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@ What is a sequence alignment?

Alignments

Scoring @ Why should we care?

Optimal .
Algorith @ How do we do it?

Heuristic @ Scoring matrices
Algorithms e Algorithms for finding optimal alignments
sratstial e Statistically validating alignments

Validation
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Stephen Scott

@ Given two nucleotide or amino acid sequences,
Alignments determine if they are related (descended from a
T common ancestor)

How

Scoring @ Technically, we can align any two sequences, but not

Optimal i i
ras always in a meaningful way

Heuristic @ In this lecture, we’'ll focus on AA sequences, but same
Algorims alignment principles hold for DNA sequences

Statistical
Validation
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HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL

Szl Seetd G+ +VK+HGKKYV A+++++AH+D++ +++++LS+LH KL

HBB_HUMAN  GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL
Alignments

RELATED :

HBA_HUMAN  GSAQVKGHGKKVADALTNAVAHV-—-D—--DMPNALSALSDLHAHKL
Scoring ++ ++++H+ KV + A ++ +L+ L+++H+ K
o LGB2_LUPLU NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG
Algorithm
Houristic SPURIOUS ALIGNMENT:
Algorithms HBA_HUMAN  GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSD--—-LHAHKL
Statitica GS+ + G+ +D L ++ H+ D+ A +AL D FHAHY
N F11G11.2 GSGYLVGDSLTFVDLL--VAQHTADLLAANAALLDEFPQFKAHQE

How to filter out the last one & pick up the second?
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Stephen Scott @ Fragment assembly in DNA sequencing

JY— e Experimental determination of nucleotide sequences is
What only reliable up to about 500-800 base pairs (bp) at a
o time

Scoring e But a genome can be millions of bp long!

Optimal e If fragments overlap, they can be assembled:

:fj:‘z:? .. .AAGTACAATCA

Algorithms CAATTACTCGGA. ..

Statistical e Need to align to detect overlap

Validation
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Alignments Y F|nd|ng M proteinS and genes

What

= e l.e., evolutionarily related (common ancestor)

- e Structure and function are often similar, but this is
Optimal reliable only if they are evolutionarily related

Algorithm e Thus want to avoid the spurious alignment of Slide 4

Heuristic
Algorithms

Statistical
Validation
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Ali .
e @ Choose a scoring scheme

Why

@ Choose an algorithm to find optimal alignment wrt
Scoring scoring scheme
Optimal .y . .
Algorithm @ Statistically validate alignment

Heuristic
Algorithms

Statistical

Validation
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Alignments @ Since goal is to find related sequences, want

Stephen Scott evolution-based scoring scheme

Algnmens e Mutations occur often at the genomic level, but their _
Sooring rates of acceptance by natural selection vary depending
Al on the mutation

o oo e E.g., changing an AA to one with similar properties is
Optimal more likely to be accepted

Algoriim @ Assume that all changes occur independently of each
i other and are Markovian

Statistical = Changes occuring now are independent of those in the
Validation past

= Makes working with probabilities easier
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Pairwise @ If AA g; is aligned with g;, then a; was substituted for g;

Alignments

Stephen Scott ...KALM. ..

...KVLM. ..
Alignments . . .
Sooring @ Was this due to an accepted mutation or simply by
chance?
Gap Peralies e If Aor Vis likely in general, then there is less evidence
Optimal that this is a mutation
Algorithm . . i .
Hourstic @ Want the score s;; to be higher if mutation more likely
il o Take ratio of mutation prob. to prob. of AA appearing at
Statistical random

Validation

@ Generally, if a; is similar to a; in property, then accepted
mutation more likely and s;; higher
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Alignments

o @ Only consider immediate mutations a; — a;, not
PAM» a; — ayg — aj

e @ Mutations are undirected
Aigoritm = scoring matrix is symmetric

Heuristic
Algorithms

Statistical

Validation
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Alignments
Scoring

BLOSUM
Gap Penalties

Optimal
Algorithm

Heuristic

Algorithms

Statistical
Validation

The PAM Transition Matrices

@ Dayhoff et al. started with several hundred manual
alignments between very closely related proteins
(> 85% similar in sequence), and manually-generated
evolutionary trees

@ Computed the frequency with which each AA is
changed into each other AA over a short evolutionary
distance (short enough where only 1% AAs change)

