Welcome to 471/871!

- Check your name on the roster, or write your name if you're not listed
- Policy on sit-ins: You may sit in on the course without registering, but not at the expense of resources needed by registered students

2

4

6

- Introduce yourself
 - 1. Who are you?
 - 2. What are you?
 - 3. Why are you here?
- You should have the following handouts:
 1. Syllabus
 - 2. Copies of slides

Outline

CSCE 471/871 Lecture 1: Introduction

Stephen D. Scott (With thanks to Andy Benson and Jitender Deogun)

- What is bioinformatics?
- Relevant biology background
- · Fundamental questions in bioinformatics
- What we will (and will not) cover in this course

What is Bioinformatics?

- Bio = (molecular) biology
- Informatics = computer science
- Bioinformatics = using computer science tools and techniques for solving problems in (molecular) biology
- (Loose) synonym: Computational Biology

What is Bioinformatics? (cont'd)

- Original motivation comes from molecular biology
 - Sequence analysis
 - Most accurate analysis is via experimentation ("bench work"), but expensive and time-consuming (e.g. GenBank has $> 1.1 \times 10^{11}$ base pairs from $> 1.1 \times 10^8$ sequences)
- Bio problems suggest computational problems, which then suggest
 new biological experiments

CSCE 471/871 Lecture 0: Administrivia

Stephen D. Scott

1

3

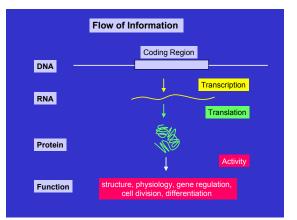
5

Relevant Biology Background

- Basic idea: <u>genes</u> (chains of <u>nucleotides</u>) are converted into <u>proteins</u> (chains of <u>amino acids</u>)
- Proteins are the "workhorses" of biological systems, governing metabolic processes
 - E.g. blood clotting is a process that consists of a chain reaction of numerous protein interactions

DNA and Genes

2. Cellular machinery transcribes the coding regions of DNA into RNA


... ATTGATA ATGCTGAACTACAAATTACGGCAGGCAACCGGAGCCTGGAAGTGA TAGGA ...

AUGCUGAACUACAAAUUACGGCAGGCAACCGGAGCCUGGAAGUGA

- Has same alphabet, substituting U (uracil) for T

- Non-coding regions are not transcribed

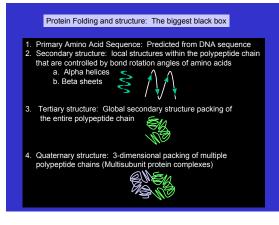
1. An organism's DNA is a (long) sequence of nucleotides (bases, residues), from {Adenine (A), Guanine (G), Cytosine (C), Thymine (T)}

DNA and Genes (cont'd)

- 3. Then introns (non-coding subsequences) are removed, yielding mRNA
 - Adjacent triples are codons, each encoding an amino acid
- 4. mRNA is <u>translated</u> codon-by-codon into a <u>polypeptide</u> by <u>ribosomes</u> (organelles in cells' cytoplasm)
- 5. Proteins are comprised of one or more polypeptide chains

AUGCUG \boxed{AA} CUA \boxed{C} AAAUUACGGCAGGCAACCGGAGCCUGGAAGUGA $\downarrow \downarrow$ AUG CUG CUA AAA UUA CGG CAG GCA ACC GGA GCC UGG AAG UGA $\downarrow \downarrow$ M L L K L R Q A T G A W K [X] 10

Second Posi	tion U	С	А	G		_
First positi 5' end	on Phe	Ser	Tyr	Cys	U ^{Thire} _{3' en}	d position
U	Phe	Ser	Tyr	Cys	C	
	Leu	Ser (STOP	STOP	A	
	Leu	Ser (STOP	Trp	G	
	Leu	Pro	His	Arg	U	
C	Leu	Pro	His	Arg	С	Genetic code
	Leu	Pro	Gln	Arg	А	is degenerate
	Leu	Pro	Gln	Arg	G	
	Ile	Thr	Asn	Ser	U	64 codons 20 amino acids
А	Ile	Thr	Asn	Ser	С	20 amino acius
	Ile	Thr	Lys	Arg	А	
	Met	Thr	Lys	Arg	G	_
	Val	Ala	Asp	Gly	U	
G	Val	Ala	Asp	Gly	С	
	Val	Ala	Glu	Gly	А	
	Val	Ala	Glu	Gly	G	


Symbols for Amino Acids

А	Ala	Alanine	M	Met	Methionine
С	Cys	Cysteine	N	Asn	Asparagine
D	Asp	Apartic Acid	Р	Pro	Proline
Е	Glu	Glutamic Acid	Q	Gln	Glutamine
F	Phe	Phenylalanine	R	Arg	Arginine
G	Gly	Glycine	S	Ser	Serine
Н	His	Histidine	Т	Thr	Threonine
I	lle	Isoleucine	V	Val	Valine
Κ	Lys	Lysine	W	Trp	Tryptophan
L	Leu	Leucine	Y	Tyr	Tyrosine

7

9

8

Some Fundamental Questions

- Given an organism, what is its genetic sequence? \Rightarrow Sequence assembly
- Given a sequence, what genes does it encode?
 ⇒ Gene finding
- Given a protein:
 - What is its structure?
 ⇒ Structure prediction
 - What other proteins is it related to?
 ⇒ Homology prediction/phylogeny
 - What is its function?
 ⇒ Function prediction
- All this from (mainly) only sequences of letters!

What We Will Study

- Pairwise alignment of sequences
- Multiple alignment of sequences
- Profiling (modeling) a multiple alignment
- Building phylogenetic (evolutionary) trees (time permitting)
- Predicting <u>secondary structure</u> and/or <u>function</u> of RNA and proteins (time permitting)

15

13

What We Will <u>Not</u> Study

14

16

(but are still interesting problems)

- Gene finding
- Inferring metabolic pathways
- Predicting tertiary structure of proteins

Topic summary due in one week!