
CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen D. Scott

1

Outline

• What is a sequence alignment?

• Why should we care?

• How do we do it?

– Scoring matrices

– Algorithms for finding optimal alignments

– Statistically validating alignments

2

What is a Sequence Alignment?

• Given two nucleotide or amino acid sequences, determine if they are
related (descended from a common ancestor)

• Technically, we can align any two sequences, but not always in a
meaningful way

• In this lecture, we’ll focus on AA sequences (more reliable in modeling
evolution), but same alignment principles hold for DNA sequences

3

What is a Sequence Alignment? (cont’d)

HIGHLY RELATED:
HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL

G+ +VK+HGKKV A+++++AH+D++ +++++LS+LH KL
HBB_HUMAN GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL

RELATED:
HBA_HUMAN GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL

++ ++++H+ KV + +A ++ +L+ L+++H+ K
LGB2_LUPLU NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG

SPURIOUS ALIGNMENT:
HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSD----LHAHKL

GS+ + G + +D L ++ H+ D+ A +AL D ++AH+
F11G11.2 GSGYLVGDSLTFVDLL--VAQHTADLLAANAALLDEFPQFKAHQE

How to filter out the last one & pick up the second?

4

Why Should We Care?

• Fragment assembly in DNA sequencing

– Experimental determination of nucleotide sequences is only reli-
able up to about 500-800 base pairs (bp) at a time

– But a genome can be millions of bp long!

– If fragments overlap, they can be assembled:

...AAGTACAATCA

CAATTACTCGGA...

– Need to align to detect overlap

5

Why Should We Care? (cont’d)

• Finding homologous proteins and genes

– I.e. evolutionarily related (common ancestor)

– Structure and function are often similar, but this is reliable only if
they are evolutionarily related

– Thus want to avoid the spurious alignment of slide 4

6

How do we do it?

• Choose a scoring scheme

• Choose an algorithm to find optimal alignment wrt scoring scheme

• Statistically validate alignment

7

Scoring Schemes

• Since goal is to find related sequences, want evolution-based scoring
scheme

– Mutations occur often at the genomic level, but their rates of acceptance
by natural selection vary depending on the mutation

– I.e. changing an AA to one with similar properties is more likely to
be accepted

• Assume that all changes occur independently of each other and are
Markovian (makes working with probabilities easier): changes occur-
ing now are independent of those in the past

8

Scoring Schemes (cont’d)

• If AA ai is aligned with aj, then aj was substituted for ai

...KALM...

...KVLM...

• Was this due to an accepted mutation or simply by chance?

– If A or V is likely in general, then there is less evidence that this is
a mutation

• Want the score sij to be higher if mutations more likely

– Take ratio of mutation prob. to prob. of AA appearing at random

• Generally, if aj is similar to ai in property, then accepted mutation more
likely and sij higher

9

Scoring Schemes (cont’d)

• Only consider immediate mutations ai ! aj, not ai ! ak ! aj

• Mutations are undirected
) scoring matrix is symmetric

10

The PAM Transition Matrices

• Dayhoff et al. started with several hundred manual alignments be-
tween very closely related proteins (� 85% similar in sequence), and
manually-generated evolutionary trees

• Computed the frequency with which each AA is changed into each
other AA over a short evolutionary distance (short enough where only
1% AAs change)

• 1 PAM = 1% point accepted mutation

11

The PAM Transition Matrices (cont’d)

• Estimate pi with the frequency of AA ai over both sequences, i.e. # of
ai’s/number of AAs

• Let fij = fji = # of ai $ aj changes in data set, fi =

P
j 6=i fij and

f =

P
i fi

• Define the scale to be the amount of evolution to change 1 in 100 AAs
(on average) [1 PAM dist]

• Relative mutability of ai is the ratio of number of mutations to total
exposure to mutation: mi = fi/(100fpi)

12

The PAM Transition Matrices (cont’d)

• If mi is probability of a mutation for ai, then Mii = 1 � mi is prob. of
no change

• ai ! aj if and only if ai changes and ai ! aj given that ai changes,
so

Mij = Pr(ai ! aj)

= Pr(ai ! aj | ai changed)Pr(ai changed)
= (fij/fi)mi = fij/(100fpi)

• The 1 PAM transition matrix consists of the Mij and gives the proba-
bilities of mutations from ai to aj

13

Properties of PAM Transition Matrices

X

j

Mij =

X

j 6=i

Mij + Mii

= 1/(100fpi)
X

j 6=i

fij + (1 � fi/(100fpi))

= fi/(100fpi) + 1 � fi/(100fpi) = 1

[sum of probabilities of changes to an AA + prob of no change = 1]

X

i

piMii =

X

i

pi �
X

i

fi/(100f) = 1 � f/(100f) = 0.99

[prob of no change to any AA is 99/100]

14

What About 2 PAM?

