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Outline

• What is a sequence alignment?

• Why should we care?

• How do we do it?

– Scoring matrices

– Algorithms for finding optimal alignments

– Statistically validating alignments
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What is a Sequence Alignment?

• Given two nucleotide or amino acid sequences, determine if they are
related (descended from a common ancestor)

• Technically, we can align any two sequences, but not always in a
meaningful way

• In this lecture, we’ll focus on AA sequences (more reliable in modeling
evolution), but same alignment principles hold for DNA sequences
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What is a Sequence Alignment? (cont’d)

HIGHLY RELATED:
HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL

G+ +VK+HGKKV A+++++AH+D++ +++++LS+LH KL
HBB_HUMAN GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL

RELATED:
HBA_HUMAN GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL

++ ++++H+ KV + +A ++ +L+ L+++H+ K
LGB2_LUPLU NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG

SPURIOUS ALIGNMENT:
HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSD----LHAHKL

GS+ + G + +D L ++ H+ D+ A +AL D ++AH+
F11G11.2 GSGYLVGDSLTFVDLL--VAQHTADLLAANAALLDEFPQFKAHQE

How to filter out the last one & pick up the second?
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Why Should We Care?

• Fragment assembly in DNA sequencing

– Experimental determination of nucleotide sequences is only reli-
able up to about 500-800 base pairs (bp) at a time

– But a genome can be millions of bp long!

– If fragments overlap, they can be assembled:

...AAGTACAATCA

CAATTACTCGGA...

– Need to align to detect overlap
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Why Should We Care? (cont’d)

• Finding homologous proteins and genes

– I.e. evolutionarily related (common ancestor)

– Structure and function are often similar, but this is reliable only if
they are evolutionarily related

– Thus want to avoid the spurious alignment of slide 4
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How do we do it?

• Choose a scoring scheme

• Choose an algorithm to find optimal alignment wrt scoring scheme

• Statistically validate alignment
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Scoring Schemes

• Since goal is to find related sequences, want evolution-based scoring
scheme

– Mutations occur often at the genomic level, but their rates of acceptance
by natural selection vary depending on the mutation

– I.e. changing an AA to one with similar properties is more likely to
be accepted

• Assume that all changes occur independently of each other and are
Markovian (makes working with probabilities easier): changes occur-
ing now are independent of those in the past
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Scoring Schemes (cont’d)

• If AA ai is aligned with aj, then aj was substituted for ai

...KALM...

...KVLM...

• Was this due to an accepted mutation or simply by chance?

– If A or V is likely in general, then there is less evidence that this is
a mutation

• Want the score sij to be higher if mutations more likely

– Take ratio of mutation prob. to prob. of AA appearing at random

• Generally, if aj is similar to ai in property, then accepted mutation more
likely and sij higher
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Scoring Schemes (cont’d)

• Only consider immediate mutations ai ! aj, not ai ! ak ! aj

• Mutations are undirected
) scoring matrix is symmetric
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The PAM Transition Matrices

• Dayhoff et al. started with several hundred manual alignments be-
tween very closely related proteins (� 85% similar in sequence), and
manually-generated evolutionary trees

• Computed the frequency with which each AA is changed into each
other AA over a short evolutionary distance (short enough where only
1% AAs change)

• 1 PAM = 1% point accepted mutation
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The PAM Transition Matrices (cont’d)

• Estimate pi with the frequency of AA ai over both sequences, i.e. # of
ai’s/number of AAs

• Let fij = fji = # of ai $ aj changes in data set, fi =

P
j 6=i fij and

f =

P
i fi

• Define the scale to be the amount of evolution to change 1 in 100 AAs
(on average) [1 PAM dist]

• Relative mutability of ai is the ratio of number of mutations to total
exposure to mutation: mi = fi/(100fpi)
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The PAM Transition Matrices (cont’d)

• If mi is probability of a mutation for ai, then Mii = 1 � mi is prob. of
no change

• ai ! aj if and only if ai changes and ai ! aj given that ai changes,
so

Mij = Pr(ai ! aj)

= Pr(ai ! aj | ai changed)Pr(ai changed)
= (fij/fi)mi = fij/(100fpi)

• The 1 PAM transition matrix consists of the Mij and gives the proba-
bilities of mutations from ai to aj
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Properties of PAM Transition Matrices

X

j

Mij =

X

j 6=i

Mij + Mii

= 1/(100fpi)
X

j 6=i

fij + (1 � fi/(100fpi))

= fi/(100fpi) + 1 � fi/(100fpi) = 1

[sum of probabilities of changes to an AA + prob of no change = 1]

X

i

piMii =

X

i

pi �
X

i

fi/(100f) = 1 � f/(100f) = 0.99

[prob of no change to any AA is 99/100]
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What About 2 PAM?

