CSCE 471/871 Lecture 2: Pairwise Alignments

Stephen D. Scott

What is a Sequence Alignment?

e Given two nucleotide or amino acid sequences, determine if they are
related (descended from a common ancestor)

e Technically, we can align any two sequences, but not always in a
meaningful way

e In this lecture, we’ll focus on AA sequences (more reliable in modeling
evolution), but same alignment principles hold for DNA sequences

Why Should We Care?

e Fragment assembly in DNA sequencing

Experimental determination of nucleotide sequences is only reli-
able up to about 500-800 base pairs (bp) at a time

But a genome can be millions of bp long!

If fragments overlap, they can be assembled:

.. .AAGTACAATCA
CAATTACTCGGA. ..

Need to align to detect overlap

Outline

e What is a sequence alignment?

e Why should we care?

e How do we do it?
— Scoring matrices
— Algorithms for finding optimal alignments

— Statistically validating alignments

What is a Sequence Alignment? (cont'd)

HIGHLY RELATED:

HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL
G+ +VK+HGKKV A+++++AH+D++ +++++LS+LH KL

HBB_HUMAN GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL

RELATED:

HBA_HUMAN GSAQVKGHGKKVADALTNAVAHV---D—--DMPNALSALSDLHAHKL
++ ++++H+ KV + +A  ++ +L+ L+++H+ K

LGB2_LUPLU NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG

SPURIOUS ALIGNMENT:

HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSD-—-—--LHAHKL
GS+ + G + +D L ++ H+ D+ A +AL D ++AH+
F11G1l1l.2 GSGYLVGDSLTFVDLL--VAQHTADLLAANAALLDEFPQFKAHQE

How to filter out the last one & pick up the second?

Why Should We Care? (cont’d)

e Finding homologous proteins and genes
— l.e. evolutionarily related (common ancestor)

— Structure and function are often similar, but this is reliable only if
they are evolutionarily related

— Thus want to avoid the spurious alignment of slide 4



How do we do it?

e Choose a scoring scheme

e Choose an algorithm to find optimal alignment wrt scoring scheme

e Statistically validate alignment

Scoring Schemes (cont’d)

o If AA qa; is aligned with a;, then a; was substituted for a;

...KALM. ..
...KVLM. ..

Was this due to an accepted mutation or simply by chance?

— If Aor Vis likely in general, then there is less evidence that this is
a mutation

o Want the score s;; to be higher if mutations more likely

— Take ratio of mutation prob. to prob. of AA appearing at random

Generally, if a; is similar to a; in property, then accepted mutation more
likely and s;; higher

The PAM Transition Matrices

Dayhoff et al. started with several hundred manual alignments be-
tween very closely related proteins (> 85% similar in sequence), and
manually-generated evolutionary trees

Computed the frequency with which each AA is changed into each
other AA over a short evolutionary distance (short enough where only
1% AAs change)

e 1 PAM = 1% point accepted mutation

Scoring Schemes

e Since goal is to find related sequences, want evolution-based scoring
scheme

— Mutations occur often at the genomic level, but their rates of acceptance

by natural selection vary depending on the mutation

— lL.e. changing an AA to one with similar properties is more likely to
be accepted

e Assume that all changes occur independently of each other and are
Markovian (makes working with probabilities easier):

Scoring Schemes (cont’d)

e Only consider immediate mutations a; — aj, not a; — a;, — a;

o Mutations are undirected
= scoring matrix is symmetric

The PAM Transition Matrices (cont’d)

e Estimate p; with the frequency of AA a; over both sequences, i.e. # of
a;'s/number of AAs

o Let fi; = fji = #of a; <+ a; changes in data set, f; = 3 ;; fi; and
f=%ifi

e Define the scale to be the amount of evolution to change 1 in 100 AAs
(on average) [1 PAM dist]

e Relative mutability of a; is the ratio of number of mutations to total
exposure to mutation: m; = f;/(100fp;)



The PAM Transition Matrices (cont’d)

e |f m; is probability of a mutation for a;, then M;; = 1 — m; is prob. of
no change

e a; — a; if and only if a; changes and a; — a; given that a; changes,
o)

Mij = Pr(aiﬁaj)
= Pr(a; = aj | a; changed) Pr(a; changed)
= (fij/f)mi = fi;/(100fp;)

e The 1 PAM transition matrix consists of the M;; and gives the proba-
bilities of mutations from a; to a;