@ 1 PAM = 1% point accepted mutation
@ Becomes our measure of evolutionary “time”
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Scoring

BLOSUM
Gap Penalties

Optimal
Algorithm

Heuristic

Algorithms

Statistical
Validation

The PAM Transition Matrices (cont’d)

@ Estimate p; with the frequency of AA a; over both
sequences, i.e., number of a;’s/number of AAs

@ Let fjj = f; = number of a; <+ a; changes in data set,
fi = X2/ = number of changes involving a;, and
f=>_,fi = number of changes

@ Define the scale to be the amount of evolution to
change 1 in 100 AAs (on average) [1 PAM dist]

@ Relative mutability of g; is the ratio of number of

mutations to total exposure to mutation:

mi = fi/ (100 p;)
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Algorithms

Statistical
Validation

The PAM Transition Matrices (cont’d)

@ If m; is probability of a mutation for a;, then M; = 1 — m;
is prob. of no change

@ a; — a; if and only if a; changes and a; — a; given that g;
changes, so

Mij = Pr(ai — aj)
= Pr(a; — a; | a; changed)Pr(a; changed)
= (fy/fi) mi = fij/(100f p;)

@ The 1 PAM transition matrix consists of the M;; and
gives the probabilities of mutations from a; to a;
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Stephen Scott i = E Mlj + Mii
i J#

Alignments

Scoring - 1/(100fp1) Zfl] + (1 —f,/(lOOfp,))
BLOSUM ];ﬁl
= fi/(100f p;) + 1 —f;/(100f p;) = 1
Algorithm
Ef“ﬂ?hic [sum of probabilities of changes to an AA + prob of no change = 1]
gorithms
Statistical
Validation ZpiMii — Zpi — Zfl/(l()Of) =1-—f/(100f) = 0.99
i i i

[prob of no change to any AA is 99/100]
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@ How about the probability that a; — a; in two
evolutionary steps?

o @ It’s the prob that a; — a; (for any k) in step 1, and
Scoring a — a; in Step 2. Thisis Zk ik Mk] = M2

Stephen Scott

BLOSUM
Gap Penalties

j .
Optimal S, J -
Algorithm /—2’—9

Heuristic

Algorithms _
Statistical - .
Validation | 1
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Alignments @ In general, the probability that a; — a; in k evolutionary
Scoring steps is Ml];

BLOSUM

P @ As k — oo, the rows of M* tend to be identical with the
Optimal ith entry of each row equal to p;

Algorithm . . .
@ A result of our Markovian assumption of mutation

Heuristic
Algorithms

Statistical
Validation
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Alanments @ When aligning different AAs in two sequences, want to

Stephen Seol differentiate mutations and random events
Al @ Thus, interested in ratio of transition probability to prob.
Scoring of randomly seeing new AA
Gap Penalties
My fi M

Optimal

Algorithm E - 100fplp] o Di

Heuristic

(symmetric)

Algorithms

Statistical

Validation @ Ratio > 1 if and only if mutation more likely than
random event
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Optimal
Algorithm

Heuristic

Algorithms

Statistical
Validation

Building a Scoring Matrix (cont'd)

When aligning multiple AAs, ratio of probs for multiple
alignment = product of ratios:

G e (M) () ()
aj ay dpy L pPj Pe Pm
Taking logs will let us use sums rather than products

= “Log odds”
= Avoid underflow issues
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Siephen Seot e Final step: Computation faster with integers than with

Alignments reals, so scale up (to increase precision) and round:
Scoring
BLOSUM Ml./
Gap Penalties Sij =C 10g2 (p
J

Optimal
Algorithm

Heuristic @ Cis a scaling constant
Algorith
SIS e For k PAM, use M}

Statistical
Validation
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Alignments

Scoring

BLOSUM
Gap Penalties

Optimal

Algorithm

Heuristic
Algorithms

Statistical
Validation

Building a Scoring Matrix (cont'd)

Takle 1 — The

log odds matrix for 250 PaMs

Imultiplied by 10]
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Stephen Scott @ Pairs of AAs with similar properties (e.g.,
hydrophobicity) have high pairwise scores, since similar
AAs are more likely to be accepted mutations