• How about the probability that ai ! aj in two evolutionary steps?

• It’s the prob that ai ! ak (for any k) in step 1, and ak ! aj in step 2.
This is

P
k MikMkj = M2

ij

j j

ii
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k PAM Transition Matrix

• In general, the probability that ai ! aj in k evolutionary steps is Mk
ij

• As k ! 1, the rows of Mk tend to be identical with the ith entry of
each row equal to pi

– A result of our Markovian assumption of mutation
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Building a Scoring Matrix

• When aligning different AAs in two sequences, want to differentiate
mutations and random events

• Thus, interested in ratio of transition probability to prob. of randomly
seeing new AA

Mij

pj
=

fij

100fpipj
=

Mji

pi
(symmetric)

• Ratio > 1 if and only if mutation more likely than random event
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Building a Scoring Matrix (cont’d)

• When aligning multiple AAs, ratio of probs for multiple alignment =
product of ratios:

ai ak an · · ·
aj a` am · · · �!

✓
Mij
pj

◆ ⇣
Mk`
p`

⌘ ⇣
Mnm
pm

⌘
· · ·

• Taking logs will let us use sums rather than products
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Building a Scoring Matrix (cont’d)

• Final step: computation faster with integers than with reals, so scale
up (to increase precision) and round:

sij = C log

2

(Mij/pj)

• C is a scaling constant

• For k PAM, use Mk
ij
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PAM Scoring Matrix Miscellany

• Pairs of AAs with similar properties (e.g. hydrophobicity) have high
pairwise scores, since similar AAs are more likely to be accepted mu-
tations

• In general, low PAM numbers find short, strong local similarities and
high PAM numbers find long, weak ones

• Often multiple searches will be run, using e.g. 40 PAM, 120 PAM, 250
PAM

• Altschul (JMB, 219:555–565, 1991) gives discussion of PAM choice
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BLOSUM Scoring Matrices

• Based on multiple alignments, not pairwise

• Direct derivation of scores for more distantly related proteins

• Only possible because of new data: multiple alignments of known re-
lated proteins
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BLOSUM Scoring Matrices (cont’d)

• Started with ungapped alignments from BLOCKS database

• Sequences clustered at L% sequence identity

• This time, fij = # of ai $ aj changes between pairs of sequences
from different clusters, normalizing by dividing by (n

1

n
2

) = product
of sizes of clusters 1 and 2

• fi =

P
j fij, f =

P
i fi (different from PAM)

• Then the scoring matrix entry is

sij = C log

2

 
fij/f

pipj

!
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BLOSUM 50 Scoring Matrix
A R N D C Q E G H I L K M F P S T W Y V

A 5 -2 -1 -2 -1 -1 -1 0 -2 -1 -2 -1 -1 -3 -1 1 0 -3 -2 0
R -2 7 -1 -2 -4 1 0 -3 0 -4 -3 3 -2 -3 -3 -1 -1 -3 -1 -3
N -1 -1 7 2 -2 0 0 0 1 -3 -4 0 -2 -4 -2 1 0 -4 -2 -3
D -2 -2 2 8 -4 0 2 -1 -1 -4 -4 -1 -4 -5 -1 0 -1 -5 -3 -4
C -1 -4 -2 -4 13 -3 -3 -3 -3 -2 -2 -3 -2 -2 -4 -1 -1 -5 -3 -1
Q -1 1 0 0 -3 7 2 -2 1 -3 -2 2 0 -4 -1 0 -1 -1 -1 -3
E -1 0 0 2 -3 2 6 -3 0 -4 -3 1 -2 -3 -1 -1 -1 -3 -2 -3
G 0 -3 0 -1 -3 -2 -3 8 -2 -4 -4 -2 -3 -4 -2 0 -2 -3 -3 -4
H -2 0 1 -1 -3 1 0 -2 10 -4 -3 0 -1 -1 -2 -1 -2 -3 2 -4
I -1 -4 -3 -4 -2 -3 -4 -4 -4 5 2 -3 2 0 -3 -3 -1 -3 -1 4
L -2 -3 -4 -4 -2 -2 -3 -4 -3 2 5 -3 3 1 -4 -3 -1 -2 -1 1
K -1 3 0 -1 -3 2 1 -2 0 -3 -3 6 -2 -4 -1 0 -1 -3 -2 -3
M -1 -2 -2 -4 -2 0 -2 -3 -1 2 3 -2 7 0 -3 -2 -1 -1 0 1
F -3 -3 -4 -5 -2 -4 -3 -4 -1 0 1 -4 0 8 -4 -3 -2 1 4 -1
P -1 -3 -2 -1 -4 -1 -1 -2 -2 -3 -4 -1 -3 -4 10 -1 -1 -4 -3 -3
S 1 -1 1 0 -1 0 -1 0 -1 -3 -3 0 -2 -3 -1 5 2 -4 -2 -2
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 2 5 -3 -2 0
W -3 -3 -4 -5 -5 -1 -3 -3 -3 -3 -2 -3 -1 1 -4 -4 -3 15 2 -3
Y -2 -1 -2 -3 -3 -1 -2 -3 2 -1 -1 -2 0 4 -3 -2 -2 2 8 -1
V 0 -3 -3 -4 -1 -3 -3 -4 -4 4 1 -3 1 -1 -3 -2 0 -3 -1 5
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Gap Penalties

