Introduction

CSCE 471/871 Lecture 4: Profile Hidden Markov Models

Stephen D. Scott

• Designed to model (<u>profile</u>) a <u>multiple alignment</u> of a protein family (e.g. p. 102)

• Gives a probabilistic model of the proteins in the family

 Useful for searching databases for more homologues and for aligning strings to the family

Outline

- Organization of a profile HMM
 - Ungapped regions
 - Insert and delete states
- · Building a model
- Searching with HMMs

Organization of a Profile HMM

ullet Start with a trivial HMM M (not really hidden at this point)

Each match state has its own set of emission probs, so we can compute prob of a new sequence x being part of this family:

$$P(x \mid M) = \prod_{i=1}^{L} e_i(x_i)$$

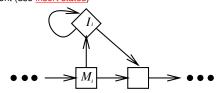
• Can, as usual, convert probabilities to log-odds score

.

Organization of a Profile HMM

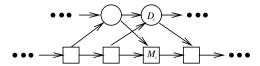
(cont'd)

- But this assumes ungapped alignments!
- To handle gaps, consider insertions and deletions
 - Insertion: part of x that doesn't match anything in multiple alignment (use insert states)



Organization of a Profile HMM (cont'd)

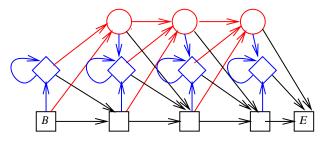
- Deletion: parts of multiple alignment not matched by any residue in \boldsymbol{x} (use silent delete states)



5

6

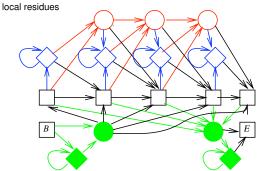
General Profile HMM Structure



7

Handling non-Global Alignments

- Original profile HMMs model entire sequence
- Add flanking model states (or free insertion modules) to generate non-



8

Outline

- · Organization of a profile HMM
- Building a model
 - Structure
 - Estimating probabilities
- Searching with HMMs

Building a Model

- Given a multiple alignment, how to build an HMM?
 - General structure defined, but how many match states?

... V G A - - H A G E Y ...
V - - - - N V D E V ...
V E A - - D V A G H ...
V K G - - - - D ...
V Y S - T Y E T S ...
F N A - - N I P K H ...
I A G A D N G A G V ...

10

Building a Model

(cont'd)

- Given a multiple alignment, how to build an HMM?
 - General structure defined, but how many match states?
 - Heuristic: if more than half of characters in a column are non-gaps, include a match state for that column

• • •	V	G	Α	-	-	Η	Α	G	Е	Y	
	V	-	-	_	-	N	V	D	E	V	
•••	V	E	Α	-	-	D	V	Α	G	Н	
• • •	V	K	G	-	-	-	-	-	-	D	
• • •	V	Y	S	-	-	т	Y	E	\mathbf{T}	S	
	F	N	Α	-	-	N	Ι	P	K	Н	
• • •	Ι	A	G	Α	D	N	G	A	G	V	• • •
				_		4					

Building a Model

(cont'd)

- Now, find parameters
- $\bullet \ \ \text{Multiple alignment} + \text{HMM structure} \to \text{state sequence}$

```
M1 D3 I3

... V G A - - H A G E Y ...

V V - - - N V D E V ...

V E A - D V A G H ...

V Y S - T Y E T S ...

F N A - N I P K H ...

I A G A D N G A G V ...

Non-gap in match column -> match state

Gap in match column -> delete state

Non-gap in insert column -> insert state

Gap in insert column -> insert state

Gap in insert column -> insert state

Durbin Fig 5.4, p. 109
```

11

Building a Model

(cont'd)

• Count number of transitions and emissions and compute:

$$a_{kl} = \frac{A_{kl}}{\sum_{l'} A_{kl'}}$$

$$e_k(b) = \frac{E_k(b)}{\sum_{b'} E_k(b')}$$

• Still need to beware of some counts = 0

Weighted Pseudocounts

• Let $c_{ja} =$ observed count of residue a in position j of multiple alignment

$$e_{M_j}(a) = \frac{c_{ja} + Aq_a}{\sum_{a'} c_{ja'} + A}$$

- $q_a = \text{background probability of } a, A = \text{weight placed on}$ pseudocounts (sometimes use $A \approx 20$)
- Background probabilities also called a prior distribution