@ In general, low PAM numbers find short, strong local

SR similarities and high PAM numbers find long, weak ones
Algorthm @ Often multiple searches will be run, using e.g., 40 PAM,

Heuristic 120 PAM, 250 PAM

Alignments

Scoring

Algorithms

Statistcal @ Altschul (JMB, 219:555-565, 1991) gives discussion of
Validation PAM Choice
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Alignments @ Based on multiple alignments, not pairwise
e @ Direct derivation of scores for more distantly related

PAM

proteins

Gap Penalties

Qpia) @ Only possible because of new data: Multiple
alignments of known related proteins

Heuristic
Algorithms

Statistical
Validation
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Alignments

Scoring
PAM
BLOSUM
Gap Penalties

Optimal
Algorithm

Heuristic

Algorithms

Statistical
Validation

BLOSUM Scoring Matrices (cont’d)

@ Started with ungapped alignments from BLOCKS
database

@ Sequences clustered at L% sequence identity

@ This time, fjj = # of ¢; > a; changes between pairs of
sequences from different clusters, normalizing by
dividing by (n1n;) = product of sizes of clusters 1 and 2

® fi=> ity f=2f (differentfrom PAM)

@ Then the scoring matrix entry is

fij/f)
j=C1
Sij 08, (pipj
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Stephen Scott @ A gap can be inserted in a sequence to better align
downstream residues, e.g., alignments 2 & 3 on slide 4

Alignments

Scoring @ Two widely-used types of scoring functions:

s e Linear: v(g) = —gd, where g is gap length and d is
Geplcenelies gap-open penalty (often choose d = 8)

oo o Affine: v(g) = —d — (g — 1)e, where e is

Heuristic gap-extension penalty (often choose d = 12, e = 2)
i @ Vingron & Waterman (JMB, 235:1-12, 1994) discuss

clatistcal penalty function choice in more detail

Validation
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:"g”_me”ts @ Choose a scoring scheme
coring
@ Choose an algorithm to find optimal alignment

BLOSUM

CHITEE wrt scoring scheme
Optimal .y . .
Algorithm @ Statistically validate alignment

Heuristic
Algorithms

Statistical

Validation
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Stephen Scott

Alignments

@ To find the best alignment, we can simply try all
Optimal possible alignments of the two sequences, score them,
S and choose the best

Global
e @ Will this work?

Heuristic
Algorithms

Scoring

Statistical

Validation
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Stephen Scott N O '
[}

Alignments

Scoring

Opimal @ The number of alignments grows with (**), e.g., n = 100

residues/sequence = > 9 x 10°® alignments!

Local

Semiglobal ') SO now What dO we dO'?

Heuristic

Algorithms e Pull dynamic programming out of our algorithm toolbox
Statistical e We’'ll see that optimal alignments of substrings are part
Valdation of an optimal alignment of the larger strings
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Alignments @ Will discuss DP algs for these types of alignments

Stephen Scott between seqgs. x and y:

‘ o Global: Align all of x with all of y
Alenments = Useful when testing homology between two
Scoring similarly-sized sequences
et e Local: Align a substring of x with a substring of y
ool = Useful when finding shared subsequences between
Semiglobal protei ns
E@ﬁﬂﬁqs e Semiglobal (“Overlap”): Same as global, but ignore
Statstiont leading and/or trailing blanks
Validation = Useful when doing fragment assembly

@ For now, assume linear gap penalty



Wbty Global Alignment

cSCE
471/871 @ Let F(i,j) = score of best alignment between x;_; and

Lecture 2:

Algrments Y1 :
R — @ GivenF(i—1,j—1), F(i—1,j),and F(i,j — 1), what is
F(i,/)?
Alignments T
) @ Three possibilities:
Scoring
i , , I G A
f‘h'm @ x; aligned with y;, e.g., L G V ;Jl
o = F(i,j) = F(i—1,j—1) + s(x,y)
Heuristic . . A I G A x
Algorithms :
Sgu @ x; aligned with gap, e.g., L GV vy -
ta}lstlg:al
Validation = F(l,]) = F(l - 1,]) —d
. . G A x5 — -
© ; aligned with gap, e.g., S L GV y

= F(i,j))=F(,j—1)—d
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Alignments
Scoring

Optimal
Algorithm

Local
Semiglobal

Heuristic
Algorithms

Statistical
Validation

Global Alignment (cont'd)