• A gap can be inserted in a sequence to better align downstream residues,
e.g. alignments 2 & 3 on slide 4

• Two widely-used types of scoring functions:

– Linear: �(g) = �gd, where g is gap length and d is gap-open penalty
(often choose d = 8)

– Affine: �(g) = �d � (g � 1)e, where e is gap-extension penalty
(often choose d = 12, e = 2)

• Vingron & Waterman (JMB, 235:1–12, 1994) discuss penalty function
choice in more detail
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How do we do it?

• Choose a scoring scheme

• Choose an algorithm to find optimal alignment wrt scoring scheme

• Statistically validate alignment
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Optimal Alignment Algorithms

• To find the best alignment, we can simply try all possible alignments of
the two sequences, score them, and choose the best

• Will this work?
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NO!

• The number of alignments grows with
⇣
2n
n

⌘
, e.g. n = 100

residues/sequence ) > 9 ⇥ 10

58 alignments!

• So now what do we do?

– Pull dynamic programming out of our algorithm toolbox

– We’ll see that optimal alignments of substrings are part of an opti-
mal alignment of the larger strings
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Types of Alignments

• Will discuss DP algs for these types of alignments between seqs. x
and y:

– Global: Align all of x with all of y

⇤ Useful when testing homology between two similarly-sized se-
quences

– Local: Align a substring of x with a substring of y

⇤ Useful when finding shared subsequences between proteins

– Semiglobal (“Overlap”): Same as global, but ignore leading and/or
trailing blanks

⇤ Useful when doing fragment assembly

• For now, assume linear gap penalty
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Global Alignment

• Let F (i, j) = score of best alignment between x
1...i and y

1...j

• Given F (i � 1, j � 1), F (i � 1, j), and F (i, j � 1), what is F (i, j)?

• Three possibilities:

1. xi aligned with yj, e.g. I G A xi
L G V yj

) F (i, j) = F (i � 1, j � 1) + s(xi, yj)

2. xi aligned with gap, e.g. A I G A xi
L G V yj �

) F (i, j) = F (i � 1, j) � d

3. yj aligned with gap, e.g. G A xi � �
S L G V yj

) F (i, j) = F (i, j � 1) � d
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Global Alignment (cont’d)

• Final update equation:

F (i, j) = max

8
><

>:

F (i � 1, j � 1) + s(xi, yj)

F (i � 1, j) � d
F (i, j � 1) � d

F(i, j)

F(i-1, j-1) F(i, j-1)

F(i-1, j)
-d

-ds(xi, yj)

• Boundary conditions: F (i,0) = �id, F (0, j) = �jd
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Global Alignment (cont’d)

• Score of optimal global alignment is in F (n, m)

• The alignment itself can be recovered if, for each F (i, j) decision, we
kept track of which cell gave the max

– Follow this path back to origin, and print alignment as we go

– Figure 2.5, p. 21
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Local Alignment

• Similar to global alignment algorithm

• Differences:

1. If an alignment’s score goes negative, it’s better to start a new one

F (i, j) = max

8
>>><

>>>:

0

F (i � 1, j � 1) + s(xi, yj)

F (i � 1, j) � d
F (i, j � 1) � d

, F (i,0) = F (0, j) = 0

2. Score of opt. align. is maxi,j{F (i, j)}; end traceback at 0 score

• Figure 2.6, p. 23

• Must have expected score < 0 for rand. match and need some s(a, b) > 0
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Overlap Matches (a.k.a. Semiglobal Alignment)

• Which is better?