• How about the probability that ai ! aj in two evolutionary steps?

• It’s the prob that ai ! ak (for any k) in step 1, and ak ! aj in step 2.
This is

P
k MikMkj = M2

ij

j j

ii

15

k PAM Transition Matrix

• In general, the probability that ai ! aj in k evolutionary steps is Mk
ij

• As k ! 1, the rows of Mk tend to be identical with the ith entry of
each row equal to pi

– A result of our Markovian assumption of mutation

16

Building a Scoring Matrix

• When aligning different AAs in two sequences, want to differentiate
mutations and random events

• Thus, interested in ratio of transition probability to prob. of randomly
seeing new AA

Mij

pj
=

fij

100fpipj
=

Mji

pi
(symmetric)

• Ratio > 1 if and only if mutation more likely than random event

17

Building a Scoring Matrix (cont’d)

• When aligning multiple AAs, ratio of probs for multiple alignment =
product of ratios:

ai ak an · · ·
aj a` am · · · �!

✓
Mij
pj

◆ ⇣
Mk`
p`

⌘ ⇣
Mnm
pm

⌘
· · ·

• Taking logs will let us use sums rather than products

18

Building a Scoring Matrix (cont’d)

• Final step: computation faster with integers than with reals, so scale
up (to increase precision) and round:

sij = C log

2

(Mij/pj)

• C is a scaling constant

• For k PAM, use Mk
ij

19 20

PAM Scoring Matrix Miscellany

• Pairs of AAs with similar properties (e.g. hydrophobicity) have high
pairwise scores, since similar AAs are more likely to be accepted mu-
tations

• In general, low PAM numbers find short, strong local similarities and
high PAM numbers find long, weak ones

• Often multiple searches will be run, using e.g. 40 PAM, 120 PAM, 250
PAM

• Altschul (JMB, 219:555–565, 1991) gives discussion of PAM choice

21

BLOSUM Scoring Matrices

• Based on multiple alignments, not pairwise

• Direct derivation of scores for more distantly related proteins

• Only possible because of new data: multiple alignments of known re-
lated proteins

22

BLOSUM Scoring Matrices (cont’d)

• Started with ungapped alignments from BLOCKS database

• Sequences clustered at L% sequence identity

• This time, fij = # of ai $ aj changes between pairs of sequences
from different clusters, normalizing by dividing by (n

1

n
2

) = product
of sizes of clusters 1 and 2

• fi =

P
j fij, f =

P
i fi (different from PAM)

• Then the scoring matrix entry is

sij = C log

2

fij/f

pipj

!

23

BLOSUM 50 Scoring Matrix
A R N D C Q E G H I L K M F P S T W Y V

A 5 -2 -1 -2 -1 -1 -1 0 -2 -1 -2 -1 -1 -3 -1 1 0 -3 -2 0
R -2 7 -1 -2 -4 1 0 -3 0 -4 -3 3 -2 -3 -3 -1 -1 -3 -1 -3
N -1 -1 7 2 -2 0 0 0 1 -3 -4 0 -2 -4 -2 1 0 -4 -2 -3
D -2 -2 2 8 -4 0 2 -1 -1 -4 -4 -1 -4 -5 -1 0 -1 -5 -3 -4
C -1 -4 -2 -4 13 -3 -3 -3 -3 -2 -2 -3 -2 -2 -4 -1 -1 -5 -3 -1
Q -1 1 0 0 -3 7 2 -2 1 -3 -2 2 0 -4 -1 0 -1 -1 -1 -3
E -1 0 0 2 -3 2 6 -3 0 -4 -3 1 -2 -3 -1 -1 -1 -3 -2 -3
G 0 -3 0 -1 -3 -2 -3 8 -2 -4 -4 -2 -3 -4 -2 0 -2 -3 -3 -4
H -2 0 1 -1 -3 1 0 -2 10 -4 -3 0 -1 -1 -2 -1 -2 -3 2 -4
I -1 -4 -3 -4 -2 -3 -4 -4 -4 5 2 -3 2 0 -3 -3 -1 -3 -1 4
L -2 -3 -4 -4 -2 -2 -3 -4 -3 2 5 -3 3 1 -4 -3 -1 -2 -1 1
K -1 3 0 -1 -3 2 1 -2 0 -3 -3 6 -2 -4 -1 0 -1 -3 -2 -3
M -1 -2 -2 -4 -2 0 -2 -3 -1 2 3 -2 7 0 -3 -2 -1 -1 0 1
F -3 -3 -4 -5 -2 -4 -3 -4 -1 0 1 -4 0 8 -4 -3 -2 1 4 -1
P -1 -3 -2 -1 -4 -1 -1 -2 -2 -3 -4 -1 -3 -4 10 -1 -1 -4 -3 -3
S 1 -1 1 0 -1 0 -1 0 -1 -3 -3 0 -2 -3 -1 5 2 -4 -2 -2
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 2 5 -3 -2 0
W -3 -3 -4 -5 -5 -1 -3 -3 -3 -3 -2 -3 -1 1 -4 -4 -3 15 2 -3
Y -2 -1 -2 -3 -3 -1 -2 -3 2 -1 -1 -2 0 4 -3 -2 -2 2 8 -1
V 0 -3 -3 -4 -1 -3 -3 -4 -4 4 1 -3 1 -1 -3 -2 0 -3 -1 5

