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Stephen D. Scott
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Introduction: Multiple Alignments

• Start with a set of sequences

• In each column, residues are homolgous

– Residues occupy similar positions in 3D structure

– Residues diverge from a common ancestral residue

– Figure 6.1, p. 137

• Can be done manually, but requires expertise and is very tedious

• Often there is no single, unequivocally “correct” alignment

– Problems from low sequence identity & structural evolution
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Outline

• Scoring a multiple alignment

– Minimum entropy scoring

– Sum of pairs (SP) scoring

• Multidimenisonal dynamic programming

• Progressive alignment methods

• Multiple alignment via profile HMMs
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Scoring a Multiple Alignment

• Ideally, is based in evolution, as in e.g. PAM and BLOSUM matrices

• Contrasts with pairwise alignments:
1. Position-specific scoring (some positions more conserved than others)

2. Ideally, need to consider entire phylogenetic tree to explain evolu-
tion of entire family

• I.e. build complete probabilistic model of evolution
– Not enough data to parameterize such a model

) use approximations

• Assume columns statistically independent:

S(m) = G+

X

i

S(m

i

)

m

i

is column i of MA m, G is (affine) score of gaps in m
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Minimum Entropy Scoring

• m

j

i

= symbol in column i in sequence j, c

ia

= observed count of
residue a in column i

• Assume sequences are statistically independent, i.e. residues inde-
pendent within columns

• Then probability of column m

i

is P (m

i

) =

Q
a

p

c

ia

ia

, where p

ia

= prob.
of a in column i
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Minimum Entropy Scoring
(cont’d)

• Set score to be S(m

i

) = � logP (m

i

) = �P
a

c

ia

log p

ia

– Propotional to Shannon entropy

– Define optimal alignment as

m

⇤
= argmin

m

8
<

:
X

m
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2m
S(m

i

)

9
=

;

• Independence assumption valid only if all evolutionary subfamilies are
represented equally; otherwise bias skews results
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Sum of Pairs (SP) Scores

• Treat multiple alignment as
⇣
N

2

⌘
pairwise alignments

• If s(a, b) is substitution score from e.g. PAM or BLOSUM:
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i

) =

X

k<`
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k

i

,m

`

i

)

• Caveat: s(a, b) was derived for pairwise comparisons, not N -way
comparisons
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Sum of Pairs (SP) Scores
Example of a Problem

• Given an alignment with only “L” in column i, using BLOSUM50 yields
an SP score of S

1

= 5

⇣
N

2

⌘
= 5N(N � 1)/2

• If one “L” is replaced with “G”, then SP score is S

2

= S

1

� 9(N � 1)

• Problem:
S

2

S

1

= 1�
9(N � 1)

5N(N � 1)/2

= 1�
18

5N

,

i.e. as N increases, S
2

/S

1

! 1

– But large N should give more support for “L” in m

i

relative to S

2

,
not less (i.e. should have S

2

/S

1

decreasing)
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Outline

• Scoring a multiple alignment

• Multidimenisonal dynamic programming

– Standard MDP algorithm

– MSA

• Progressive alignment methods

• Multiple alignment via profile HMMs
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Multidimensional Dynamic Programming

• Generalization of DP for pairwise alignments

• Assume statistical independence of columns and linear gap penalty
(can also handle affine gap penalties)

• S(m) =
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• In each column, take all gap-residue combinations except 100% gaps
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Multidimensional Dynamic Programming
(cont’d)

• Assume all N sequences are of length L

• Space complexity = ⇥( )

• Time complexity = ⇥( )

• Is it practical?
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MSA [Carrillo & Lipman 88; Lipman et al. 89]

• Uses MDP, but eliminates many entries from consideration to save time

• Can optimally solve problems with L = 300 and N = 7 (old num-
bers), L = 150 and N = 50, L = 500 and N = 25, and L = 1000

and N = 10 (newer numbers)