@ Final update equation:

F(i,j) =max{ F(i—1,j)—d
F(i,j—1)—d

F(i-1,j-1) F(i,j-1)
]s(xi, YN / d

F(i-1,)) - = F(i, )

@ Boundary conditions: F(i,0) = —id, F(0,j) = —jd
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Alignments @ Score of optimal global alignment is in F(n,m)

Scoring @ The alignment itself can be recovered if, for each F (i, )
Qpiimal | decision, we kept track of which cell gave the max
Globa e Follow this path back to origin, and print alignment as

Local

Semiglobal we go
Heuristic ] Figure 2.5, p. 21

Algorithms

Statistical
Validation



hect=Y | ocal Alignment

Lincoln

CSCE
471/871 . . .
Lecture 2: @ Similar to global alignment algorithm

Pairwise

Alignments o Differences:
Stephen Scott 1. If an alignment’s score goes negative, it's better to start
‘ a new one
Alignments 0
Scoring
i . Fi—1,j=1) +s(x,y) ;
S () = X g p g  Fh0)=F0.)=0
- F(i,j—1)—d
Heuristic
Algorithms 2. Score of opt. align. is max; j/{F(i,j)}; end traceback at 0
Statistical score

Validation

@ Figure 2.6, p. 23

@ Must have expected score < 0 for rand. match and
need some s(a,b) > 0
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Alignments Which is better?

Scoring

Optimal
Algorithm CAGCA-CTTGGATTCTCGG CAGCACTTGGATTCTCGG

Global

--—CAGCGTGG-———-——- CAGC--——- G-T----GG

Semiglobal

Heuristic
Algorithms

Statistical
Validation
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Pairwise If match = +1, mismatch = —1 and gap = —2,

Alignments

Stephen Scott
— CAGCA-CTTGGATTCTCGG CAGCACTTGGATTICTCGG
ignments
- ———CAGCGTGG-——————— CAGC————- G-T----GG
Scoring
Optimal -19 -12
Algorithm
Ignoring end spaces will allow us to constrain alignment to
Heuristic containment or prefix-suffix overlap
Algorithms x x

Statistical
Validation

Y Y
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Alignments
Scoring

Optimal
Algorithm
Global
Local
Semiglobal

Heuristic
Algorithms

Statistical

Validation

Overlap Matches (cont’d)

® F(i,0) = F(0,j) =
@ Score of optimal alignment =
@ F(i,j) =

@ Figure 2.8, p. 27
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General Gap Penalty Functions

s If gap penalty v(g) not linear, can still do optimal alignment:

Lecture 2:

Algrments F(i—1,j—1) + s(x;,y;)
Stephen Scott F(l,]) = max maXg=o,...,i—1 {F(k,]) + ’Y(l — k)}
Alignments man:()me_l {F(l7 k) + 7(] - k)}
Scorin .
S £ — ()
Algorithm F(l7 0) = ’y(l)
Local °
Aporites F(i,j-2)
St rili) | FiD
Y vy (2)
eoe | F(i2,)) F(i-1, ) yT>> Fij) =

Time complexity now ©(n?), versus ©(n?) for old alg
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CSCE . . . .
471787+ e If gap penalty an affine function, can run in © (n?) time

Lecture 2:

prlnise @ Use 3 arrays:
@ M(i,j) = best score to (i,j) when x; aligns y; (case 1)
© I.(i,j) = best score when x; aligns gap (case 2);

Stephen Scott

Alignments insert. in x wrt y
Scoring © /,(i,j) = best score when y; aligns gap (case 3)
Optimal
Algorithm M(l 1 J 1)
Global - 1,)
g M(i,j) = s(x,y) +maxq L(i—1,j—1)
jouite Li=1j=1)
Statistical M(i -1 ) —d
Validation P — )

Ix(’a]) - max{ Ix(i _ 17]) —e

L(i,j) = max{ LG.j—1)—
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Lecture 2: M(l _ 1,.] _ 1)

