGKKV A+++++AH+D++ +++++T₁S+T₁H

HBB HUMAN GNPKVKAHGKKVI.GAFSDGI.AHI.DNI.KGTFATI.SEI.HCDKI.

RELATED: HBA HUMAN

GSAOVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL

++ ++++H+ KV + +A ++ +T.+ T.+++H+ K

LGB2 LUPLU NNPELOAHAGKVFKLVYEAAIOLOVTGVVVTDATLKNLGSVHVSKG

SPURIOUS ALIGNMENT:

HBA HUMAN GSAOVKGHGKKVADALTNAVAHVDDMPNALSALSD----LHAHKL

GS++G+++ H+ D+ A + AT++AH+

F11G11.2 GSGYLVGDSLTFVDLL--VAOHTADLLAANAALLDEFPOFKAHOE

How to filter out the last one & pick up the second?

Why Should We Care?

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments
What
Why

How

Scoring Optimal

Algorithm Heuristic

Algorithms
Statistical
Validation

Fragment assembly in DNA sequencing

- Experimental determination of nucleotide sequences is only reliable up to about 500-800 base pairs (bp) at a time
- But a genome can be millions of bp long!
- If fragments overlap, they can be assembled:

...AAGTACAATCA
CAATTACTCGGA...

Need to align to detect overlap

Why Should We Care? (cont'd)

471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments What

Why

Scoring

Optimal Algorithm

Heuristic Algorithms

- Finding homologous proteins and genes
 - I.e., evolutionarily related (common ancestor)
 - Structure and function are often similar, but this is reliable only if they are evolutionarily related
 - Thus want to avoid the spurious alignment of Slide 4

How do we do it?

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments What Why

Scoring

Optimal Algorithm

Heuristic Algorithms

- Choose a scoring scheme
- Choose an algorithm to find optimal alignment wrt scoring scheme
- Statistically validate alignment

Scoring Schemes

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

PAM BLOSUM Gap Penalties

Optimal Algorithm

Heuristic Algorithms

- Since goal is to find related sequences, want evolution-based scoring scheme
 - Mutations occur often at the genomic level, but their rates of <u>acceptance</u> by natural selection vary depending on the mutation
 - E.g., changing an AA to one with similar properties is more likely to be accepted
- Assume that all changes occur independently of each other and are Markovian
 - ⇒ Changes occuring now are independent of those in the past
 - → Makes working with probabilities easier

Scoring Schemes (cont'd)

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

PAM BLOSUM Gap Penalties

Optimal Algorithm

Heuristic Algorithms

Statistical Validation

• If AA a_i is aligned with a_j , then a_j was substituted for a_i

```
...KALM...
```

- Was this due to an accepted mutation or simply by chance?
 - If A or V is likely in general, then there is less evidence that this is a mutation
- Want the score s_{ij} to be higher if mutation more likely
 - Take ratio of mutation prob. to prob. of AA appearing at random
- Generally, if a_j is similar to a_i in property, then accepted mutation more likely and s_{ij} higher

Scoring Schemes (cont'd)

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

PAM BLOSUM Gap Penalties

Optimal Algorithm

Heuristic Algorithms

- Only consider <u>immediate mutations</u> $a_i \rightarrow a_j$, not $a_i \rightarrow a_k \rightarrow a_j$
- Mutations are <u>undirected</u>
 - ⇒ scoring matrix is symmetric

The PAM Transition Matrices

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

PAM

BLOSUM Gap Penalties

Optimal Algorithm

Heuristic Algorithms

- Dayhoff et al. started with several hundred manual alignments between very closely related proteins (≥ 85% similar in sequence), and manually-generated evolutionary trees
- Computed the frequency with which each AA is changed into each other AA over a short evolutionary distance (short enough where only 1% AAs change)
- 1 PAM = 1% point accepted mutation
- Becomes our measure of evolutionary "time"

The PAM Transition Matrices (cont'd)

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

PAM BLOSUM

Gap Penalties

Optimal Algorithm

Heuristic Algorithms

Statistical Validation • Estimate p_i with the frequency of AA a_i over both sequences, i.e., number of a_i 's/number of AAs

