
CSCE 471/871 Lecture 6: Building Phylogenetic Trees

Stephen D. Scott

1

Outline

• Phylogenetic trees

• Building trees from pairwise distances

• Parsimony

• Simultaneous sequence alignment and phylogeny

2

Phylogenetic Trees

• Assumption: all organisms on Earth have a common ancestor

⇒ all species are related in some way

• Relationships represented by phyogenetic trees

• Trees can represent relationships between orthologs or paralogs

– Othorlogs: genes in different species that evolved from a common
ancestral gene by speciation (evolution of one species out of an-
other). Normally, orthologs retain the same function in the course
of evolution.

– Paralogs: genes related by duplication within a genome. In contrast
to orthologs, paralogs evolve new functions

3

Phylogenetic Trees

(cont’d)

• We’ll use binary trees, both rooted and unrooted

– Rooted for when we know the direction of evolution (i.e. the com-
mon ancestor)

– Can sometimes find the root by adding a distantly related organ-
ism/sequence to an existing tree (Figure 7.1, page 162)

4

Phylogenetic Trees

(cont’d)

• This is a weighted tree, where each weight (“edge length”) is an esti-
mate of evolutionary time between events

– Based on distance measure (e.g. substitution scoring matrices) be-
tween sequences

– Gives a reasonably accurate approximation of relative evolutionary
times, despite the fact that sequences can evolve at different rates

• Number of possible binary trees on n nodes grows exponentially in n

– E.g. n = 20 has about 2.2× 1020 trees

– We’ll use hueristics, of course

5

Outline

• Phylogenetic trees

• Building trees from pairwise distances

– Distance measures

– UPGMA

– The ultrametric property of distances

– Additivity and neighbor joining

• Parsimony

• Simultaneous sequence alignment and phylogeny

6

Building Trees from Pairwise Distances

UPGMA

• Start with some distance measure between sequences

– E.g., Jukes-Cantor: dij = −0.75 log(1 − 4fij/3), where fij is
fraction of residues that differ between sequences xi and xj when
pairwise aligned

• UPGMA (unweighted pair group method average) algorithm

– One of a family of hierarchical clustering algorithms

– Basic overall idea of this algorithmic family: Find minimum inter-
cluster distance dij in current distance matrix, merge clusters i and
j, then update distance matrix

– Differences among algorithms lie in matrix update

– For phylogenetic trees, also add edge lengths

7

Building Trees from Pairwise Distances

UPGMA (cont’d)

1. ∀ i, assign seq xi to cluster Ci and give it its own leaf, with height 0

2. While there are more than two clusters
(a) Find minimum dij in distance matrix
(b) Add to the clustering cluster Ck = Ci ∪ Cj and delete Ci and Cj

(c) For each cluster C� �∈ {Ck,Ci, Cj}

dk� =
1

|Ck| |C�|
�

p∈Ck,q∈C�

dpq

[Shortcut: Eq. (7.2)]
(d) Add to the tree node k with children i and j, with height dij/2

3. When only Ci and Cj remain, place root at height dij/2

Example: Fig 7.4, page 168

8

Building Trees from Pairwise Distances

UPGMA (cont’d)

• If the rate of evolution is the same at all points in original (target) phy-
logenetic tree, then UPGMA will recover the correct tree

– This occurs iff length of all paths from root to leaves are equal in
terms of evolutionary time

• If this is not the case, then UPGMA may find incorrect topology (Fig. 7.5,
p. 170)

• Can avoid this if distances satisfy ultrametric condition: for any three
sequences xi, xj, xk, the distances dij, djk, dik are either all equal, or
two are equal and one is smaller

9

Building Trees from Pairwise Distances

Neighbor Joining

• If the ultrametric property doesn’t hold, can still recover original tree if
additivity holds
– I.e. if, in the original tree, the distance between any pair of leaves