Pairwise

Alignments M(l,]) = s(xi’yj) + max Ix(i — 1,_] — 1)
Stephen Scott Iy(l — 1,] — 1)
Alignments
Scoring M(l -1 ]) —d

ima I '7 . = 7 "
ooron dAbg) = max { L(i—1.j)—e

= D = e MG
:Igoritthms Iy(l’]) = max { Iy((l ] — 1)) —e

Statistical
Validation

M(0,0) =0, M(i,0) = M(0,j) = —c0
Jj) = —o0, L(i,0)=—d—(i—1)e
= —o00, L0,j))=—d—(j—1)e
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Stephen Scott

Alignments

Scoring

Optimal
Algorithm

Global
Local
Semiglobal

Heuristic
Algorithms

Statistical
Validation
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@ Linear (vs. quadratic) time complexity

e Important when making several searches in large
databases

Alignments
Scoring

Optirr_]al
Agortthm @ Don’t guarantee optimality, but very good in practice
Heuristic

Algorithms @ BLAST

BLAST

e @ FASTA

Statistical
Validation
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Stephen Scott @ Uses e.g., PAM or BLOSUM matrix to score alignments

Alignments @ Returns substring alignments with strings in database
Scoring that score higher than threshold S and are longer than

Optimal .
AIg(I)rithm min length

Heuristic @ Does not return string if it's a substring of another and
e scores lower

@ Tries to minimize time spent on alignments unlikely to

FASTA

Statistical

Validation score higher than §
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@ Find short words (strings) that score high when aligned
with query

Alignments

Scorin

Op“mj © Use these words to search database for hits (each hit
2ot will be a seed for next step). Each hit will score =T < S
e to help avoid fruitless pursuits (lower T = less chance
of missing something & higher time complexity)

Statistical © Extend seeds to find matches with maximum score

Validation



Weeete) Find High-Scoring Words

Lincoln

CSCE
471/871 .
Lecture 2: List all words w characters long (w-mers) that score > T

Pairwise

Alignments W|th some quel’y w-mer
Stephen Scott . .
@ Pass a width-w window over the query and generate

ALEATER the strings that score > T when aligned
Scoring
Optirr_]al
AT Query: VTP |MKV|IVEC T=13, w=3 (PAM 250)
Heurist
A&ﬁms MKV score = 6 + 5 4+ 4 =15
FASTA LKV score = 13
Statistical MRV score = 13
Validation

MKL score = 13

MKI score = 15

MKM score = 13



Weeet= Find High-Scoring Words (cont’d)

CSCE
471/871
Lecture 2:

Pairwise @ Often use w = 3 or 4 charactersand 7 = 11

Alignments

S @ At most 20" total w-mers
J— = So 160000 w-mers for w = 4, 8000 for w = 3
Scoring @ Can quickly find all with brute force, or save time with
el branch-and-bound (assume T = 13):
Heuristic A%
Rgoritis %MF m
° 9 U9 Q eee |

AT AA'1 5 1 1
=N 1% N >< >N ><>§ e
LIRS A

AA3 15131315% 13>JQ 1

%



W\everlsl Search for Hits

CSCE
471/871

Lecture 2: @ Hit = subsequence in data base that matches a

Pairwise

Alignments high-scoring word from previous step
Sl @ To improve efficiency, represent set of high-scoring
Alignments WOI’dS W|th a DFA
Scoring
Optimal K V’ L’ Ia M
Algorithm
e M = ‘

A%
sf:;:ncm Start stat} / Accept state
Validation D ‘ Vv
K

(Implicit transitions on all
unrecognized chars to this state)




et Extending the Seeds

pores @ Take each hit (seed) and extend it in both directions

Lecture 2:

Painvse until score drops below best score so far minus buffer
Al It
ignments score
Stephen Scott . .

@ E.g,, if buffer = 4, extend to right, then left:
Alignments
Scoring
Optimal 13 = original seed score
Algorithm | |
e Query: VT | PMKVIV | FCW
ey Database: ... WW | AMKLKV | GWW
Sta_tisti_cal 1 1 1 1
Validation 1 6 1 O

1

So match PMKVIV with AMKLKYV for a score of-16



bty Extending the Seeds (cont'd)

Lincoln

CSCE . . . s .
471/871 @ This is a linear-time greedy heuristic to increase speed

Lecture 2:

e @ Can miss better matches, e.g., if W-W or C-C pairs are
ignments
Stephen Scott near.
Alignments
. stop here
Scoring
Optima Query: VTPMKVIV | FCW | C
adoutn Database: ... WWAMKLKV | GWW | W
Heuristic 1 want to get here

Algorithms

9

FASTA

Statistical
Validation

@ Increasing buffer will increase sensitivity, at the cost of
increased time

@ Choosing good values of parameters makes small the
probability of missing a better match



Weect=d B AST: Time Complexity

CSCE
471/871
Lecture 2:
Pairwise
Alignments

Stephen Scott @ Expected-time computational complexity:

o O(W + Nw + NW /20%) to generate word list, find hits &

Sg_ o extend hits

oni ’ e W = number of high-scoring words generated and N =
ptimal . . . .

