

CSCE 471/871 Lecture 0: Administrivia

Stephen Scott

Welcome

Introduction

What is Bioinformatics?

Biology Background

Fundamental Questions

CSCE 471/871 Lecture 0: Administrivia

Stephen Scott

sscott@cse.unl.edu

Welcome to 471/871!

CSCE 471/871 Lecture 0: Administrivia

Stephen Scott

Welcome

Introduction

What is Bioinformatics?

Biology Background

- Check your name on the roster, or write your name if you're not listed
- Introduce yourself
 - Who are you?
 - What are you?
 - Why are you here?
 - What is one thing about you that few others know about?
- You should have the following handouts:
 - Syllabus
 - Copies of slides
- Bring a laptop on Thursday!

CSCE 471/871 Lecture 1: Introduction

Stephen Scott

Welcome

Introduction

What is Bioinformatics?

Biology Background

Fundamental Questions

CSCE 471/871 Lecture 1: Introduction

Stephen Scott

(With thanks to Andy Benson and Jitender Deogun)

sscott@cse.unl.edu

Outline

CSCE 471/871 Lecture 1: Introduction

Stephen Scott

Welcome

Introduction

What is Bioinformatics?

Biology Background

Fundamental Questions • What is bioinformatics?

- Relevant biology background
- Fundamental questions in bioinformatics
- What we will (and will not) cover in this course

What is Bioinformatics?

CSCE 471/871 Lecture 1: Introduction

Stephen Scott

Welcome

Introduction

What is Bioinformatics?

Biology Background

- Bio = (molecular) biology
- Informatics = computer science
- Bioinformatics = using computer science tools and techniques for solving problems in (molecular) biology
- (Loose) synonym: Computational Biology

What is Bioinformatics? (cont'd)

471/871 Lecture 1: Introduction

Stephen Scott

Welcome

Introduction

What is Bioinformatics?

Biology Background

Fundamental Questions

Original motivation comes from molecular biology

- Sequence analysis
- Most accurate analysis is via experimentation ("bench work"), but expensive and time-consuming (e.g., GenBank has $> 1.5 \times 10^{11}$ base pairs from $> 1.6 \times 10^8$ sequences)
- Bio problems suggest computational problems, which then suggest new biological experiments

CSCE 471/871 Lecture 1: Introduction

Stephen Scott

Welcome

Introduction

What is Bioinformatics?

Biology Background

Flow of Information DNA and Genes Translation Protein Structure

- Basic idea: genes (chains of <u>nucleotides</u>) are converted into <u>proteins</u> (chains of <u>amino acids</u>)
- Proteins are the "workhorses" of biological systems, governing metabolic processes
 - E.g., blood clotting is a process that consists of a chain reaction of numerous protein interactions

Flow of Information

CSCE 471/871 Lecture 1: Introduction

Stephen Scott

Welcome

Introduction

What is Bioinformatics?

Biology Background

Background

DNA and Genes
Translation
Protein Structure

Relevant Biology Background DNA and Genes

CSCE 471/871 Lecture 1: Introduction

Stephen Scott

Welcome

Introduction

What is Bioinformatics?

Biology Background

Flow of Information DNA and Genes

Translation Protein Structure

Fundamental Questions An organism's DNA is a (long) sequence of nucleotides (bases, residues), from {Adenine (A), Guanine (G), Cytosine (C), Thymine (T)}

- Cellular machinery <u>transcribes</u> the <u>coding regions</u> of DNA into RNA
 - Has same alphabet, substituting U (uracil) for T
 - Non-coding regions are not transcribed

...ATTGATA ATGCTGAACTACAAATTACGGCAGGCAACCGGAGCCTGGAAGTGA TAGGA ...

AUGCUGAACUACAAAUUACGGCAGGCAACCGGAGCCUGGAAGUGA

Relevant Biology Background DNA and Genes (cont'd)

CSCE 471/871 Lecture 1: Introduction

Stephen Scott

Welcome

Introduction

What is Bioinformatics?

Biology Background Flow of Information

DNA and Genes Translation Protein Structure

Fundamental Questions

- 3. Then introns (non-coding subsequences) are removed. yielding mRNA
 - Adjacent triples are codons, each encoding an amino acid
- 4. mRNA is translated codon-by-codon into a polypeptide by ribosomes (organelles in cells' cytoplasm)
- 5. Proteins are comprised of one or more polypeptide chains

AUGCUG AA CUA C AAAUUACGGCAGGCAACCGGAGCCUGGAAGUGA AUG CUG CUA AAA UUA CGG CAG GCA ACC GGA GCC UGG AAG UGA

М

Κ

[X]

Relevant Biology Background Translation

Symbols for Amino Acids

CSCE 471/871 Lecture 1: Introduction

Stephen Scott

Welcome

Introduction

What is Bioinformatics?

Biology Background

DNA and Genes Translation

Protein Structure

A Ala	S Cysteine D Apartic Acid U Glutamic Acid	M	Met	Methionine
C Cy		N	Asn	Asparagine
D As		P	Pro	Proline
E Gli		Q	Gln	Glutamine
F Ph		R	Arg	Arginine
G GI H His I lle K Ly	Glycine Histidine Isoleucine Lysine	S T V W Y	Ser Thr Val Trp Tvr	Serine Threonine Valine Tryptophan Tyrosine

Protein Structure

CSCE 471/871 Lecture 1: Introduction

Stephen Scott

Welcome Introduction

What is Bioin-

formatics?

Biology Background Flow of Information DNA and Genes Translation

Protein Structure

Fundamental Questions Protein Folding and structure: The biggest black box

- 1. Primary Amino Acid Sequence: Predicted from DNA sequence
- 2. Secondary structure: local structures within the polypeptide chain that are controlled by bond rotation angles of amino acids
 - a. Alpha helices
 - b. Beta sheets

 Tertiary structure: Global secondary structure packing of the entire polypeptide chain

4. Quaternary structure: 3-dimensional packing of multiple polypeptide chains (Multisubunit protein complexes)

Some Fundamental Questions

CSCE 471/871 Lecture 1: Introduction

Stephen Scott

Welcome

Introduction

What is Bioinformatics?

Biology Background

- Given an organism, what is its genetic sequence?
 - ⇒ Sequence assembly
- Given a sequence, what genes does it encode?
 - ⇒ Gene finding
- Given a protein:
 - What is its structure?
 - ⇒ Structure prediction
 - What other proteins is it related to?
 - ⇒ Homology prediction/phylogeny
 - What is its function?
 - ⇒ Function prediction
- All this from (mainly) only sequences of letters!

What We Will Study

CSCE 471/871 Lecture 1: Introduction

Stephen Scott

Welcome

Introduction

What is Bioinformatics?

Biology Background

- Pairwise alignment of sequences
- Multiple alignment of sequences
- Profiling (modeling) a multiple alignment
- Building <u>phylogenetic</u> (evolutionary) <u>trees</u> (time permitting)
- Predicting <u>secondary structure</u> and/or <u>function</u> of RNA and proteins (time permitting)

What We Will Not Study

(but are still interesting problems)

CSCE 471/871 Lecture 1: Introduction

Stephen Scott

Welcome

Introduction

What is Bioinformatics?

Biology Background

- Gene finding
- Inferring metabolic pathways
- Predicting tertiary structure of proteins