• Uses SP scoring: S(a) =

P
k<`

S(a

k`

), where a is MA and a

k` is PA
between x

k and x

` induced by a

• If âk` is optimal PA between x

k and x

` (easily computed), then S(a

k`

) 
S(â

k`

) for all k and `
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MSA
(cont’d)

• Assume we have lower bound �(a

⇤
) on score of optimal alignment a⇤:
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⇤ k0`0
)

• When filling in matrix, only need to consider PAs that score at least �k`

(Figure 6.3, p. 144)

• Can get �(a⇤) from other (heuristic) alignment methods
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Outline

• Scoring a multiple alignment

• Multidimenisonal dynamic programming

• Progressive alignment methods

– Feng-Doolittle

– Profile alignment

– CLUSTALW

– Iterative refinement

• Multiple alignment via profile HMMs
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Progressive Alignment Methods

• Repeatedly perform pairwise alignments until all sequences are aligned

• Start by aligning the most similar pairs of sequences (most reliable)

– Often start with a “guide tree”

• Heuristic method (suboptimal), though generally pretty good

• Differences in the methods:

1. Choosing the order to do the alignments

2. Are sequences aligned to alignments or are sequences aligned to
sequences and then alignments aligned to alignments?

3. Methods used to score and build alignments
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Feng-Doolittle

1. Compute a distance matrix by aligning all pairs of sequences

• Convert each pairwise alignment score to distance:
D = � log

S

obs

�S

rand

S

max

�S

rand

• S

obs

= observed alignment score between the two sequences,
S

max

= average score of aligning each of the two sequences to
itself, S

rand

= expected score of aligning two random sequences
of same composition and length

2. Use a hierarchical clustering algorithm [Fitch & Margoliash 67] to build
guide tree based on distance matrix
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Feng-Doolittle
(cont’d)

3. Build multiple alignment in the order that nodes were added to the
guide tree in Step 2
– Goes from most similar to least similar pairs
– Aligning two sequences is done with DP
– Aligning sequence x with existing alignment a done by pairwise

aligning x to each sequence in a

⇤ Highest-scoring PA determines how to align x with a

– Aligning existing alignment a with existing alignment a0 is done by
pairwise aligning each sequence in a to each sequence in a

0

⇤ Highest-scoring PA determines how to align a with a

0

– After each alignment formed, replace gaps with “X” character that
scores 0 with other symbols and gaps
⇤ “Once a gap, always a gap”
⇤ Ensures consistency between PAs and corresponding MAs
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Profile Alignment

• Allows for position-specific scoring, e.g.:

– Penalize gaps more in a non-gap column than in a gap-heavy
column

– Penalize mismatches more in a highly-conserved column than a
heterogeneous column

• If gap penalty is linear, can use SP score with s(�, a) = s(a,�) =

�g and s(�,�) = 0

• Given two MAs (profiles) a
1

(over x1, . . . , xn) and a

2

(over xn+1

, . . . , x

N ),
align a

1

with a

2

by not altering the fundamental structure of either

– Insert gaps into entire columns of a
1

and a

2

– s(�,�) = 0 implies that this doesn’t affect score of a
1

or a
2

18



Profile Alignment
(cont’d)

• Score:
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• Only the last term is affected by the alignment procedure, so it’s the
only one that needs to be optimized

• Thus alignment of profiles is similar to pairwise alignment, solved op-
timally via DP

• One profile can be single sequence
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CLUSTALW

• Similar to Feng-Doolittle, but tuned to use profile alignment methods

1. Compute distance matrix via pairwise DP and convert to distances via
[Kimura 83]

• Score with substitution matrix based on expected similarity of final
alignment

2. Use hierarchical clustering algorithm [Saitou & Nei 87] to build guide
tree
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CLUSTALW
(cont’d)

