Nebraska CSCE 471/871 Lecture 2: Pairwise Alignments Stephen Scott

sscott@cse.unl.edu 4 D > 4 D > 4 E > 4 E > 9 Q Q

Nebraska Outline

Statistical

- What is a sequence alignment?
- Why should we care?
- How do we do it?
 - Scoring matrices
 - Algorithms for finding optimal alignments
 - Statistically validating alignments

Nebraska

What is a Sequence Alignment?

- Given two nucleotide or amino acid sequences, determine if they are related (descended from a common ancestor)
- Technically, we can align any two sequences, but not always in a meaningful way
- In this lecture, we'll focus on AA sequences, but same alignment principles hold for DNA sequences

Nebraska

What is a Sequence Alignment? (cont'd)

Scoring

HIGHLY RELATED: HBA_HUMAN

HBB_HUMAN GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL

RELATED:

GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL HBA HUMAN ++ ++++H+ KV + +A ++ LGB2_LUPLU NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG

HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSD----LHAHKL F11G11.2

How to filter out the last one & pick up the second?

Nebraska

Why Should We Care?

• Need to align to detect overlap

Fragment assembly in DNA sequencing

• But a genome can be millions of bp long!

• If fragments overlap, they can be assembled:

...AAGTACAATCA

• Experimental determination of nucleotide sequences is

only reliable up to about 500-800 base pairs (bp) at a

CAATTACTCGGA...

←□ → ←□ → ← □ → ← □ → へ○

Nebraska

Why Should We Care? (cont'd)

Statistical Validation

Finding homologous proteins and genes

- I.e., evolutionarily related (common ancestor)
- Structure and function are often similar, but this is reliable only if they are evolutionarily related
- Thus want to avoid the spurious alignment of Slide 4

How do we do it?

- Choose a scoring scheme
- Choose an algorithm to find optimal alignment wrt scoring scheme
- Statistically validate alignment

←□ → ←□ → ← □ → □ → ○ へ ○

Nebraska

Scoring Schemes

- Since goal is to find related sequences, want evolution-based scoring scheme
 - Mutations occur often at the genomic level, but their rates of acceptance by natural selection vary depending on the mutation
 - E.g., changing an AA to one with similar properties is more likely to be accepted
- Assume that all changes occur independently of each other and are Markovian
 - ⇒ Changes occuring now are independent of those in the past
 - Makes working with probabilities easier

4 D > 4 D > 4 E > 4 E > E 990

Nebraska

Scoring Schemes (cont'd)

coring

• If AA a_i is aligned with a_i , then a_i was substituted for a_i ...KALM...

...KVLM...

- Was this due to an accepted mutation or simply by chance?
 - If A or V is likely in general, then there is less evidence that this is a mutation
- Want the score sii to be higher if mutation more likely
 - Take ratio of mutation prob. to prob. of AA appearing at random
- Generally, if a_i is similar to a_i in property, then accepted mutation more likely and s_{ii} higher

4 D > 4 B > 4 E > 4 E > E 9 Q C

4 D > 4 B > 4 B > 4 B > 8 9 9 9

Nebraska

Scoring Schemes (cont'd)

Scoring

- Only consider immediate mutations $a_i \rightarrow a_j$, not $a_i \rightarrow a_k \rightarrow a_i$
- Mutations are undirected ⇒ scoring matrix is symmetric

4 D > 4 D > 4 E > 4 E > E +9 Q C

Nebraska

The PAM Transition Matrices

- Dayhoff et al. started with several hundred manual alignments between very closely related proteins ($\geq 85\%$ similar in sequence), and manually-generated evolutionary trees
- Computed the frequency with which each AA is changed into each other AA over a short evolutionary distance (short enough where only 1% AAs change)
- 1 PAM = 1% point accepted mutation
- Becomes our measure of evolutionary "time"

Nebraska

The PAM Transition Matrices (cont'd)

Statistical

• Estimate p_i with the frequency of AA a_i over both sequences, i.e., number of a_i 's/number of AAs • Let $f_{ij} = f_{ji} =$ number of $a_i \leftrightarrow a_j$ changes in data set,