What About 2 PAM?
o How about the probability that a; — a; in two evolutionary steps?

e It's the prob that a; — ay, (for any k) in step 1, and aj, — a; in step 2.
This is ¥, My My; = M7

Building a Scoring Matrix

e When aligning different AAs in two sequences, want to differentiate
mutations and random events

e Thus, interested in ratio of transition probability to prob. of randomly
seeing new AA

M;; fij M,

p;  100fpp;  p;

(symmetric)

e Ratio > 1 if and only if mutation more likely than random event

Properties of PAM Transition Matrices

DMy = Y My + My

7 i

1/(100fp;) > fij + (1 = f;/(100£p;))
JFi

fi/(100fp;) + 1 — f;/(100fp;) = 1

[sum of probabilities of changes to an AA + prob of no change = 1]

Y piMi =3 pi— 3 ;/(100f) = 1 - £/(1004) = 0.99

[prob of no change to any AA is 99/100]

k PAM Transition Matrix
e In general, the probability that a; — a; in k evolutionary steps is ij

e As k — oo, the rows of M* tend to be identical with the ith entry of
each row equal to p;

— A result of our Markovian assumption of mutation

Building a Scoring Matrix (cont’d)

e When aligning multiple AAs, ratio of probs for multiple alignment =
product of ratios:

a; A An e M (Mu) (Mnm),,,
aj ag am --- Pj Pe Pm

e Taking logs will let us use sums rather than products



Building a Scoring Matrix (cont’d)
e Final step: computation faster with integers than with reals, so scale
up (to increase precision) and round:
sij = C'loga(M;;/p;)

e (' is a scaling constant

o For k PAM, use Mikj

PAM Scoring Matrix Miscellany

Pairs of AAs with similar properties (e.g. hydrophobicity) have high
pairwise scores, since similar AAs are more likely to be accepted mu-
tations

In general, low PAM numbers find short, strong local similarities and
high PAM numbers find long, weak ones

Often multiple searches will be run, using e.g. 40 PAM, 120 PAM, 250
PAM

Altschul (JMB, 219:555-565, 1991) gives discussion of PAM choice

21

BLOSUM Scoring Matrices (cont’d)

Started with ungapped alignments from BLOCKS database

e Sequences clustered at L% sequence identity

This time, f;; = # of a; <+ a; changes between pairs of sequences
from different clusters, normalizing by dividing by (n1n,) = product
of sizes of clusters 1 and 2

o fi =% fij [ = % fi (different from PAM)

e Then the scoring matrix entry is

Sij = C'logo <M>

PiP;j

23

Table 1 — The log odds matrix for 250 PaMs (multiplied by 10

A4 C D E F @ H I K L M N P Q E 8 T ¥V W ¥
A& 2-2 0 04 1-1-1-1-2-1 90 1 9-2 1 1 qa-6-3
c 12 -6 -5 -4 3 3-2-5-6-5-4-3-5-4 0-2-2-8 40
bl 4 36 1 1-2 0-4-3 2-1 2-1 a0 0-2-7-4

E 4 -5 0 1-2 0-3-2 1-1 2-1 0 0-2-7-4

F S B 2 R R B bR R T e T R G

G 5-2-3-2-4-3 0-1-1-3 1 0-1-7-5

H £ -2 0-2-2 2 0 3 2-1-1-2-3 40

I 5-2 2 2 -2-2-2-2-1 0 4-5-1

K 5-3 0 1-1 1 3 a 0-2-3 -4
L 6 4 3 -3-2-3-3-2 2-2-1
M £ -2 -2-1 0-2-1 2-4-2
N 2-1 1 o 1 0-2-4 -2
P & 0 0 1 g-1-6 -5
Q 4 1-1-1-2-5-4
R & 0 -1-2 2 -4
8 Z oA =i =3 =g
T 3 0-5-3
v 4 -6 2
W 17 a4
Y 19
20