- Let $f_{ij} = f_{ji} =$ number of $a_i \leftrightarrow a_j$ changes in data set, $f_i = \sum_{j \neq i} f_{ij} =$ number of changes involving a_i , and $f = \sum_i f_i =$ number of changes
- Define the scale to be the amount of evolution to change 1 in 100 AAs (on average) [1 PAM dist]
- Relative mutability of a_i is the ratio of number of mutations to total exposure to mutation: $m_i = f_i/(100 f p_i)$

The PAM Transition Matrices (cont'd)

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

PAM

BLOSUM Gan Penalti

Gap Penalties

Optimal Algorithm Heuristic

Algorithms

Statistical Validation

- If m_i is probability of a mutation for a_i , then $M_{ii} = 1 m_i$ is prob. of no change
- $a_i \rightarrow a_j$ if and only if a_i changes and $a_i \rightarrow a_j$ given that a_i changes, so

$$egin{array}{lcl} M_{ij} &=& Pr(a_i
ightarrow a_j) \ &=& Pr(a_i
ightarrow a_j \mid a_i ext{ changed}) Pr(a_i ext{ changed}) \ &=& (f_{ij}/f_i) \, m_i = f_{ij}/(100 f \, p_i) \end{array}$$

• The 1 PAM transition matrix consists of the M_{ij} and gives the probabilities of mutations from a_i to a_i

Properties of PAM Transition Matrices

471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

3

Scoring

BLOSUM Gap Penalties

Optimal Algorithm

Heuristic Algorithms

Statistical Validation

$$\sum_{j} M_{ij} = \sum_{j \neq i} M_{ij} + M_{ii}$$

$$= 1/(100f p_i) \sum_{j \neq i} f_{ij} + (1 - f_i/(100f p_i))$$

$$= f_i/(100f p_i) + 1 - f_i/(100f p_i) = 1$$

[sum of probabilities of changes to an AA + prob of no change = 1]

$$\sum_{i} p_i M_{ii} = \sum_{i} p_i - \sum_{i} f_i / (100f) = 1 - f / (100f) = 0.99$$

[prob of no change to any AA is 99/100]

What About 2 PAM?

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

PAM BLOSUM

Gap Penalties

Optimal Algorithm

Heuristic Algorithms

- How about the probability that $a_i \rightarrow a_j$ in two evolutionary steps?
- It's the prob that $a_i \to a_k$ (for any k) in step 1, and $a_k \to a_j$ in step 2. This is $\sum_k M_{ik} M_{kj} = M_{ii}^2$

k PAM Transition Matrix

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

. .

Scoring

BLOSUM Gap Penalties

Optimal Algorithm

Heuristic Algorithms

- In general, the probability that $a_i \rightarrow a_j$ in k evolutionary steps is M_{ii}^k
- As $k \to \infty$, the rows of M^k tend to be identical with the *i*th entry of each row equal to p_i
 - A result of our Markovian assumption of mutation

Building a Scoring Matrix

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

PAM BLOSUM

Gap Penalties

Optimal Algorithm

Heuristic Algorithms

Statistical Validation

 When aligning different AAs in two sequences, want to differentiate mutations and random events

 Thus, interested in ratio of transition probability to prob. of randomly seeing new AA

$$\frac{M_{ij}}{p_i} = \frac{f_{ij}}{100 f p_i p_i} = \frac{M_{ji}}{p_i}$$
 (symmetric)

 Ratio > 1 if and only if mutation more likely than random event

Building a Scoring Matrix (cont'd)

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

PAM BLOSUM Gap Penalties

Optimal Algorithm

Heuristic Algorithms

Statistical Validation

When aligning multiple AAs, ratio of probs for multiple alignment = product of ratios:

$$\begin{array}{cccc} a_i & a_k & a_n & \cdots \\ a_j & a_\ell & a_m & \cdots \end{array} \longrightarrow \left(\begin{array}{c} \underline{M_{ij}} \\ \overline{p_j} \end{array} \right) \left(\begin{array}{c} \underline{M_{k\ell}} \\ \overline{p_\ell} \end{array} \right) \left(\begin{array}{c} \underline{M_{nm}} \\ \overline{p_m} \end{array} \right) \cdots$$