3. Build multiple alignment in the order that nodes were added to the
guide tree in Step 2

– Use sequence-sequence, sequence-profile, or profile-profile as nec-
essary

– Weight sequences to compensate for bias in SP scoring

– Use position-specific gap-open profile penalties; e.g. more likely to
allow new gap in hydrophilic regions

– Adjusts gap penalties to concentrate gaps in a few regions

– Dynamically adjusts guide tree to defer low-scoring alignments until
later

21

Iterative Refinement Methods

• Start with MA, then iteratively remove one sequence (or subset) x at a
time and realign to profile of remaining sequences
) will increase score or not change it

• Repeat with other sequences until alignment remains unchanged

• Guaranteed to reach local max if all sequences tried
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Iterative Refinement Methods
[Barton & Sternberg 87]

1. Pairwise align the two most similar sequences

2. Sequence-profile align the profile of current MA to most similar se-
quence; repeat until all sequences aligned

3. Remove sequence x

1 and sequence-profile realign it to profile of rest;
repeat for x2, . . . , xN

4. Repeat above step until convergence
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Outline

• Scoring a multiple alignment

• Multidimenisonal dynamic programming

• Progressive alignment methods

• Multiple alignment via profile HMMs

– Multiple alignment with known profile HMM

– Profile HMM training from unaligned sequences
⇤ Initial model

⇤ Baum-Welch

⇤ Avoiding local maxima

⇤ Model surgery
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MA via Profile HMMs

• Replace SP scoring with more statistically valid HMM scheme ··̂

• But don’t we need a multiple alignment to build the profile HMM?

– Use heuristics to set architecture, Baum-Welch to find parameters
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Multiple Alignment with Known Profile HMM

• Find most likely (Viterbi) path and line up residues from same match
states

• Insert state emissions are not aligned (Figs. 6.4–6.6, pp. 151–152)

– OK so long as residues are true insertions (not conserved or mean-
ingfully alignable)

– Other MA algorithms align entire sequences
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Profile HMM Training from Unaligned Sequences

• Used by SAM

1. Choose length of model (number of match states) and initialize
parameters

2. Set parameters via Baum-Welch

• Use heuristics to avoid local optima

3. Check length of model from Step 1 and update if necessary

• Repeat Step 2 if model length changed

4. Align all sequences to final model using Viterbi algorithm and build MA
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Choosing Initial Model

• Architecture completely set once we choose number match states M

• When we started with MA, we applied heuristics to set M

• But we don’t have MA!
– Heuristic: Let M = average sequence length
– If prior information known, use that instead

• For initial parameters, complexity of B-W search makes us want to
start near good local optimum
– Start with reasonable initial values of parameters (e.g. transitions

into match states relatively large):

⇤ Sample from Dirichlet prior

⇤ Start with guess of MA
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Baum-Welch
Forward Equations
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Baum-Welch
Backward Equations
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Baum-Welch
Re-estimation Equations
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Avoiding Local Maxima

• B-W will converge to local maximum likelihood model, but how good is
that globally?

• Long sequences ) many parameters to optimize ) increased risk of
getting stuck in local minimum

• Methods to avoid this:

– Multiple runs from random start points (sometimes done in training
artificial neural networks)

– Use random pertubations of current solution to nudge it into differ-
ent parts of the search space, e.g. simulated annealing
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Model Surgery

• B-W should give reasonably good parameters to fit architecture to data

• But was the architecture accurate in the first place?
– Too few match states ) overuse of insertion states, incorrectly

labeling some parts as non-matches
– Too many match states ) overuse of deletion states

• Model surgery (heuristically) identifies such problems and updates model
– Use f-b or Viterbi to compute usage of all the model’s transitions
– If a match state M

i

is used too infrequently, delete it and collapse
the model

– If an insert state I

j

is used too frequently, expand it to a sequence
of match states (number = average length of insertions)

• Have to recompute parameters via B-W after surgery!
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Topic summary due in 1 week!
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