24

Gap Penalties

• A gap can be inserted in a sequence to better align downstream residues,
e.g. alignments 2 & 3 on slide 4

• Two widely-used types of scoring functions:

– Linear: �(g) = �gd, where g is gap length and d is gap-open penalty
(often choose d = 8)

– Affine: �(g) = �d � (g � 1)e, where e is gap-extension penalty
(often choose d = 12, e = 2)

• Vingron & Waterman (JMB, 235:1–12, 1994) discuss penalty function
choice in more detail

25

How do we do it?

• Choose a scoring scheme

• Choose an algorithm to find optimal alignment wrt scoring scheme

• Statistically validate alignment

26

Optimal Alignment Algorithms

• To find the best alignment, we can simply try all possible alignments of
the two sequences, score them, and choose the best

• Will this work?

27

NO!

• The number of alignments grows with
⇣
2n
n

⌘
, e.g. n = 100

residues/sequence) > 9 ⇥ 10

58 alignments!

• So now what do we do?

– Pull dynamic programming out of our algorithm toolbox

– We’ll see that optimal alignments of substrings are part of an opti-
mal alignment of the larger strings

28

Types of Alignments

• Will discuss DP algs for these types of alignments between seqs. x
and y:

– Global: Align all of x with all of y

⇤ Useful when testing homology between two similarly-sized se-
quences

– Local: Align a substring of x with a substring of y

⇤ Useful when finding shared subsequences between proteins

– Semiglobal (“Overlap”): Same as global, but ignore leading and/or
trailing blanks

⇤ Useful when doing fragment assembly

• For now, assume linear gap penalty

29

Global Alignment

• Let F (i, j) = score of best alignment between x
1...i and y

1...j

• Given F (i � 1, j � 1), F (i � 1, j), and F (i, j � 1), what is F (i, j)?

• Three possibilities:

1. xi aligned with yj, e.g. I G A xi
L G V yj

) F (i, j) = F (i � 1, j � 1) + s(xi, yj)

2. xi aligned with gap, e.g. A I G A xi
L G V yj �

) F (i, j) = F (i � 1, j) � d

3. yj aligned with gap, e.g. G A xi � �
S L G V yj

) F (i, j) = F (i, j � 1) � d

30

Global Alignment (cont’d)

• Final update equation:

F (i, j) = max

8
><

>:

F (i � 1, j � 1) + s(xi, yj)

F (i � 1, j) � d
F (i, j � 1) � d

F(i, j)

F(i-1, j-1) F(i, j-1)

F(i-1, j)
-d

-ds(xi, yj)

• Boundary conditions: F (i,0) = �id, F (0, j) = �jd

31

Global Alignment (cont’d)

• Score of optimal global alignment is in F (n, m)

• The alignment itself can be recovered if, for each F (i, j) decision, we
kept track of which cell gave the max

– Follow this path back to origin, and print alignment as we go

– Figure 2.5, p. 21

32

Local Alignment

• Similar to global alignment algorithm

• Differences:

1. If an alignment’s score goes negative, it’s better to start a new one

F (i, j) = max

8
>>><

>>>:

0

F (i � 1, j � 1) + s(xi, yj)

F (i � 1, j) � d
F (i, j � 1) � d

, F (i,0) = F (0, j) = 0

2. Score of opt. align. is maxi,j{F (i, j)}; end traceback at 0 score

• Figure 2.6, p. 23

• Must have expected score < 0 for rand. match and need some s(a, b) > 0

33

Overlap Matches (a.k.a. Semiglobal Alignment)

• Which is better?