Taking logs will let us use sums rather than products

- ⇒ "Log odds"
- ⇒ Avoid underflow issues

Building a Scoring Matrix (cont'd)

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

PAM

BLOSUM Gap Penalties

Optimal Algorithm

Heuristic Algorithms

Statistical Validation

 Final step: Computation faster with integers than with reals, so scale up (to increase precision) and round:

$$s_{ij} = C \log_2 \left(\frac{M_{ij}}{p_j} \right)$$

- C is a scaling constant
- For k PAM, use M_{ij}^k

Building a Scoring Matrix (cont'd)

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

. .

Scoring

BLOSUM Gap Penalties

Optimal Algorithm

Heuristic Algorithms

PAM Scoring Matrix Miscellany

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

BLOSUM

Gap Penalties
Optimal

Algorithm Heuristic

Algorithms

- Pairs of AAs with similar properties (e.g., hydrophobicity) have high pairwise scores, since similar AAs are more likely to be accepted mutations
- In general, low PAM numbers find short, strong local similarities and high PAM numbers find long, weak ones
- Often multiple searches will be run, using e.g., 40 PAM, 120 PAM, 250 PAM
- Altschul (JMB, 219:555–565, 1991) gives discussion of PAM choice

BLOSUM Scoring Matrices

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

BLOSUM

Gap Penalties

Optimal Algorithm

Heuristic Algorithms

- Based on multiple alignments, not pairwise
- Direct derivation of scores for more distantly related proteins
- Only possible because of new data: Multiple alignments of known related proteins

BLOSUM Scoring Matrices (cont'd)

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

BLOSUM

Gap Penalties

Optimal Algorithm

Heuristic Algorithms

Statistical Validation Started with ungapped alignments from BLOCKS database

- Sequences clustered at L% sequence identity
- This time, f_{ij} = # of a_i ↔ a_j changes between pairs of sequences from different clusters, normalizing by dividing by (n₁n₂) = product of sizes of clusters 1 and 2
- $f_i = \sum_i f_{ij}$, $f = \sum_i f_i$ (different from PAM)
- Then the scoring matrix entry is