Algorithm number of residues in database (M = query size is

Heuristic embedded in W)

Algorithms

e Can make Nw into N by replacing DFA with hash table
@ Versus O(NM) for dynamic programming, where M =

FASTA

Statistical

Validation number residues in query



Aty BLAST: Additions

CSCE
471/871
Lecture 2:
Pairwise
Alignments

Stephen Scott

@ Gapped BLAST: Allows gaps in local alignments
Alignments o Better reflects biological relationships

Scoring o Less efficient than standard BLAST

At @ Position-Specific Iterated (PSI) BLAST: Starts with a
T gapped BLAST search and adapts the results to a new
Algorithms query sequence for more searching

FASTA e Automated “profile” search

Statistical e Less efficient than standard BLAST

Validation



NeBWERSWV ] OF

Lincoln

CSCE
471/871
Lecture 2:
Pairwise
Alignments

Stephen Scott

Alignments
Scoring

Optimal
Algorithm

Heuristic
Algorithms
BLAST

Statistical
Validation

(ktup =1 or 2)
e Done with lookup table and offset vector

12345678910 11 123
s=HARFYAAQI V L t =VDM
LOOKUP TABLE +9
A 2,6,7 OFFSETS
F 4 L 11
H 1 QO 8
I9 R 3
vV 10 Y 5

OFFSET VECTOR
-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6
o 1 o0 o0 1 2 10 1 4 1 0 0 O
/\

+2
+3

0

1. Start by finding k-tuples common to both sequences

5 6 7
A Q I
-3 +2 +2
+1
+2
+8 +9
0 1

-6

-1



Wewctel FASTA (contd)

Lincoln

CSCE
471/871
Lecture 2:
Pairwise
Alignments

Stephen Scott 2. Extend the exact word matches to find maximal scoring

e ungapped regions (similar to BLAST)

Scoring 3. Ungapped regions are joined into gapped regions,
Qpimal accounting for gap costs

Heuristic 4. Realign candidate matches using full dynamic
P programming

@ Increasing krup improves speed but increases chance

Statistical

Validation of missing true matches



WCvet=8 How do we do it?

Lincoln

CSCE
471/871
Lecture 2:
Pairwise
Alignments

Stephen Scott

Alignments

@ Choose a scoring scheme

Scoring

Optimal @ Choose an algorithm to find optimal alignment wrt
Algorithm scoring scheme

Heuristic

Algorithms @ Statistically validate alignment

BLAST

Statistical

Validation



Weeeted Siatistically Validating Alignments

Lincoln

CSCE
471/871
Lecture 2:
Pairwise
Alignments

Siephen Seat @ Once we take our highest-scoring hits, are we done?
Alignments e What if none of the hits was good enough?
Scoring e What is our threshold (minimum) score?
At @ Given a particular score, want a bound on the
Heurisiic probability that a random sequence would get at least
Algorithms that score
e Such a probability is given by an
extreme value distribution (EVD)

Statistical
Validation




ey EVD for Sequence Comparisons
Bl [Karlin & Altschul 1990]

e @ Let \ be the unique positive solution to

Lecture 2:
Pairwise
Alignments § DiPj exp()‘slj) =1

Stephen Scott i

Alignments @ If the two aligned sequences are of length m and n,
Scoring then the probability that a score S can occur with a

Opimal random match is bounded by
Heurigtic 1
Algorithms P <S > n;\’l’ln +X> < KCXP(_M) )

Statistical
Validation

where K is given in the paper
@ Soe.g., if xis such that K exp(—Ax) = 0.01, then any
score S > x + (Inmn) /X has a 99% chance of being
significant
e Allows us to assess significance of any score and/or to
set a threshold on minimum score
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