= the sum of the lengths of the edges of the path connecting them

• If additivity holds, then neighbor joining finds the original tree
– First, find a pair of neighboring leaves i and j, assign them parent

k, then replace i and j with k, where for all other leaves m,

dkm = (dim + djm − dij)/2

– But it does NOT work to simply choose the pair (i, j) with minimum
dij (See Fig. 7.7, p. 171)

– Instead, choose (i, j) minimizing Dij = dij − (ri + rj), where L
is current set of “leaves” and

ri =
1

|L|− 2

�

k∈L
dik

10

Building Trees from Pairwise Distances

Neighbor Joining (cont’d)

1. Initialize L = T = set of leaves

2. While |L| > 2

(a) Choose i and j minimizing Dij

(b) Define new node k and set dkm = (dim + djm − dij)/2 for all
m ∈ L

(c) Add k to T with edges of lengths dik = (dij + ri − rj)/2 and
djk = dij − dik

(d) Update L = {k} ∪ L \ {i, j}

3. Add final, length-dij edge between final nodes i and j

11

Outline

• Phylogenetic trees

• Building trees from pairwise distances

• Parsimony

– Weighted parsimony

– Score computation

– Branch and bound

• Simultaneous sequence alignment and phylogeny

12

Parsimony

• Very widely used approach for tree building

• Scores a tree based on the cost of substitutions in going from a node
to its child

⇒ will assign hypothetical ancestral sequences to internal nodes

• Example, page 174 (unit costs)

• Generally consists of two components
1. Computing cost of tree T over n aligned sequences
2. Searching through the space of possible trees for min-cost one

• Treat each site independently of the others, so for a length-m align-
ment, run the scoring algorithm on each of the m sites separately

• Let S(a, b) be cost of substituting b for a

• Scoring site (tree) u ∈ {1, . . . ,m}, let Sk(a) be the minimal cost for
the assignment of symbol (residue) a to node k

13

Parsimony

Scoring a Tree

1. Initialize k = 2n− 1 (index of the root node)

2. Recursively compute Sk(a) for all a in the alphabet:

(a) If k is a leaf, set Sk(a) = 0 for a = xku and Sk(a) = ∞ otherwise

⇒ a must match uth symbol in sequence

(b) Else Sk(a) = minb(Si(b) + S(a, b)) + minb(Sj(b) + S(a, b)),
where i and j are k’s children

3. Return mina S2n−1(a) as minimum cost of tree

Can recover ancestral residues by tracking where min comes from in
recurisve step

14

Parsimony

Searching for a Tree

• Not practical to enumerate the entire set of possible trees and score
them all

• Will use branch and bound to speed it up (though no guarantee of an
efficient algorithm)

– When incrementally building a tree, adding edges will never de-
crease its cost

– Thus if a tree’s cost already exceeds the final cost of the best tree
so far, we can discard it

• Algorithm: systematically grow existing tree by adding edges, stopping
expansion if current tree’s cost exceeds final cost of best tree so far

15

Outline

• Phylogenetic trees

• Building trees from pairwise distances

• Parsimony

• Simultaneous sequence alignment and phylogeny

– Hein’s affine cost algorithm

16

Simultaneous sequence alignment and phylogeny

Hein’s Affine Cost Algorithm

• Similar to parsimony in that, given a topology, it infers ancestral se-
quences

• But this algorithm uses an affine gap penalty model (separate penal-
ties for opening and extending gaps)

• First, it ascends the tree from the leaves, determining the set of se-
quences that best align with leaf sequences

– Represents such a set of sequences as a digraph

• Then it works its way up toward the root, at each step inferring the set
of sequences that best align with the child graphs

• Finally, it descends from the root to the leaves, fixing the specific an-
cestral sequences

17

Simultaneous sequence alignment and phylogeny

Hein’s Affine Cost Algorithm
Finding Set of Sequences that Best Align with Leaves

• GOAL: Given sequences x and y, find set of sequences such that
for each such sequence z, S(x, z) + S(z, y) = S(x, y) (for either
mismatch scores or weighted scores)

• Use dynamic programming to handle affine gap penalties, avoiding
alternating gaps:
– V M(i, j) = min cost aligning x1...i to y1...j with xi aligned to yj