Dirichlet Mixtures

- Can be thought of as a mixture of pseudocounts
- The mixture has different components, each representing a different context of a protein sequence
 - E.g. in parts of a sequence folded near protein's surface, more weight (higher q_a) can be given to hydrophilic residues
 - But in other regions, may want to give more weight to hydrophobic residues
- Will find a different mixture for each position of the alignment based on the distribution of residues in that column

15

13

Dirichlet Mixtures

(cont'd)

- Each component k consists of a vector of pseudocounts $\vec{\alpha}^k$ (so α_a^k corresponds to Aq_a) and a $\underline{\text{mixture coefficient}}$ (m_k , for now) that is the probability that component k is selected
- Pseudocount model k is the "correct" one with probability m_k .
- · We'll set the mixture coefficients for each column based on which vectors best fit the residues in that column
 - E.g. first column of alignment on slide 10 is dominated by V, so any vector $\vec{\alpha}^k$ that favors V will get a higher m_k

16

14

Dirichlet Mixtures

(cont'd)
$$e_{M_j}(a) = \sum_k P\left(k\mid\vec{c}_j\right) \frac{c_{ja} + \alpha_a^k}{\sum_{a'}\left(c_{ja'} + \alpha_{a'}^k\right)}$$

• $P\left(k\mid\vec{c_{j}}\right)$ are the posterior mixture coefficients, which are easily computed [Sjölander et al. 1996], yielding:

$$e_{M_j}(a) = \frac{X_a}{\sum_{a'} X_{a'}} ,$$

$$X_{a} = \sum_{k} m_{k0} \, \exp \left(\ln B \left(\vec{\alpha}^{k} + \vec{c}_{j} \right) - \ln B \left(\vec{\alpha}^{k} \right) \right) \, \frac{c_{ja} + \vec{\alpha}_{a}^{k}}{\sum_{a'} \left(c_{ja'} + \alpha_{a'}^{k} \right)}$$

$$\ln B(\vec{x}) = \sum_{i} \ln \Gamma(x_i) - \ln \Gamma\left(\sum_{i} x_i\right)$$

Dirichlet Mixtures

(cont'd)

- \bullet Γ is gamma function, and In Γ is computed via ${\tt lgamma}$ and related functions in C
- m_{k0} is prior probability of component k (= q in Sjölander Table 1):

Parameters of Dirichlet mixture prior Blocks9											
	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Comp. 5	Comp. 6	Comp. 7	Comp. 8	Comp. 9		
q	0.1829	0.0576	0.0898	0.0792	0.0831	0.0911	0.1159	0.0660	0.2340		
8	1.1806	1.3558	6.6643	2.0814	2,0810	2.5681	1.7660	4.9876	0.0995		
Α	0.2706	0.0214	0.5614	0.0701	0.0411	0.1156	0.0934	0.4521	0.0051		
C	0.0398	0.0103	0.0454	0.0111	0.0147	0.0373	0.0047	0.1146	0.0040		
D	0.0175	0.0117	0.4383	0.0194	0.0056	0.0124	0.3872	0.0624	0.0067		
Е	0.0164	0.0108	0.7641	0.0946	0.0102	0.0181	0.3478	0.1157	0.0061		
F	0.0142	0.3856	0.0873	0.0131	0.1536	0.0517	0.0108	0.2842	0.0034		
G	0.1319	0.0164	0.2591	0.0480	0.0077	0.0172	0.1058	0.1402	0.0169		
H	0.0123	0.0761	0.2149	0.0770	0.0071	0.0049	0.0497	0.1003	0.0036		
T	0.0225	0.0353	0.1459	0.0329	0.2996	0.7968	0.0149	0.5502	0.0021		
К	0.0203	0.0139	0.7622	0.5766	0.0108	0.0170	0.0942	0.1439	0.0050		
L	0.0307	0.0935	0.2473	0.0722	0.9994	0.2858	0.0277	0.7006	0.0059		