BLOSUM Scoring Matrices

e Based on multiple alignments, not pairwise

e Direct derivation of scores for more distantly related proteins

e Only possible because of new data: multiple alignments of known re-

lated proteins

22

BLOSUM 50 Scoring Matrix

AR ND C QE G H I L KMF P S T W
A5 2 4 2 4 4 4 0 =2 4 2 4 1 3 4 1 0 3
R 2 7 4 -2 -4 1 0 3 0 4 -3 3 2 3 3 -1 -1 -3
N 4 1 7 2 2 0 0 0 1 -3 -4 0 2 4 2 1 0 -4
D 2 2 2 8 4 0 2 4 -1 -4 -4 41 -4 5 4 0 -1 5
c 1 4 2 4 13 3 3 3 -3 2 2 3 2 2 -4 -1 4 5
Q 4 1 0 0 83 7 2 2 1 3 2 2 0 -4 -4 0 -1 -1
E 4 0 0 2 3 2 6 3 0 4 3 1 2 3 4 4 4 3
G 0o 3 0 1 3 2 3 8 2 -4 -4 2 3 4 2 0 2 -3
H 2 0 1 4 -3 1 0 2 10 4 -3 0 -1 -1 2 4 2 3
| 41 4 3 4 -2 3 4 -4 4 5 2 3 2 0 -3 3 -1 3
L 2 3 -4 4 2 2 3 4 3 2 5 3 3 1 -4 3 4 =2
K 4 3 0o 4 3 2 1 2 0 3 3 6 -2 -4 -1 0 -1 -3
M 4 2 2 4 2 0 2 -3 4 2 3 -2 7 0 -3 2 -1 -
F 3 3 4 5 2 4 -3 -4 1 0 1 -4 0 8 -4 -3 2 1
P 41 3 2 4 4 4 4 =2 -2 3 4 1 3 -4 10 4 1 -4
s 1+ 11 0 4 0 4 0 1 -3 3 0 2 3 1 5 2 -4
T 0o 1 0 A4 4 4 4 2 2 4 4 4 4 2 4 2 5 3
w 3 3 4 5 5 4 -3 3 3 -3 2 3 1 1 -4 -4 3 15
Y 2 4 2 3 3 4 2 8 2 4 4 2 0 4 3 2 2 2
v o 3 3 -4 1 -3 -3 4 -4 4 1 3 1 4 3 2 0 3

24

LD s O A A0l Al oo b <

MLHOR G A== b hhbbLhbbO<



Gap Penalties

e Agap can be inserted in a sequence to better align downstream residues,
e.g. alignments 2 & 3 on slide 4 How do we do it?

e Two widely-used types of scoring functions: e Choose a scoring scheme

— Linear: v(g) = —gd, where g is gap length and d is gap-open penalty

(often choose d = 8) e Choose an algorithm to find optimal alignment wrt scoring scheme
— Affine: v(g) = —d — (g — 1)e, where e is gap-extension penalty
(often choose d = 12, ¢ = 2) o Statistically validate alignment

e Vingron & Waterman (JMB, 235:1-12, 1994) discuss penalty function
choice in more detail

25 26

NO!

1), e.9.n =100

residues/sequence = > 9 x 10°8 alignments!

Optimal Alignment Algorithms e The number of alignments grows with (

o To find the best alignment, we can simply try all possible alignments of

the two sequences, score them, and choose the best o So now what do we do?

Will this work? — Pull dynamic programming out of our algorithm toolbox
3 7 e el et~ el -

— We'll see that optimal alignments of substrings are part of an opti-
mal alignment of the larger strings

27 28

Types of Alignments Global Alignment

o Will discuss DP algs for these types of alignments between seqgs. z e Let F'(i,5) = score of best alignment between z1_; and yy__;
and y:
e GivenF(i—1,5—1),F(i—1,5),and F (4,5 — 1), whatis F(i,5)?
— Global: Align all of = with all of y
e Three possibilities:
+ Useful when testing homology between two similarly-sized se-
quences . ) I G A =z
1. z; aligned with y;, e.g. LGV y

= F(@i,5) =F@G-1,j-1) + s(z;, ;)

— Local: Align a substring of = with a substring of y

+ Useful when finding shared subsequences between proteins

— Semiglobal (“Overlap”): Same as global, but ignore leading and/or 2. z; aligned with gap, e.g. L GV y
trailing blanks = F(i,))=F(i-1,j)—d

* Useful when doing fragment assembly

3. y; aligned with gap, e.g.

e For now, assume linear gap penalty

= F@,j))=F@G,j-1)—d

29 30



Global Alignment (cont’d)

e Final update equation:
F(i—1,7—1)+ s(zi,y5)

F(i,j) =max{ F(i—1,5)—d
F(i,j—1)—d

F(i-1,j-1) F(i, j-1)
/ s(xi, i)™ i] -d

N

F(i-1,j) ——= F{(i, )

e Boundary conditions: F'(i,0) = —id, F(0,j) = —jd

31

Local Alignment
o Similar to global alignment algorithm

e Differences:

1. If an alignment’s score goes negative, it's better to start a new one

0
F(i,j) = max ?8 B tj)__lg + 5@ y5) , F(i,0) = F(0,5) =0
F(i,j—1)—d

2. Score of opt. align. is max; ;{F (i, j)}; end traceback at 0 score

e Figure 2.6, p. 23

e Must have expected score < O for rand. match and need some s(a,b) > 0

33

Overlap Matches (a.k.a. Semiglobal Alignment)

e |f match = +1, mismatch = —1 and gap = —2,

CAGCA-CTTGGATTCTCGG CAGCACTTGGATTCTCGG
-——CAGCGTGG--——-——— CAGC——--- G-T----GG
-19 -12

e Ignoring end spaces will allow us to constrain alignment to containment

or prefix-suffix overlap

X X

y y

35

Global Alignment (cont’d)

e Score of optimal global alignment is in F/(n, m)

e The alignment itself can be recovered if, for each F (i, j) decision, we
kept track of which cell gave the max

— Follow this path back to origin, and print alignment as we go

— Figure 2.5, p. 21

32

Overlap Matches (a.k.a. Semiglobal Alignment)

e Which is better?

CAGCA-CTTGGATTCTCGG CAGCACTTGGATTCTCGG
-——CAGCGTGG--—————— CAGC----- G-T----GG
34
Overlap Matches (cont’d)
e F(i,0) = F(0,5) =

e Score of optimal alignment =

o F(i,j) =

e Figure 2.8, p. 27

36



General Gap Penalty Functions

o If gap penalty v(g) not linear, can still do optimal alignment:
F(i—1,7—1) + s(x;,y5)

F(i,j) = max{ maxy—q,  i—1{F(k,j) +~vG —k)}

F(0,7) = () .
F(i,0) = (i)
F(i, j-2)
F(i-1, j-1) F(i, j-1)
S(xi, yj) \g, y (1)
eee | F(i2,)) F(i-1,j) T>> F(i, j)
Y

e Problem: time complexity now © (n3) versus © (n2) for old alg

37

Affine Gap Penalty Functions (cont'd)

M@Gi—1,7-1)
M(i,j) = s(zi,y;) +max{ L(i—1,5-1)
I(i—1,5-1)

L) = max{ T
LGi.j) = max{ ?f((zjj:f)):g
‘ s(xi, yj)
M(0,0) =0, M(i,0) = M(0,j) = —c0
1:(0,5) = —oo, I:(3,0) = —d — (i — 1)e
1,(i,0) = oo, 1,(0,j) = —d— (G - 1)e
39
BLAST

e Uses e.g. PAM or BLOSUM matrix to score alignments

e Returns substring alignments with strings in database that score higher
than threshold S and are longer than min length

e Does not return string if it's a substring of another and scores lower

e Tries to minimize time spent on alignments unlikely to score higher
than S

41

Affine Gap Penalty Functions
o If gap penalty an affine function, can run in © (nz) time

e Use 3 arrays:
1. M(i,5) = best score to (i, ) when z; aligns y; (case 1, slide 30)
2. I(i,7) = best score when z; aligns gap (case 2); insert. in z wrt y
3. Iy(i,5) = best score when y; aligns gap (case 3)

M(i—1,5-1)
M(i,5) = s(zj,y;) +maxq I(i—1,5—-1)
LGi—1,5-1)

LG, ) max{ M(-1,5)-d

I(i—1,5) —e

M(i,j—1)—d

b9 = max{ 1Gij 1)~ e

38

Heuristic Alignment Algorithms

e Linear (vs. quadratic) time complexity

— Important when making several searches in large databases
e Don'’t guarantee optimality, but very good in practice
e BLAST

e FASTA

40

BLAST Steps

e Find short words (strings) that score high when aligned with query

e Use these words to search database for hits (each hit will be a seed
for next step). Each hit will score = T" < S to help avoid fruitless
pursuits (lower T' = less chance of missing something & higher time
complexity)

e Extend seeds to find matches with maximum score

42



Find High-Scoring Words

e List all words w characters long (w-mers) that score > T with some
query w-mer

— Pass a width-w window over the query and generate the strings
that score > T" when aligned

Query: VTP |MKV|IVFC T=13, w=3 (PAM 250)
MKV score = 6 + 5 + 4 = 15
LKV score = 13
MRV score = 13
MKL score = 13
MKI score = 15
MKM score = 13