CAGCA-CTTGGATTCTCGG CAGCACTTGGATTCTCGG

---CAGCGTGG-------- CAGC-----G-T----GG
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Overlap Matches (a.k.a. Semiglobal Alignment)

• If match = +1, mismatch = �1 and gap = �2,

CAGCA-CTTGGATTCTCGG CAGCACTTGGATTCTCGG
---CAGCGTGG-------- CAGC-----G-T----GG

-19 -12

• Ignoring end spaces will allow us to constrain alignment to containment
or prefix-suffix overlap

Overlap Matches (a.k.a. Semiglobal Alignment)

• If match = +1, mismatch = �1 and gap = �2,

CAGCA-CTTGGATTCTCGG CAGCACTTGGATTCTCGG
---CAGCGTGG-------- CAGC-----G-T----GG

-19 -12

• Ignoring end spaces will allow us to constrain alignment to containment
or prefix-suffix overlap

x

y

x

y
35
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Overlap Matches (cont’d)

• F (i,0) = F (0, j) =

• Score of optimal alignment =

• F (i, j) =

• Figure 2.8, p. 28
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General Gap Penalty Functions
• If gap penalty �(g) not linear, can still do optimal alignment:

F (i, j) = max

8
><

>:

F (i � 1, j � 1) + s(xi, yj)

maxk=0,...,i�1

{F (k, j) + �(i � k)}
maxk=0,...,j�1

{F (i, k) + �(j � k)}

F (0, j) = �(j)
F (i,0) = �(i)

F(i, j)

F(i-1, j-1) F(i, j-1)

F(i-1, j)

s(xi, yj)

F(i, j-2)

F(i-2, j)

� (2)

� (1)

� (2)

� (1)

• Problem: time complexity now ⇥

⇣
n3

⌘
, versus ⇥

⇣
n2

⌘
for old alg

37

Affine Gap Penalty Functions

• If gap penalty an affine function, can run in ⇥

⇣
n2

⌘
time

• Use 3 arrays:

1. M(i, j) = best score to (i, j) when xi aligns yj (case 1, slide 30)

2. Ix(i, j) = best score when xi aligns gap (case 2); insert. in x wrt y

3. Iy(i, j) = best score when yj aligns gap (case 3)

M(i, j) = s(xi, yj) + max

8
><

>:

M(i � 1, j � 1)

Ix(i � 1, j � 1)

Iy(i � 1, j � 1)

Ix(i, j) = max

(
M(i � 1, j) � d
Ix(i � 1, j) � e

Iy(i, j) = max

(
M(i, j � 1) � d
Iy(i, j � 1) � e
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Affine Gap Penalty Functions (cont’d)

M(i, j) = s(xi, yj) + max

8
<

:

M(i � 1, j � 1)

Ix(i � 1, j � 1)

Iy(i � 1, j � 1)

Ix(i, j) = max

⇢
M(i � 1, j) � d
Ix(i � 1, j) � e

Iy(i, j) = max

⇢
M(i, j � 1) � d
Iy(i, j � 1) � e

M(0,0) = 0, M(i,0) = M(0, j) = �1
Ix(0, j) = �1, Ix(i,0) = �d � (i � 1)e
Iy(i,0) = �1, Iy(0, j) = �d � (j � 1)e

M
(+1, +1)

Ix
(+1, +0)

Iy
(+0, +1)

-d

s(xi, yj)

-e

-e
-d

s(xi, yj)

s(xi, yj)
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Heuristic Alignment Algorithms

• Linear (vs. quadratic) time complexity

– Important when making several searches in large databases

• Don’t guarantee optimality, but very good in practice

• BLAST

• FASTA
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BLAST

• Uses e.g. PAM or BLOSUM matrix to score alignments

• Returns substring alignments with strings in database that score higher
than threshold S and are longer than min length

• Does not return string if it’s a substring of another and scores lower

• Tries to minimize time spent on alignments unlikely to score higher
than S
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BLAST Steps

• Find short words (strings) that score high when aligned with query

• Use these words to search database for hits (each hit will be a seed
for next step). Each hit will score = T < S to help avoid fruitless
pursuits (lower T ) less chance of missing something & higher time
complexity)

• Extend seeds to find matches with maximum score
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Find High-Scoring Words

• List all words w characters long (w-mers) that score � T with some
query w-mer

– Pass a width-w window over the query and generate the strings
that score � T when aligned

Query: VTP|MKV|IVFC T=13, w=3 (PAM 250)

MKV score = 6 + 5 + 4 = 15

LKV score = 13

MRV score = 13

MKL score = 13

MKI score = 15

MKM score = 13
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Find High-Scoring Words (cont’d)