$$s_{ij} = C \log_2 \left(\frac{f_{ij} / f}{p_i p_i} \right)$$

BLOSUM 50 Scoring Matrix

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

PAM BLOSUM

Gap Penalties

Gap Penaitie

Optimal Algorithm

Heuristic

Algorithms

ARNDCQEGH-LKM	A 5 -2 -1 -1 -1 0 -2 -1 -1 -3 -1 1 0 -3 -2	R -2 7 -1 -2 -4 1 0 -3 0 -4 -3 3 -2 -3 -1 -1 -3	N -1 -1 7 2 -2 0 0 1 -3 -4 0 -2 -4 -2	D -2 -2 2 8 -4 0 2 -1 -1 -4 -4 -1 -4 -5 -1	C -1 -4 -2 -4 13 -3 -3 -3 -2 -2 -2 -2 -4 -1 -1 -5 -3 -1	Q -1 1 0 0 -3 7 2 -2 1 -3 -2 2 0 -4 -1	E -1 0 0 2 -3 2 6 -3 0 -4 -3 1 -2 -3 -1	G 0 -3 0 -1 -3 -2 -3 8 -2 -4 -4 -2 -3 -4 -2	H -2 0 1 -1 -3 1 0 -2 10 -4 -3 0 -1 -1 -2 -1 -2 -3	1 -1 -4 -3 -4 -2 -3 -4 -4 -4 5 2 -3 2 0 -3 3 -1 -3	L -2 -3 -4 -4 -2 -2 -3 -4 -3 2 5 -3 3 1 -4 -3 -1	K -1 3 0 -1 -3 2 1 -2 0 -3 -3 6 -2 -4 -1 0 -1	M -1 -2 -2 -4 -2 0 -2 -3 -1 2 3 -2 7 0 -3 -2 -1	F -3 -4 -5 -2 -4 -1 0 1 -4 0 8 -4	P -1 -3 -2 -1 -4 -1 -2 -2 -3 -4 -1 -3 -4	S 1 -11 0 -11 0 -13 -3 0 -2 -3 -1
Ē	-1	ò	Ô	2	-3	2	6	-3	ò	-4	-3	1	-2	-3	-1	-1
0	-1	-4	-2	-4	13	-3 7	-3	-3	-3	-2	-2	-3	-2	-2	-4	-1
Е	-1	0	0	2	-3	2	6	-3	0	-4	-3	1	-2	-3	-1	-1
G	0	-3	0	-1	-3	-2	-3	8	-2	-4	-4	-2	-3		-2	0
Н	-2	0	1	-1	-3	1	0	-2	10	-4	-3	0	-1	-1	-2	-1
- 1	-1	-4	-3	-4	-2	-3	-4	-4	-4	5	2	-3	2	0	-3	-3
L	-2	-3	-4	-4	-2	-2	-3	-4	-3	2	5	-3	3	1	-4	-3
K	-1	3	0	-1	-3	2	1	-2	0	-3	-3	6	-2	-4	-1	0
М	-1	-2	-2	-4	-2	0	-2	-3	-1		3	-2	7	0	-3	-2
F	-3	-3	-4	-5	-2	-4	-3	-4	-1	0	1	-4	0	8	-4	-3
Р	-1	-3	-2	-1	-4	-1	-1	-2	-2	-3	-4	-1	-3	-4	10 -1 -1	-1
S	1	-1		0	-1	0	-1 -1	0	-1	-3	-3	0	-2	-3	-1	5
S T	Ô	-1	1 0 -4	0 -1	-1	0 -1	-1	0 -2 -3	-2	-1	-1	-1	-1	-3 -2	-1	2
W	-3	-3	-4	-5	-5	-1	-3	-3	-3	-3	-2	-3	-1	1	-4	-4
~	2	1	2	3	3	· i	2	3	2	1	-1	2	'n	,	3	2
Y V	0	-1 -3	-2 -3	-3 -4	-3	-1 -3	-2 -3	-3 -4	2 -4	-1 4	1	-2 -3	0 1	4 -1	-3 -3	5 2 -4 -2
v	U	-3	-3	-4	- 1	-3	-3	-4	-4	4	,	-3	,	-1	-3	-2

Gap Penalties

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring PAM BLOSUM

Gap Penalties

Optimal Algorithm

Heuristic Algorithms

- A gap can be inserted in a sequence to better align downstream residues, e.g., alignments 2 & 3 on slide 4
- Two widely-used types of scoring functions:
 - Linear: $\gamma(g) = -gd$, where g is gap length and d is gap-open penalty (often choose d = 8)
 - Affine: $\gamma(g) = -d (g-1)e$, where e is gap-extension penalty (often choose d = 12, e = 2)
- Vingron & Waterman (JMB, 235:1–12, 1994) discuss penalty function choice in more detail

How do we do it?

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

PAM

BLOSUM

Gap Penalties

Optimal Algorithm

Heuristic Algorithms

- Choose a scoring scheme
- Choose an algorithm to find optimal alignment wrt scoring scheme
- Statistically validate alignment

Optimal Alignment Algorithms

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal Algorithm

Global Local Semiglobal

Heuristic Algorithms

Statistical Validation

 To find the best alignment, we can simply try all possible alignments of the two sequences, score them, and choose the best

Will this work?

Optimal Alignment Algorithms

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring Optimal

Algorithm

Global
Local

Local Semiglobal

Heuristic Algorithms

Statistical Validation

NO!

- The number of alignments grows with $\binom{2n}{n}$, e.g., n=100 residues/sequence $\Rightarrow > 9 \times 10^{58}$ alignments!
- So now what do we do?
 - Pull dynamic programming out of our algorithm toolbox
 - We'll see that optimal alignments of substrings are part of an optimal alignment of the larger strings

Types of Alignments

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Algorithm

Global

Local

Semiglobal

Heuristic Algorithms

- Will discuss DP algs for these types of alignments between seqs. x and y:
 - Global: Align all of x with all of y
 - ⇒ Useful when testing homology between two similarly-sized sequences
 - Local: Align a substring of x with a substring of y
 - ⇒ Useful when finding shared subsequences between proteins
 - Semiglobal ("Overlap"): Same as global, but ignore leading and/or trailing blanks
 - ⇒ Useful when doing fragment assembly
- For now, assume linear gap penalty