CAGCA-CTTGGATTCTCGG CAGCACTTGGATTCTCGG

---CAGCGTGG-------- CAGC-----G-T----GG

34

Overlap Matches (a.k.a. Semiglobal Alignment)

• If match = +1, mismatch = �1 and gap = �2,

CAGCA-CTTGGATTCTCGG CAGCACTTGGATTCTCGG
---CAGCGTGG-------- CAGC-----G-T----GG

-19 -12

• Ignoring end spaces will allow us to constrain alignment to containment
or prefix-suffix overlap

Overlap Matches (a.k.a. Semiglobal Alignment)

• If match = +1, mismatch = �1 and gap = �2,

CAGCA-CTTGGATTCTCGG CAGCACTTGGATTCTCGG
---CAGCGTGG-------- CAGC-----G-T----GG

-19 -12

• Ignoring end spaces will allow us to constrain alignment to containment
or prefix-suffix overlap

x

y

x

y
35

35

Overlap Matches (cont’d)

• F (i,0) = F (0, j) =

• Score of optimal alignment =

• F (i, j) =

• Figure 2.8, p. 28

36

General Gap Penalty Functions
• If gap penalty �(g) not linear, can still do optimal alignment:

F (i, j) = max

8
><

>:

F (i � 1, j � 1) + s(xi, yj)

maxk=0,...,i�1

{F (k, j) + �(i � k)}
maxk=0,...,j�1

{F (i, k) + �(j � k)}

F (0, j) = �(j)
F (i,0) = �(i)

F(i, j)

F(i-1, j-1) F(i, j-1)

F(i-1, j)

s(xi, yj)

F(i, j-2)

F(i-2, j)

� (2)

� (1)

� (2)

� (1)

• Problem: time complexity now ⇥

⇣
n3

⌘
, versus ⇥

⇣
n2

⌘
for old alg

37

Affine Gap Penalty Functions

• If gap penalty an affine function, can run in ⇥

⇣
n2

⌘
time

• Use 3 arrays:

1. M(i, j) = best score to (i, j) when xi aligns yj (case 1, slide 30)

2. Ix(i, j) = best score when xi aligns gap (case 2); insert. in x wrt y

3. Iy(i, j) = best score when yj aligns gap (case 3)

M(i, j) = s(xi, yj) + max

8
><

>:

M(i � 1, j � 1)

Ix(i � 1, j � 1)

Iy(i � 1, j � 1)

Ix(i, j) = max

(
M(i � 1, j) � d
Ix(i � 1, j) � e

Iy(i, j) = max

(
M(i, j � 1) � d
Iy(i, j � 1) � e

38

Affine Gap Penalty Functions (cont’d)

M(i, j) = s(xi, yj) + max

8
<

:

M(i � 1, j � 1)

Ix(i � 1, j � 1)

Iy(i � 1, j � 1)

Ix(i, j) = max

⇢
M(i � 1, j) � d
Ix(i � 1, j) � e

Iy(i, j) = max

⇢
M(i, j � 1) � d
Iy(i, j � 1) � e

M(0,0) = 0, M(i,0) = M(0, j) = �1
Ix(0, j) = �1, Ix(i,0) = �d � (i � 1)e
Iy(i,0) = �1, Iy(0, j) = �d � (j � 1)e

M
(+1, +1)

Ix
(+1, +0)

Iy
(+0, +1)

-d

s(xi, yj)

-e

-e
-d

s(xi, yj)

s(xi, yj)

39

Heuristic Alignment Algorithms

• Linear (vs. quadratic) time complexity

– Important when making several searches in large databases

• Don’t guarantee optimality, but very good in practice

• BLAST

• FASTA

40

BLAST

• Uses e.g. PAM or BLOSUM matrix to score alignments

• Returns substring alignments with strings in database that score higher
than threshold S and are longer than min length

• Does not return string if it’s a substring of another and scores lower

• Tries to minimize time spent on alignments unlikely to score higher
than S

41

BLAST Steps

• Find short words (strings) that score high when aligned with query

• Use these words to search database for hits (each hit will be a seed
for next step). Each hit will score = T < S to help avoid fruitless
pursuits (lower T) less chance of missing something & higher time
complexity)

• Extend seeds to find matches with maximum score

42

Find High-Scoring Words

• List all words w characters long (w-mers) that score � T with some
query w-mer

– Pass a width-w window over the query and generate the strings
that score � T when aligned

Query: VTP|MKV|IVFC T=13, w=3 (PAM 250)

MKV score = 6 + 5 + 4 = 15

LKV score = 13

MRV score = 13

MKL score = 13

MKI score = 15

MKM score = 13

43

Find High-Scoring Words (cont’d)