43

Search for Hits

e Hit = subsequence in data base that matches a high-scoring word from
previous step

e To improve efficiency, represent set of high-scoring words with a DFA

M ?‘?
Start state
% o-0
K

(Implicit transitions on all
unrecognized chars to this state)

e In general, intractable to build DFA with minimum number of states,

but easy to build one with exponentially more states than minumum by
creating one path per string to yield NFA

45

Extending the Seeds (cont’d)
e This is a linear-time greedy heuristic to increase speed

e Can miss better matches, e.g. if W-W or C-C pairs are near:

stop here

Query: VTIPMKVIV | FCW | C
Database: ... WWAMKLKV | GWW | W ...
1 want to get here
9

e Increasing buffer will increase sensitivity, at the cost of increased time

e Choosing good values of parameters makes small the probability of
missing a better match

47

Find High-Scoring Words (cont’d)
e Oftenuse w = 3 or 4 charactersand 7' = 11
e At most 20" total w-mers, 50/residue for w = 4
e S0 160000 w-mers for w = 4, 8000 for w = 3

e Can quickly find all with brute force, or save time with branch-and-bound

(assume T' = 13):

AA'1 \& eee |3
AA?2 ‘3\ x

>9< /*
3\ Vli* %
AA3 15 13 1 9@ >JQ

Extending the Seeds

e Take each hit (seed) and extend it in both directions until score drops
below best score so far minus buffer score

e E.g.if buffer = 4, extend to right, then left:

13 = original seed score
[
Query: VT | PMKVIV | FCW
Database: ... WW | AMKLKV | GWW ...
1 1 1 1
1 6 1 0
1
5

So match PMKVIV with AMKLKYV for a score of 16
46

Time Complexity
e Expected-time computational complexity: O(W + Nw + NW/20%)
to generate word list, find hits & extend hits

— W = # of high-scoring words generated and N = # of residues in
database (M = query size is embedded in W)

— Can make Nw into N by replacing DFA with hash table

e Versus O(N M) for dynamic programming, where M = # residues in
query

48



Additions to BLAST

Gapped BLAST: Allows gaps in local alignments

— Better reflects biological relationships

— Less efficient than standard BLAST

Position-Specific lterated (PSI) BLAST: Starts with a gapped BLAST

search and adapts the results to a new query sequence for more
searching

— Automated “profile” search

— Less efficient than standard BLAST

49

FASTA (cont’d)

. Extend the exact word matches to find maximal scoring ungapped re-

gions (similar to BLAST)

. Ungapped regions are joined into gapped regions, accounting for gap

costs

. Realign candidate matches using full dynamic programming

Increasing ktup improve speed but increase chance of missing true
matches

51

Statistically Validating Alignments

Once we take our highest-scoring hits, are we done?

— What if none of the hits was good enough?

— What is our threshold (minimum) score?
Given a particular score, want a bound on the probability that a random
sequence would get at least that score

— Such a probability is given by an extreme value distribution (EVD)

53

FASTA

— Done with lookup table and offset vector

1234567891011 123 4 5 6 7

s=HARFYAAQI V L t=VDM A A Q I
LOOKUP TABLE +9 -2 =3 +2 +2
A 2,6,7 OFFSETS +2 +1

F 4 L 11 +3 +2

H1 Q8

I9 R 3

v 10 Y 5

OFFSET VECTOR
-7 =6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9

610 0 1 2 10 1 4 1 0 0 0 0 0 1

/\
50

How do we do it?

e Choose a scoring scheme

e Choose an algorithm to find optimal alignment wrt scoring scheme

e Statistically validate alignment

52

EVD for Sequence Comparisons
[Karlin & Altschul 1990]

e Let \ be the unique positive solution to

> pipjexp(Asy) =1
0

1. Start by finding k-tuples common to both sequences (ktup = 1 or 2)

8
A
-6
-2
-1

o [f the two aligned sequences are of length m and n, then the probability

that a score S can occur with a random match is bounded by

Inmn
A
where K is given in the paper

P (S > + r) < Kexp(—Az),

e So e.g. if z is such that K exp(—Az) = 0.01, then any score
>z 4+ (Inmn) /X has a 99% chance of being significant

— Allows us to assess significance of any score and/or to set a thresh-

old on minimum score

54



Topic summary due in 1 week!

55