Global Alignment

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal Algorithm

Global

Local Semiglobal

Heuristic Algorithms

- Let F(i,j) = score of best alignment between x_{1...i} and y_{1...j}
- Given F(i-1,j-1), F(i-1,j), and F(i,j-1), what is F(i,j)?
- Three possibilities:

①
$$x_i$$
 aligned with y_j , e.g.,
$$\begin{bmatrix} I & G & A & x_i \\ L & G & V & y_j \end{bmatrix}$$
$$\Rightarrow F(i,j) = F(i-1,j-1) + s(x_i,y_i)$$

2
$$x_i$$
 aligned with gap, e.g., $\begin{bmatrix} A & I & G & A & x_i \\ L & G & V & y_j & - \end{bmatrix}$

$$\Rightarrow F(i,j) = F(i-1,j) - d$$

3
$$y_j$$
 aligned with gap, e.g., $\begin{bmatrix} G & A & x_i & - & - \\ S & L & G & V & y_j \end{bmatrix}$
 $\Rightarrow F(i,j) = F(i,j-1) - d$

Global Alignment (cont'd)

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal

Algorithm
Global
Local

Semiglobal
Heuristic
Algorithms

Statistical Validation Final update equation:

$$F(i,j) = \max \left\{ \begin{array}{l} F(i-1,j-1) + s(x_i,y_j) \\ F(i-1,j) - d \\ F(i,j-1) - d \end{array} \right.$$

$$F(i-1, j-1) \qquad F(i, j-1)$$

$$F(i-1, j) \qquad F(i, j)$$

• Boundary conditions: F(i,0) = -id, F(0,j) = -jd

Global Alignment (cont'd)

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal Algorithm

Global Local

Semiglobal
Heuristic
Algorithms

- Score of optimal global alignment is in F(n, m)
- ullet The alignment itself can be recovered if, for each F(i,j) decision, we kept track of which cell gave the max
 - Follow this path back to origin, and print alignment as we go
 - Figure 2.5, p. 21

Local Alignment

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring Optimal

Algorithm

Global

Semiglobal

Heuristic Algorithms

- Similar to global alignment algorithm
- Differences:
 - If an alignment's score goes negative, it's better to start a new one

$$F(i,j) = \max \begin{cases} 0 \\ F(i-1,j-1) + s(x_i, y_j) \\ F(i-1,j) - d \\ F(i,j-1) - d \end{cases}, \quad F(i,0) = F(0,j) = 0$$

- 2. Score of opt. align. is $\max_{i,j} \{F(i,j)\}$; end traceback at 0 score
- Figure 2.6, p. 23
- Must have expected score < 0 for rand. match and need some s(a, b) > 0

Overlap Matches (a.k.a. Semiglobal Alignment)

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal Algorithm Global

Local Semiglobal

Heuristic Algorithms Statistical

Validation

Which is better?

CAGCA-CTTGGATTCTCGG ---CAGCGTGG----

CAGCACTTGGATTCTCGG CAGC----G-T----GG

Overlap Matches (a.k.a. Semiglobal Alignment)

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal Algorithm

Local Semiglobal

Heuristic Algorithms

Statistical Validation

If match
$$= +1$$
, mismatch $= -1$ and gap $= -2$,

Ignoring end spaces will allow us to constrain alignment to containment or prefix-suffix overlap

$$\boldsymbol{\mathcal{X}}$$

ν

Overlap Matches (cont'd)