• Often use w = 3 or 4 characters and T = 11

• At most 20

w total w-mers

• So 160000 w-mers for w = 4, 8000 for w = 3

• Can quickly find all with brute force, or save time with branch-and-bound
(assume T = 13):

Find High-Scoring Words (cont’d)

• Often use w = 3 or 4 characters and T = 11

• At most 20w total w-mers, 50/residue for w = 4

• So 160000 w-mers for w = 4, 8000 for w = 3

• Can quickly find all with brute force, or save time with branch-and-bound
(assume T = 13):

MKV

15 11 11 9 9 9 13
I

M
V F RK L

15

15 13
V L M

1513 < 13*I

13

13 < 13
*V

AA 1

AA 2

AA 3

K
R

13 < 13

13 < 13

K *
V *

< 13
*

4444

Search for Hits

• Hit = subsequence in data base that matches a high-scoring word from
previous step

• To improve efficiency, represent set of high-scoring words with a DFA

M

L

K

R

K

V

V

V, L, I, M

Start state Accept state

(Implicit transitions on all
unrecognized chars to this state)

• In general, intractable to build DFA with minimum number of states,
but easy to build one with exponentially more states than minumum by
creating one path per string to yield NFA

45

Extending the Seeds

• Take each hit (seed) and extend it in both directions until score drops
below best score so far minus buffer score

• E.g. if buffer = 4, extend to right, then left:

13 = original seed score
| |

Query: VT | PMKVIV | FCW
Database: ... WW | AMKLKV | GWW ...

1 1 1 1
1 6 1 0

1
5

So match PMKVIV with AMKLKV for a score of 16
46

Extending the Seeds (cont’d)

• This is a linear-time greedy heuristic to increase speed

• Can miss better matches, e.g. if W-W or C-C pairs are near:

stop here
Query: VTPMKVIV | FCW | C

Database: ... WWAMKLKV | GWW | W ...
1 want to get here
9

• Increasing buffer will increase sensitivity, at the cost of increased time

• Choosing good values of parameters makes small the probability of
missing a better match

47

Time Complexity

• Expected-time computational complexity: O(W + Nw + NW/20

w
)

to generate word list, find hits & extend hits

– W = # of high-scoring words generated and N = # of residues in
database (M = query size is embedded in W)

– Can make Nw into N by replacing DFA with hash table

• Versus O(NM) for dynamic programming, where M = # residues in
query

48

Additions to BLAST

• Gapped BLAST: Allows gaps in local alignments

– Better reflects biological relationships

– Less efficient than standard BLAST

• Position-Specific Iterated (PSI) BLAST: Starts with a gapped BLAST
search and adapts the results to a new query sequence for more
searching

– Automated “profile” search

– Less efficient than standard BLAST

49

FASTA

1. Start by finding k-tuples common to both sequences (ktup = 1 or 2)

– Done with lookup table and offset vector

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8
s = H A R F Y A A Q I V L t = V D M A A Q I A
LOOKUP TABLE +9 -2 -3 +2 +2 -6
A 2,6,7 OFFSETS +2 +1 -2
F 4 L 11 +3 +2 -1
H 1 Q 8
I 9 R 3
V 10 Y 5

OFFSET VECTOR
-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9
0 1 0 0 1 2 1 0 1 4 1 0 0 0 0 0 1

/\
50

FASTA (cont’d)

2. Extend the exact word matches to find maximal scoring ungapped re-
gions (similar to BLAST)

3. Ungapped regions are joined into gapped regions, accounting for gap
costs

4. Realign candidate matches using full dynamic programming

• Increasing ktup improve speed but increase chance of missing true
matches

51

How do we do it?

• Choose a scoring scheme

• Choose an algorithm to find optimal alignment wrt scoring scheme

• Statistically validate alignment

52

Statistically Validating Alignments

• Once we take our highest-scoring hits, are we done?

– What if none of the hits was good enough?

– What is our threshold (minimum) score?

• Given a particular score, want a bound on the probability that a random
sequence would get at least that score

– Such a probability is given by an extreme value distribution (EVD)

53

EVD for Sequence Comparisons
[Karlin & Altschul 1990]

• Let � be the unique positive solution to
X

i,j

pi pj exp(�sij) = 1

• If the two aligned sequences are of length m and n, then the probability
that a score S can occur with a random match is bounded by

P

✓
S >

lnmn

�
+ x

◆
 K exp(��x) ,

where K is given in the paper

• So e.g. if x is such that K exp(��x) = 0.01, then any score
� x + (lnmn)/� has a 99% chance of being significant

– Allows us to assess significance of any score and/or to set a thresh-
old on minimum score

54

Topic summary due in 1 week!

55