 $f_i = \sum_{j \neq i} f_{ij} = \text{number of changes involving } a_i, \text{ and } f_i = \sum_{j \neq i} f_{ij} = \text{number of changes involving } a_i, \text{ and } f_i = \sum_{j \neq i} f_{ij} = \text{number of changes involving } a_i$ $f = \sum_{i=1}^{n} f_i = \text{number of changes}$

- Define the scale to be the amount of evolution to change 1 in 100 AAs (on average) [1 PAM dist]
- Relative mutability of a_i is the ratio of number of mutations to total exposure to mutation: $m_i = f_i/(100f p_i)$

The PAM Transition Matrices (cont'd)

• If m_i is probability of a mutation for a_i , then $M_{ii} = 1 - m_i$ is prob. of no change

• $a_i \rightarrow a_i$ if and only if a_i changes and $a_i \rightarrow a_i$ given that a_i changes, so

$$egin{array}{ll} M_{ij} &=& Pr(a_i
ightarrow a_j) \ &=& Pr(a_i
ightarrow a_j \mid a_i ext{ changed}) Pr(a_i ext{ changed}) \ &=& (f_{ii}/f_i) \, m_i = f_{ij}/(100 f \, p_i) \end{array}$$

• The 1 PAM transition matrix consists of the M_{ii} and gives the probabilities of mutations from a_i to a_i

4D> 4B> 4B> B 990

Nebraska

Properties of PAM Transition Matrices

 $\sum_{j} M_{ij} = \sum_{j \neq i} M_{ij} + M_{ii}$ $= 1/(100f p_i) \sum_{j \neq i} f_{ij} + (1 - f_i/(100f p_i))$ $= f_i/(100f p_i) + 1 - f_i/(100f p_i) = 1$

[sum of probabilities of changes to an AA + prob of no change = 1]

$$\sum_{i} p_i M_{ii} = \sum_{i} p_i - \sum_{i} f_i / (100f) = 1 - f / (100f) = 0.99$$

[prob of no change to any AA is 99/100]

Nebraska

What About 2 PAM?

• How about the probability that $a_i \rightarrow a_i$ in two evolutionary steps?

• It's the prob that $a_i \rightarrow a_k$ (for any k) in step 1, and $a_k \to a_j$ in step 2. This is $\sum_k M_{ik} M_{kj} = M_{ij}^2$

Nebraska

k PAM Transition Matrix

• In general, the probability that $a_i \rightarrow a_i$ in k evolutionary steps is M_{ii}^k

• As $k \to \infty$, the rows of M^k tend to be identical with the ith entry of each row equal to p_i

A result of our Markovian assumption of mutation

Nebraska

Building a Scoring Matrix

• When aligning different AAs in two sequences, want to differentiate mutations and random events

 Thus, interested in ratio of transition probability to prob. of randomly seeing new AA

$$\frac{M_{ij}}{p_j} = \frac{f_{ij}}{100f \, p_i \, p_j} = \frac{M_{ji}}{p_i}$$
 (symmetric

• Ratio > 1 if and only if mutation more likely than random event

Nebraska

Building a Scoring Matrix (cont'd)

When aligning multiple AAs, ratio of probs for multiple alignment = product of ratios:

$$\begin{array}{cccc} a_i & a_k & a_n & \cdots \\ a_j & a_\ell & a_m & \cdots \end{array} \longrightarrow \left(\begin{array}{c} \underline{M_{ij}} \\ \overline{p_j} \end{array} \right) \left(\begin{array}{c} \underline{M_{k\ell}} \\ \overline{p_\ell} \end{array} \right) \left(\begin{array}{c} \underline{M_{mm}} \\ \overline{p_m} \end{array} \right) \cdots$$

Taking logs will let us use sums rather than products

- ⇒ "Log odds"
- ⇒ Avoid underflow issues

Building a Scoring Matrix (cont'd)

• Final step: Computation faster with integers than with reals, so scale up (to increase precision) and round:

$$s_{ij} = C \log_2 \left(\frac{M_{ij}}{p_j} \right)$$

- C is a scaling constant
- For k PAM, use M^k_{ii}

Nebraska

Building a Scoring Matrix (cont'd)