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal Algorithm Global

Local

Semiglobal

Heuristic Algorithms

•
$$F(i,0) = F(0,j) =$$

- Score of optimal alignment =
- \bullet F(i,j) =
- Figure 2.8, p. 27

General Gap Penalty Functions

471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal Algorithm

Local Semiglobal

Heuristic Algorithms

Statistical Validation If gap penalty $\gamma(g)$ not linear, can still do optimal alignment:

$$F(i,j) = \max \left\{ \begin{array}{l} F(i-1,j-1) + s(x_i,y_j) \\ \max_{k=0,...,i-1} \{F(k,j) + \gamma(i-k)\} \\ \max_{k=0,...,j-1} \{F(i,k) + \gamma(j-k)\} \end{array} \right.$$

$$F(0,j) = \gamma(j)$$

$$F(i,0) = \gamma(i)$$

Time complexity now $\Theta(n^3)$, versus $\Theta(n^2)$ for old alg

Affine Gap Penalty Functions

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal Algorithm Global Local

Semiglobal

Heuristic Algorithms

- If gap penalty an affine function, can run in $\Theta(n^2)$ time
- Use 3 arrays:
 - **1** $M(i,j) = \text{best score to } (i,j) \text{ when } x_i \text{ aligns } y_j \text{ (case 1)}$
 - 2 $I_x(i,j)$ = best score when x_i aligns gap (case 2); insert. in x wrt y
 - $I_y(i,j) = \text{best score when } y_j \text{ aligns gap (case 3)}$

$$M(i,j) = s(x_i, y_j) + \max \left\{ egin{array}{l} M(i-1, j-1) \\ I_x(i-1, j-1) \\ I_y(i-1, j-1) \end{array}
ight.$$

$$I_x(i,j) = \max \begin{cases} M(i-1,j) - d \\ I_x(i-1,j) - e \end{cases}$$

$$I_y(i,j) = \max \begin{cases} M(i,j-1) - d \\ I_y(i,j-1) - e \end{cases}$$

Affine Gap Penalty Functions (cont'd)

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal Algorithm Global

Local Semiglobal

Heuristic Algorithms

$$M(i,j) = s(x_i, y_j) + \max \begin{cases} M(i-1, j-1) \\ I_x(i-1, j-1) \\ I_y(i-1, j-1) \end{cases}$$

$$I_x(i,j) = \max \begin{cases} M(i-1,j) - d \\ I_x(i-1,j) - e \end{cases}$$

$$I_{y}(i,j) = \max \begin{cases} M(i,j-1) - d \\ I_{y}(i,j-1) - e \end{cases}$$

$$M(0,0) = 0,$$
 $M(i,0) = M(0,j) = -\infty$
 $I_x(0,j) = -\infty,$ $I_x(i,0) = -d - (i-1)e$
 $I_y(i,0) = -\infty,$ $I_y(0,j) = -d - (j-1)e$

Affine Gap Penalty Functions (cont'd)

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

00011116

Optimal Algorithm Global Local

Semiglobal

Heuristic Algorithms

Heuristic Alignment Algorithms

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal Algorithm

Heuristic Algorithms

FASTA
Statistical
Validation

- Linear (vs. quadratic) time complexity
 - Important when making several searches in large databases
- Don't guarantee optimality, but very good in practice
- BLAST
- FASTA

BLAST

471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alianments

Scoring

Optimal Algorithm

Heuristic Algorithms BLAST FASTA

- Uses e.g., PAM or BLOSUM matrix to score alignments
- Returns substring alignments with strings in database that score higher than threshold S and are longer than min length
- Does not return string if it's a substring of another and scores lower
- Tries to minimize time spent on alignments unlikely to score higher than S

BLAST Steps

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal Algorithm

Heuristic Algorithms

BLAST

- Find short words (strings) that score high when aligned with query
- ② Use these words to search database for hits (each hit will be a seed for next step). Each hit will score = T < S to help avoid fruitless pursuits (lower $T \Rightarrow$ less chance of missing something & higher time complexity)
- Extend seeds to find matches with maximum score

Find High-Scoring Words

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal Algorithm

Heuristic Algorithms

FASTA
Statistical
Validation

List all words w characters long (w-mers) that score $\geq T$ with some query w-mer

 Pass a width-w window over the query and generate the strings that score ≥ T when aligned

```
Query: VTP|MKV|IVFC T=13, w=3 (PAM 250)

MKV score = 6 + 5 + 4 = 15

LKV score = 13

MRV score = 13

MKL score = 13

MKI score = 15

MKM score = 13
```


Find High-Scoring Words (cont'd)

