Introduction

CSCE 471/871 Lecture 4: Profile Hidden Markov Models o Designed to model (profile) a multiple alignment of a protein family
(e.g. p. 102)

e Gives a probabilistic model of the proteins in the family

Stephen D. Scott

e Useful for searching databases for more homologues and for aligning
strings to the family

Organization of a Profile HMM
Outline

e Start with a trivial HMM M (not really hidden at this point)

e Organization of a profile HMM

— Ungapped regions

- Insert and delete states o Each match state has its own set of emission probs, so we can com-
pute prob of a new sequence x being part of this family:
L
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e Building a model

e Searching with HMMs
e Can, as usual, convert probabilities to log-odds score

Organization of a Profile HMM

(cont'd)
Organization of a Profile HMM
e But this assumes ungapped alignments! (contd)
o To handle gaps, consider insertions and deletions - Deletion: parts of multiple alignment not matched by any residue in x

. , o ) ) (use silent delete states)
— Insertion: part of = that doesn’t match anything in multiple align-

ment (use insert states) (X Y] . o eooo
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Handling non-Global Alignments
e Original profile HMMs model entire sequence

General Profile HMM Structure e Add flanking model states (or free insertion modules) to generate non-
local residues

Building a Model

Outline

e Given a multiple alignment, how to build an HMM?

* Organization of a profile HMM — General structure defined, but how many match states?

e Building a model .+« VGA--HAGEY ...
eese V- = - - NVDEV ...
— Structure VEA--DVAGEH
— Estimating probabilities e.e. VKG------D ...
e VYS --TYETS ...
o Searching with HMMs ee. FPNA - - NIPIKH...
... IAGADNGAGV ...
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Building a Model Building a Model
(cont'd) (contd)
e Given a multiple alignment, how to build an HMM?
— General structure defined, but how many match states? o Now, find parameters

— Heuristic: if more than half of characters in a column are non-gaps,
include a match state for that column

e Multiple alignment + HMM structure — state sequence

... VGA|I--HAGEY ...
V-~-|--NVDEV ... Ml D313 Non-gap in match column ->
e match state
-+ VEAI--DVAGH ... - VIGR -| - HAGEY ... Gap in match column ->
.e. VKG|--|----D ... - V- __ﬁzig;; delete state
VEA-|- P
- - - Non-gap in insert column ->
... VY S T YETS ... CVEG |- - - - = D e state
-+« FNAI--NIPKH... «VYS--TYETS Gap in insert column ->
... ITAGIADNGAGV ... igg'ggéigg ignore
: E] Durbin Fig 5.4, p. 109



Weighted Pseudocounts
Building a Model

(cont'd)
e Let c;j, = observed count of residue a in position j of

- . multiple alignment
e Count number of transitions and emissions and compute:

ey (a) = _Ya T Ada + Ada
= A KOS SrwE
v Ay
er(b) = Ey,(b) e gq = background probability of a, A = weight placed on
Sy E(0) pseudocounts (sometimes use A ~ 20)

o Still need to beware of some counts = 0 « Background probabilities also called a prior distribution

Dirichlet Mixtures Dirichlet Mixtures

(cont'd)

e Can be thought of as a mixture of pseudocounts

o Each component k consists of a vector of pseudocounts @ (so ok

corresponds to Agg) and a mixture coefficient (my, for now) that is the

e The mixture has different components, each representing a different
probability that component k is selected

context of a protein sequence

— E.g. in parts of a sequence folded near protein’s surface, more

weight (higher ga) can be given to hydrophilic residues e Pseudocount model k is the “correct” one with probability

— But in other regions, may want to give more weight to hydrophobic
residues

o We'll set the mixture coefficients for each column based on which vec-
tors best fit the residues in that column