• Often use w = 3 or 4 characters and T = 11

• At most 20

w total w-mers

• So 160000 w-mers for w = 4, 8000 for w = 3

• Can quickly find all with brute force, or save time with branch-and-bound
(assume T = 13):

Find High-Scoring Words (cont’d)

• Often use w = 3 or 4 characters and T = 11

• At most 20w total w-mers, 50/residue for w = 4

• So 160000 w-mers for w = 4, 8000 for w = 3

• Can quickly find all with brute force, or save time with branch-and-bound
(assume T = 13):

MKV

15 11 11 9 9 9 13
I

M
V F RK L

15

15 13
V L M

1513 < 13*I

13

13 < 13
*V

AA 1

AA 2

AA 3

K
R

13 < 13

13 < 13

K *
V *

< 13
*
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Search for Hits

• Hit = subsequence in data base that matches a high-scoring word from
previous step

• To improve efficiency, represent set of high-scoring words with a DFA

M

L

K

R

K

V

V

V, L, I, M

Start state Accept state

(Implicit transitions on all 
unrecognized chars to this state)

• In general, intractable to build DFA with minimum number of states,
but easy to build one with exponentially more states than minumum by
creating one path per string to yield NFA
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Extending the Seeds

• Take each hit (seed) and extend it in both directions until score drops
below best score so far minus buffer score

• E.g. if buffer = 4, extend to right, then left:

13 = original seed score
| |

Query: VT | PMKVIV | FCW
Database: ... WW | AMKLKV | GWW ...

1 1 1 1
1 6 1 0

1
5

So match PMKVIV with AMKLKV for a score of 16
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Extending the Seeds (cont’d)

• This is a linear-time greedy heuristic to increase speed

• Can miss better matches, e.g. if W-W or C-C pairs are near:

stop here
Query: VTPMKVIV | FCW | C

Database: ... WWAMKLKV | GWW | W ...
1 want to get here
9

• Increasing buffer will increase sensitivity, at the cost of increased time

• Choosing good values of parameters makes small the probability of
missing a better match
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Time Complexity

• Expected-time computational complexity: O(W + Nw + NW/20

w
)

to generate word list, find hits & extend hits

– W = # of high-scoring words generated and N = # of residues in
database (M = query size is embedded in W )

– Can make Nw into N by replacing DFA with hash table

• Versus O(NM) for dynamic programming, where M = # residues in
query

48



Additions to BLAST

• Gapped BLAST: Allows gaps in local alignments

– Better reflects biological relationships

– Less efficient than standard BLAST

• Position-Specific Iterated (PSI) BLAST: Starts with a gapped BLAST
search and adapts the results to a new query sequence for more
searching

– Automated “profile” search

– Less efficient than standard BLAST
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FASTA

1. Start by finding k-tuples common to both sequences (ktup = 1 or 2)

– Done with lookup table and offset vector

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8
s = H A R F Y A A Q I V L t = V D M A A Q I A
LOOKUP TABLE +9 -2 -3 +2 +2 -6
A 2,6,7 OFFSETS +2 +1 -2
F 4 L 11 +3 +2 -1
H 1 Q 8
I 9 R 3
V 10 Y 5

OFFSET VECTOR
-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9
0 1 0 0 1 2 1 0 1 4 1 0 0 0 0 0 1

/\
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FASTA (cont’d)

2. Extend the exact word matches to find maximal scoring ungapped re-
gions (similar to BLAST)

3. Ungapped regions are joined into gapped regions, accounting for gap
costs

4. Realign candidate matches using full dynamic programming

• Increasing ktup improve speed but increase chance of missing true
matches
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How do we do it?

• Choose a scoring scheme

• Choose an algorithm to find optimal alignment wrt scoring scheme

• Statistically validate alignment
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Statistically Validating Alignments

• Once we take our highest-scoring hits, are we done?

– What if none of the hits was good enough?

– What is our threshold (minimum) score?

• Given a particular score, want a bound on the probability that a random
sequence would get at least that score

– Such a probability is given by an extreme value distribution (EVD)
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EVD for Sequence Comparisons
[Karlin & Altschul 1990]

• Let � be the unique positive solution to
X

i,j

pi pj exp(�sij) = 1

• If the two aligned sequences are of length m and n, then the probability
that a score S can occur with a random match is bounded by

P

✓
S >

lnmn

�
+ x

◆
 K exp(��x) ,

where K is given in the paper

• So e.g. if x is such that K exp(��x) = 0.01, then any score
� x + (lnmn)/� has a 99% chance of being significant

– Allows us to assess significance of any score and/or to set a thresh-
old on minimum score
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Topic summary due in 1 week!
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