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal

Algorithm
Heuristic
Algorithms

Algorithm BLAST FASTA

- Often use w = 3 or 4 characters and T = 11
- At most 20^w total w-mers
- ⇒ So 160000 w-mers for w = 4,8000 for w = 3
 - Can quickly find all with brute force, or save time with branch-and-bound (assume T = 13):

Search for Hits

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal Algorithm

Heuristic Algorithms

BLAST FASTA

- <u>Hit</u> = subsequence in data base that matches a high-scoring word from previous step
- To improve efficiency, represent set of high-scoring words with a DFA

Extending the Seeds

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal Algorithm

Heuristic Algorithms

BLAST FASTA

Statistical Validation

- Take each hit (seed) and extend it in both directions until score drops below best score so far minus buffer score
 - E.g., if buffer = 4, extend to right, then left:

So match PMKVIV with AMKLKV for a score of 16 = > = > > > > >

Extending the Seeds (cont'd)

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal Algorithm

Heuristic Algorithms BLAST

FASTA
Statistical
Validation

This is a linear-time greedy heuristic to increase speed

 Can miss better matches, e.g., if W-W or C-C pairs are near:

```
stop here
Query: VTPMKVIV | FCW | C
Database: ... WWAMKLKV | GWW | W ...
1 want to get here
```

- Increasing buffer will increase sensitivity, at the cost of increased time
- Choosing good values of parameters makes small the probability of missing a better match

BLAST: Time Complexity

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal Algorithm

Heuristic Algorithms

BLAST FASTA

- Expected-time computational complexity:
 O(W + Nw + NW/20^w) to generate word list, find hits & extend hits
 - W = number of high-scoring words generated and N = number of residues in database (M = query size is embedded in W)
 - ullet Can make Nw into N by replacing DFA with hash table
- Versus O(NM) for dynamic programming, where M = number residues in query

BLAST: Additions

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal Algorithm

Heuristic Algorithms BLAST FASTA

Statistical Validation Gapped BLAST: Allows gaps in local alignments

- Better reflects biological relationships
- Less efficient than standard BLAST
- Position-Specific Iterated (PSI) BLAST: Starts with a gapped BLAST search and adapts the results to a new query sequence for more searching
 - Automated "profile" search
 - Less efficient than standard BLAST

FASTA

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal Algorithm

Heuristic Algorithms

Statistical Validation

1. Start by finding k-tuples common to both sequences (ktup = 1 or 2)

Done with lookup table and <u>offset vector</u>

OFFSET VECTOR

10

FASTA (cont'd)

471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal Algorithm

Heuristic Algorithms BLAST FASTA

- Extend the exact word matches to find maximal scoring ungapped regions (similar to BLAST)
- Ungapped regions are joined into gapped regions, accounting for gap costs
- Realign candidate matches using full dynamic programming
- Increasing ktup improves speed but increases chance of missing true matches

How do we do it?

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring

Optimal Algorithm

Heuristic Algorithms BLAST FASTA

- Choose a scoring scheme
- Choose an algorithm to find optimal alignment wrt scoring scheme
- Statistically validate alignment

Statistically Validating Alignments

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Ŭ

Scoring Optimal

Algorithm

Heuristic Algorithms

- Once we take our highest-scoring hits, are we done?
 - What if none of the hits was good enough?
 - What is our threshold (minimum) score?
- Given a particular score, want a bound on the probability that a random sequence would get at least that score
 - Such a probability is given by an extreme value distribution (EVD)

EVD for Sequence Comparisons

[Karlin & Altschul 1990]

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Scoring Optimal

Algorithm Heuristic

Algorithms

Statistical Validation • Let λ be the unique positive solution to

$$\sum_{i,j} p_i \, p_j \exp(\lambda s_{ij}) = 1$$

 If the two aligned sequences are of length m and n, then the probability that a score S can occur with a random match is bounded by

$$P\left(S > \frac{\ln mn}{\lambda} + x\right) \le K \exp(-\lambda x),$$

where K is given in the paper

- So e.g., if x is such that $K \exp(-\lambda x) = 0.01$, then any score $S \ge x + (\ln mn)/\lambda$ has a 99% chance of being significant
 - Allows us to assess significance of any score and/or to set a threshold on minimum score