— E.g. first column of alignment on slide 10 is dominated by V, so any

e Will find a different mixture for each position of the alignment based on ke R .
vector & that favors V will get a higher m,

the distribution of residues in that column
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Dirichlet Mixtures Dirichlet Mixtures
. ) (cont'd) ' (cont'd)
e Let &; be vector of counts in column j
o Cja + a’; . . . .
ea(a) =Y P (k [ c]-> e e I is gamma function, and In T is computed via 1gamma and related
& o (o + k) functions in C
e P (k| &) are the posterior mixture coefficients, which are easily com- ® my is prior probability of component k (= ¢ in Sj6lander Table 1):
puted [Sj6lander et al. 1996], yielding: Parameiers of Dinehlel Tixte prier Blacksd
Xa Comp. 1 [ Comp. Z [ Comp. 3 | Comp. 4 | Comp. 5 | Comp. 6 | Comp. 7 | Comp. & | Comp. &
enN. (a) ==, q 01429 00576 00898 0.0792 00831 00911 [ANET L0660 0.23:40
J S X, 7| 1.1506 1.335% 66643 2.0814 20810 2.3681 17660 49576 00093
@ @ A 0.2706 00214 [ETHE 0.0707 00411 01156 00034 b2l 0.0051
Where « 00395 0.0103 0.0111 00147 0.0373 00047 01146 0.00:40
o (XIS 00117 00194 00056 00124 0.3872 00624 0.0067
Ci _j’_ &‘/C B 00164 00108 0.0 00102 00131 03475 01157 0.0061
Jja a I 00142 03856 0.0131 01336 00317 00105 (2342 0.003:4

) G 0318 [ 0010
2o (Cja’ + aﬁ/) | o023 | 00761
T 00225 0.0353
K| 00203 | o
L | 00307 | 00935

0.0430 00077 0.0172 0.1058 0102 0.016%
0.0770 00071 0.00-19 004G 0.1003 0.0036
00329 02996 07968 0.014% 053502 0.0021
0.5766 00105 00170 0.0M2 01439 0.0050
0.0722 09994 0.2858 0.0277 0.7006 0.005%

Xo= 3" o exp (In B (&k + g7> —InB (dk))
k
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Searching for Homologues

e Score a candidate match x by using log-odds:

Outline — P(z,7* | M) is probability that = came from model M via most
likely path 7*
= Find using Viterbi

e Organization of a profile HMM
— Pr(z | M) is probability that = came from model M summed over

all possible paths
e Building a model = Find using forward algorithm

— score(z) = log(P(x | M)/P(z | ¢))

* ¢ is a “null model”, which is often the distribution of amino acids
in the training set or AA distribution over each individual column

e Searching with HMMs

* If z matches M much better than ¢, then score is large and
positive

Viterbi Equations Forward Equations

o VM (i) = log-odds score of best path matching 1., to the model,
where z; emitted by state M (similarly define V(i) and VL (i)) - _
‘ o J [V AR FM(@i) = log + log [GM,‘,lM,‘ exp (Ff‘{l(z - 1)) +
e Rename B as Mo, V3" (0) =0, renarpwe Eas M4 (Vp4, = final) ; J=1My
Vi i — 1 lo ) ) . .
Mo enr, (@) Jfl(ll ) +logan;_;um; ar,_, a1, exp (Fj]_l(z — 1)) +ap,_,a; exp (Fﬁl(z - 1))]
Vi (i) = log T +maxq V,_1(i—1)+log ar; 1M,

enr; ()
-

i VP (i —1)+logap, ,a, er (z;
1 e g/j}&(i 1) ti0g a]\,;]I]l j F].I(i) = log (%) + log [aM]I]. exp (F]M(i — 1)) +
Vi@ =tog <]T> + max VjID(i,i L) +logar,r; ar;1; €Xp (Fj](i - 1)) +ap;1;exp (FJD(i - 1)”
4 VJ (z—l)—l—logaD]]]
VM, (@) +logan;_,p, FP(i) = log [aMrle exp (F]-]”_'Il(i)) +ar,_yp; exp (F]-I_l(i))
V(@) = maxd ViLy() +logay, ,p, +ap,_1p,exp (FL1())]

VP21G) +logap, b,

e Similar to Chapter 2’s gapped alignment, but with position-specific

scoring scheme e exp(-) needed to use sums and logs (can still be fast; see p. 78)
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Aligning a Sequence with a Model (Multiple Alignment)

e Given a string x, use Viterbi to find most likely path =* and use the
state sequence as the alignment
Topic summary due in 1 week!

e More detail in Durbin, Section 6.5

— Also discusses building an initial multiple alignment and HMM si-
multaneously via Baum-Welch
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