V M(i, j) = min{V M(i− 1, j − 1), V X(i− 1, j − 1),
V Y (i− 1, j − 1)}+ S(xi, yj)

– V X(i, j) = min cost aligning x1...i to y1...j with xi aligned to gap

V X(i, j) = min{V M(i− 1, j) + d, V X(i− 1, j) + e}

– V Y (i, j) = min cost aligning x1...i to y1...j with yj aligned to gap

V Y (i, j) = min{V M(i, j − 1) + d, V Y (i, j − 1) + e}

18

Simultaneous sequence alignment and phylogeny

Hein’s Affine Cost Algorithm
Finding Set of Sequences that Best Align with Leaves (cont’d)

• Dynamic programming example in Fig. 7.13, page 183
– j indexes rows, i indexes columns; seq. X is bottom/horizontal
– Where do the X values in column 2 come from? Y values in row

2? (Hint: what do these values represent?)

• Result is a set of paths through the DP table, each corresponding to a
valid ancestral sequence
– If one spot on a path is a match between xi and yj, then a valid

ancestral sequence contains either xi or yj in that position
– If a gap is involved, then can take the gap or the residue

∗ But since cost function is not linear, need to either take the entire
gap or none of the gap

∗ E.g. in Fig. 7.13, with leaves CAC and CTCACA, can use as
ancestral sequence CTC, CAC, CACACA, etc., but not CACAC
(why?)

19

Simultaneous sequence alignment and phylogeny

Hein’s Affine Cost Algorithm
Finding Set of Sequences that Best Align with Leaves (cont’d)

• Can represent set of sequences as a digraph (e.g. Fig. 7.14(a); edges
directed to the right), aka a sequence graph, where each path through
the graph corresponds to a valid ancestral sequence

• Null (“dummy”) edges (denoted by δ) allow gaps to be entirely skipped

20

Simultaneous sequence alignment and phylogeny

Hein’s Affine Cost Algorithm
Building Sequence Graphs for Higher-Level Nodes

• Now want to ascend the tree towards the root, building ancestral
sequence graphs for internal nodes

• But SG construction previously described ran DP on individual
sequences!

• Turns out we can also run DP on SGs
– In DP equations, “i − 1” means the set of previous nodes in the

horizontal graph, “j − 1” the set of previous nodes in the vertical
graph

– Now take minimum over entire set of previous nodes that have val-
ues defined (non-“–”)

– Scoring function S now defined on sets; it’s 0 iff its set-type argu-
ments have non-empty intersection

• Once DP completed, do another traceback and build new SG
– When labeling edges in new SG, use the intersection of the labels

in the two defining edges, or the union if the intersection is empty

21

Simultaneous sequence alignment and phylogeny

Hein’s Affine Cost Algorithm
Filling in Ancestral Sequences

• Now choose a path in the root’s SG, then go to child nodes and trace
their SGs with its parent’s ancestral seq., choosing compatible
symbols

• In final multiple alignment, need to fill in gaps

22

Simultaneous sequence alignment and phylogeny

Hein’s Affine Cost Algorithm
Building the Topology

• Still need to build the tree to align sequences to

• Hein’s tree-building algorithm:

1. Compute an informative subset of the inter-sequence distances

2. Build a “distance tree” by adding sequences to it one by one

3. Perform rearrangements on the tree to improve its fit to the distance
data

4. Align sequences to the tree (what we already covered)

23

Simultaneous sequence alignment and phylogeny

Hein’s Affine Cost Algorithm
Building the Topology

Computing Subset of Distances

• Assume that the distance measure and sequences form a metric space,
implying:

– d(s1, s2) = 0 ⇔ s1 = s2

– d(s1, s2) = d(s2, s1)

– d(s1, s) + d(s, s2) ≥ d(s1, s2)

• Can use third eq. to upper- and lower-bound unknown distances

• I.e. if differences between upper and lower bounds is smaller than a
paremeter, do not compute the exact value

24