Table 1 - The log odds matrix for 250 PAMs (multiplied by 10)

Nebraska

PAM Scoring Matrix Miscellany

- Pairs of AAs with similar properties (e.g., hydrophobicity) have high pairwise scores, since similar AAs are more likely to be accepted mutations
- In general, low PAM numbers find short, strong local similarities and high PAM numbers find long, weak ones
- Often multiple searches will be run, using e.g., 40 PAM, 120 PAM, 250 PAM
- Altschul (JMB, 219:555–565, 1991) gives discussion of PAM choice

4 D > 4 D > 4 E > 4 E > E 990

Nebraska

BLOSUM Scoring Matrices

coring AM

- Based on multiple alignments, not pairwise
- Direct derivation of scores for more distantly related proteins
- Only possible because of new data: Multiple alignments of known related proteins

4 D > 4 D > 4 E > 4 E > E 990

Nebraska

BLOSUM Scoring Matrices (cont'd)

- Started with ungapped alignments from BLOCKS database
- Sequences clustered at L% sequence identity
- This time, $f_{ij} = \#$ of $a_i \leftrightarrow a_j$ changes between pairs of sequences from different clusters, normalizing by dividing by (n_1n_2) = product of sizes of clusters 1 and 2
- $f_i = \sum_i f_{ij}$, $f = \sum_i f_i$ (different from PAM)
- Then the scoring matrix entry is

$$s_{ij} = C \log_2 \left(\frac{f_{ij} / f}{p_i p_j} \right)$$

←□ → ←団 → ← 분 → ← 분 → りへ(~)

Nebraska

BLOSUM 50 Scoring Matrix

G 0 3 0 1 3 2 3 8 2 4 4 2 3 4 2 0 2 3 3 -2 -3 -4 -4 -2 -2 -3 -4 -3 2 5 -3 3 1 -4 -3 -1 -2 -1

4 D > 4 B > 4 E > 4 E > 9 Q @

Gap Penalties

• A gap can be inserted in a sequence to better align downstream residues, e.g., alignments 2 & 3 on slide 4

- Two widely-used types of scoring functions:
 - Linear: $\gamma(g) = -gd$, where g is gap length and d is gap-open penalty (often choose d = 8)
 - Affine: $\gamma(g) = -d (g-1)e$, where e is gap-extension penalty (often choose d = 12, e = 2)
- Vingron & Waterman (JMB, 235:1–12, 1994) discuss penalty function choice in more detail

Nebraska

How do we do it?

Choose a scoring scheme

- Choose an algorithm to find optimal alignment wrt scoring scheme
- Statistically validate alignment

4 D > 4 B > 4 E > 4 E > 9 Q @

Nebraska

Optimal Alignment Algorithms

 To find the best alignment, we can simply try all possible alignments of the two sequences, score them, and choose the best

Will this work?

4 D > 4 D > 4 E > 4 E > E 994

Nebraska

Optimal Alignment Algorithms

Optimal Algorithm

NO!

- The number of alignments grows with $\binom{2n}{n}$, e.g., n = 100residues/sequence $\Rightarrow > 9 \times 10^{58}$ alignments!
- So now what do we do?
 - Pull dynamic programming out of our algorithm toolbox
 - We'll see that optimal alignments of substrings are part of an optimal alignment of the larger strings

Nebraska

Types of Alignments

- Will discuss DP algs for these types of alignments between segs. x and y:
 - Global: Align all of x with all of y
 - ⇒ Useful when testing homology between two similarly-sized sequences
 - Local: Align a substring of x with a substring of y
 - ⇒ Useful when finding shared subsequences between proteins
 - Semiglobal ("Overlap"): Same as global, but ignore leading and/or trailing blanks
 - ⇒ Useful when doing fragment assembly
- For now, assume linear gap penalty

Nebraska

Global Alignment

F(i,j)?