ŧ

Outline

- · Organization of a profile HMM
- · Building a model
- Searching with HMMs

Viterbi Equations

- $\bullet \ V_i^M(i) = \text{log-odds score of best path matching } x_{1...i} \ \text{to the model,}$
- $V_j^M(i) = \log$ -odds score of best path matching $x_{1\dots i}$ to the model, where x_i emitted by state M_j (similarly define $V_j^I(i)$ and $V_j^D(i)$)
 Rename B as $M_0, V_0^M(0) = 0$, rename E as M_{L+1} ($V_{L+1}^M = \dim V_j^M(i) = \log \left(\frac{e_{M_j}(x_i)}{qx_i}\right) + \max \begin{cases} V_{j-1}^M(i-1) + \log a_{M_{j-1}M_j} \\ V_{j-1}^I(i-1) + \log a_{I_{j-1}M_j} \\ V_{j-1}^I(i-1) + \log a_{D_{j-1}M_j} \end{cases}$ $V_j^I(i) = \log \left(\frac{e_{I_j}(x_i)}{qx_i}\right) + \max \begin{cases} V_j^M(i-1) + \log a_{I_jI_j} \\ V_j^I(i-1) + \log a_{I_jI_j} \\ V_j^I(i-1) + \log a_{D_jI_j} \end{cases}$ $V_j^D(i) = \max \begin{cases} V_{j-1}^M(i) + \log a_{M_{j-1}D_j} \\ V_{j-1}^I(i) + \log a_{D_{j-1}D_j} \\ V_{j-1}^I(i) + \log a_{D_{j-1}D_j} \end{cases}$ Similar to Chapter 2's gapped alignment, but with position-specific
- Similar to Chapter 2's gapped alignment, but with position-specific scoring scheme

21

Aligning a Sequence with a Model (Multiple Alignment)

- Given a string x, use Viterbi to find most likely path π^* and use the state sequence as the alignment
- More detail in Durbin, Section 6.5
 - Also discusses building an initial multiple alignment and HMM simultaneously via Baum-Welch

Searching for Homologues

- Score a candidate match x by using log-odds:
 - $P(x, \pi^* \mid M)$ is probability that x came from model M via most likely path π^*
 - ⇒ Find using Viterbi
 - $Pr(x \mid M)$ is probability that x came from model M summed over all possible paths
 - ⇒ Find using forward algorithm
 - $score(x) = \log(P(x \mid M)/P(x \mid \phi))$
 - $*\ \phi$ is a "null model", which is often the distribution of amino acids in the training set or AA distribution over each individual column
 - * If x matches M much better than ϕ , then score is large and positive

20

Forward Equations

$$\begin{split} F_{j}^{M}(i) &= \log \left(\frac{e_{M_{j}}(x_{i})}{q_{x_{i}}}\right) + \log \left[a_{M_{j-1}M_{j}} \exp \left(F_{j-1}^{M}(i-1)\right) + \\ &a_{I_{j-1}M_{j}} \exp \left(F_{j-1}^{I}(i-1)\right) + a_{D_{j-1}M_{j}} \exp \left(F_{j-1}^{D}(i-1)\right)\right] \\ F_{j}^{I}(i) &= \log \left(\frac{e_{I_{j}}(x_{i})}{q_{x_{i}}}\right) + \log \left[a_{M_{j}I_{j}} \exp \left(F_{j}^{M}(i-1)\right) + \\ &a_{I_{j}I_{j}} \exp \left(F_{j}^{I}(i-1)\right) + a_{D_{j}I_{j}} \exp \left(F_{j}^{D}(i-1)\right)\right] \\ F_{j}^{D}(i) &= \log \left[a_{M_{j-1}D_{j}} \exp \left(F_{j-1}^{M}(i)\right) + a_{I_{j-1}D_{j}} \exp \left(F_{j-1}^{I}(i)\right) + a_{D_{i-1}D_{j}} \exp \left(F_{j-1}^{I}(i)\right)\right] \end{split}$$

• exp(·) needed to use sums and logs (can still be fast; see p. 78)

22

Topic summary due in 1 week!

23

24