Three possibilities:

Statistical

 $\Rightarrow F(i,j) = F(i-1,j-1) + s(x_i,y_i)$

2 x_i aligned with gap, e.g., $\begin{vmatrix} A & I & O & A & x_i \\ L & G & V & y_j & - \end{vmatrix}$ $A I G A x_i$ $\Rightarrow F(i,j) = F(i-1,j) - \overline{d}$

• Let F(i,j) = score of best alignment between $x_{1...i}$ and

• Given F(i-1,j-1), F(i-1,j), and F(i,j-1), what is

 $\Rightarrow F(i,j) = F(i,j-1) - \overline{d}$

Global Alignment (cont'd)

Final update equation:

$$F(i,j) = \max \left\{ \begin{array}{l} F(i-1,j-1) + s(x_i,y_j) \\ F(i-1,j) - d \\ F(i,j-1) - d \end{array} \right.$$

• Boundary conditions: F(i,0) = -id, F(0,j) = -jd

Nebraska

Global Alignment (cont'd)

- Score of optimal global alignment is in F(n, m)
- The alignment itself can be recovered if, for each F(i, j)decision, we kept track of which cell gave the max
 - Follow this path back to origin, and print alignment as
 - Figure 2.5, p. 21

Nebraska

Local Alignment

- Similar to global alignment algorithm
- Differences:
 - 1. If an alignment's score goes negative, it's better to start a new one

$$F(i,j) = \max \begin{cases} 0 \\ F(i-1,j-1) + s(x_i, y_j) \\ F(i-1,j) - d \\ F(i,j-1) - d \end{cases}, \quad F(i,0) = F(0,j) = 0$$

- 2. Score of opt. align. is $\max_{i,j} \{F(i,j)\}$; end traceback at 0
- Figure 2.6, p. 23
- Must have expected score < 0 for rand. match and need some s(a, b) > 0

Nebraska

Overlap Matches (a.k.a. Semiglobal Alignment)

Scoring

Which is better?

CAGCA-CTTGGATTCTCGG ---CAGCGTGG----- CAGCACTTGGATTCTCGG CAGC----G-T----GG

4 D > 4 D > 4 E > 4 E > E 994

Nebraska

Overlap Matches (a.k.a. Semiglobal Alignment)

If match = +1, mismatch = -1 and gap = -2,

Ignoring end spaces will allow us to constrain alignment to containment or prefix-suffix overlap

$$\frac{x}{y} = \frac{x}{y}$$

Nebraska

Overlap Matches (cont'd)

- F(i,0) =
- Score of optimal alignment =

F(0,j) =

- \bullet F(i,j) =
- Figure 2.8, p. 27

General Gap Penalty Functions

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scott

Alignments

Optimal Algorithm

Semiglobal Heuristic Algorithms

If gap penalty $\gamma(g)$ not linear, can still do optimal alignment:

$$F(i,j) = \max \left\{ \begin{array}{l} F(i-1,j-1) + s(x_i,y_j) \\ \max_{k=0,\dots,i-1} \{F(k,j) + \gamma(i-k)\} \\ \max_{k=0,\dots,j-1} \{F(i,k) + \gamma(j-k)\} \end{array} \right.$$

$$F(0,j) = \gamma(j)$$

$$F(i,0) = \gamma(i)$$

Time complexity now $\Theta(n^3)$, versus $\Theta(n^2)$ for old alg

Nebraska

Affine Gap Penalty Functions

CSCE 471/871 Lecture 2: Pairwise Alignments

tophon Scott

Alignments

Optimal Algorithm

Semiglobal Heuristic

Heuristic Algorithms Statistical Validation

38/55

- If gap penalty an affine function, can run in $\Theta(n^2)$ time
- Use 3 arrays:
 - $\mathbf{0}$ $M(i,j) = \text{best score to } (i,j) \text{ when } x_i \text{ aligns } y_j \text{ (case 1)}$
 - $I_x(i,j)$ = best score when x_i aligns gap (case 2); insert. in x wrt y
 - **③** $I_y(i,j) = \text{best score when } y_j \text{ aligns gap (case 3)}$

$$M(i,j) = s(x_i, y_j) + \max \begin{cases} M(i-1, j-1) \\ I_x(i-1, j-1) \\ I_y(i-1, j-1) \end{cases}$$

$$I_x(i,j) = \max \left\{ \begin{array}{ll} M(i-1,j) - d \\ I_x(i-1,j) - e \end{array} \right.$$

$$I_{y}(i,j) = \max \begin{cases} M(i,j-1) - d \\ I_{y}(i,j-1) - e \end{cases}$$

4 m > 4 m >

Nebraska

Affine Gap Penalty Functions (cont'd)

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scot

Scoring
Optimal

Semiglobal
Heuristic
Algorithms

Algorithms Statistical Validation

$$M(i,j) = s(x_i, y_j) + \max \begin{cases} M(i-1, j-1) \\ I_x(i-1, j-1) \\ I_y(i-1, j-1) \end{cases}$$

$$I_x(i,j) = \max \begin{cases} M(i-1,j) - d \\ I_x(i-1,j) - e \end{cases}$$

$$I_{y}(i,j) = \max \begin{cases} M(i,j-1) - d \\ I_{y}(i,j-1) - e \end{cases}$$

$$M(0,0) = 0,$$
 $M(i,0) = M(0,j) = -\infty$
 $I_x(0,j) = -\infty,$ $I_x(i,0) = -d - (i-1)e$
 $I_y(i,0) = -\infty,$ $I_y(0,j) = -d - (j-1)e$

39/55

Nebraska

Affine Gap Penalty Functions (cont'd)

CSCE 471/871 Lecture 2: Pairwise Alignments

Alignments Scoring

Optimal Algorithm

iemiglobal

Algorithms
Statistical
Validation

40 / EE

Nebraska

Heuristic Alignment Algorithms

471/871 Lecture 2: Pairwise Alignments Stephen Scot

Alignments
Scoring
Optimal
Algorithm

Heuristic
Algorithms
BLAST
FASTA
Statistical
Validation

- Linear (vs. quadratic) time complexity
 - Important when making several searches in large databases
- Don't guarantee optimality, but very good in practice
- BLAST
- FASTA

Nebraska

BLAST

CSCE 471/871 Lecture 2: Pairwise Ilignments

Alignments Scoring Optimal

Algorithm
Heuristic
Algorithms

Statistical Validation

- Uses e.g., PAM or BLOSUM matrix to score alignments
- Returns substring alignments with strings in database that score higher than threshold S and are longer than min length
- Does not return string if it's a substring of another and scores lower
- Tries to minimize time spent on alignments unlikely to score higher than S

BLAST Steps

- Find short words (strings) that score high when aligned with query
- Use these words to search database for hits (each hit will be a seed for next step). Each hit will score = T < Sto help avoid fruitless pursuits (lower $T \Rightarrow$ less chance of missing something & higher time complexity)
- Extend seeds to find matches with maximum score

←□ → ←□ → ← □ → ← □ → へ○

Nebraska

Find High-Scoring Words

with some query w-mer

T=13, w=3 (PAM 250)

Pass a width-w window over the guery and generate

the strings that score $\geq T$ when aligned

List all words w characters long (w-mers) that score $\geq T$

Query: VTP|MKV|IVFC score = 6 + 5 + 4 = 15MKV score = 13 T.KV score = 13 MRV score = 13 MKT. score = 15 MKI MKM score = 13

4 D > 4 B > 4 E > 4 E > 9 Q @

4 D > 4 D > 4 E > 4 E > E 9 Q Q

Nebraska

Find High-Scoring Words (cont'd)

- At most 20^w total w-mers
- \Rightarrow So 160000 w-mers for w = 4, 8000 for w = 3

• Often use w = 3 or 4 characters and T = 11

• Can quickly find all with brute force, or save time with <u>branch-and-bound</u> (assume T = 13):

Nebraska

Search for Hits

Scoring

 Hit = subsequence in data base that matches a high-scoring word from previous step • To improve efficiency, represent set of high-scoring words with a DFA

V, L, I, MStart state Accept state (Implicit transitions on all unrecognized chars to this state)

Nebraska

Extending the Seeds

- Take each hit (seed) and extend it in both directions until score drops below best score so far minus buffer score
- E.g., if buffer = 4, extend to right, then left:

13 = original seed score | | Query: VT | PMKVIV | FCW ... WW | AMKLKV | GWW ... Database: 1 1 1 1 1 6 1 0 1

So match PMKVIV with AMKLKV for a score of 16 3 2 2 2 2

Nebraska

Extending the Seeds (cont'd)

near:

stop here VTPMKVIV | FCW | C Ouerv: ... WWAMKLKV | GWW | W ... Database: 1 want to get here

9

• This is a linear-time greedy heuristic to increase speed

• Can miss better matches, e.g., if W-W or C-C pairs are

- Increasing buffer will increase sensitivity, at the cost of increased time
- Choosing good values of parameters makes small the probability of missing a better match

BLAST: Time Complexity

Expected-time computational complexity: $O(W + Nw + NW/20^{w})$ to generate word list, find hits & extend hits

- ullet W= number of high-scoring words generated and N=number of residues in database (M = query size is embedded in W)
- Can make Nw into N by replacing DFA with hash table
- Versus O(NM) for dynamic programming, where M =number residues in query

←□ → ←□ → ← □ → ← □ → へ○

4D> 4B> 4B> B 990

Nebraska

BLAST: Additions

Alignments

- Gapped BLAST: Allows gaps in local alignments
 - Better reflects biological relationships
 - Less efficient than standard BLAST
- Position-Specific Iterated (PSI) BLAST: Starts with a gapped BLAST search and adapts the results to a new query sequence for more searching
 - Automated "profile" search
 - Less efficient than standard BLAST

4 D > 4 D > 4 E > 4 E > 9 Q O

Nebraska

Stephen Scot

FASTA

- 1. Start by finding k-tuples common to both sequences (ktup = 1 or 2)
 - Done with lookup table and offset vector

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 s = H A R F Y A A Q I V Lt = V D M A A Q I A LOOKUP TABLE +9 -2 -3 +2 +2 -6 A 2,6,7 OFFSETS +2 +1 -2 L 11 +3 +2 F 4 н 1 0 8 I 9 R 3 V 10 Y 5 OFFSET VECTOR -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 0 1 0 0 1 2 1 0 1 4 1 0 0 0 0 1

/\

Nebraska

FASTA (cont'd)

Scoring

ungapped regions (similar to BLAST) 3. Ungapped regions are joined into gapped regions, accounting for gap costs

- 4. Realign candidate matches using full dynamic
- programming • Increasing ktup improves speed but increases chance

of missing true matches

2. Extend the exact word matches to find maximal scoring

4 D > 4 D > 4 E > 4 E > E 994

Nebraska

How do we do it?

Choose a scoring scheme

• Choose an algorithm to find optimal alignment wrt scoring scheme

Statistically validate alignment

Nebraska

Statistically Validating Alignments

Statistical

• Once we take our highest-scoring hits, are we done?

- What if none of the hits was good enough?
- What is our threshold (minimum) score?
- Given a particular score, want a bound on the probability that a random sequence would get at least
 - Such a probability is given by an extreme value distribution (EVD)

←□ → ←□ → ← □ → ← □ → へ○

4 D > 4 B > 4 E > 4 E > 9 Q @

EVD for Sequence Comparisons [Karlin & Altschul 1990]

CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen Scot

Alignments

Optimal

Heuristic

Validation

55/55

ullet Let λ be the unique positive solution to

$$\sum_{i,j} p_i \, p_j \exp(\lambda s_{ij}) = 1$$

 If the two aligned sequences are of length m and n, then the probability that a score S can occur with a random match is bounded by

$$P\left(S > \frac{\ln mn}{\lambda} + x\right) \le K \exp(-\lambda x),$$

where K is given in the paper

- So e.g., if x is such that $K\exp(-\lambda x)=0.01$, then any score $S \ge x + (\ln mn)/\lambda$ has a 99% chance of being significant
 - Allows us to assess significance of any score and/or to set a threshold on minimum score

 Output

 Description: