Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 08 — All-Pairs Shortest Paths (Chapter 25)

Stephen Scott and Vinodchandran N. Variyam

Introduction

- Similar to SSSP, but find shortest paths for all pairs of vertices
- ▶ Given a weighted, directed graph G = (V, E) with weight function $w : E \to \mathbb{R}$, find $\delta(u, v)$ for all $(u, v) \in V \times V$
- ➤ One solution: Run an algorithm for SSSP |V| times, treating each vertex in V as a source
 - If no negative weight edges, use Dijkstra's algorithm, for time complexity of $O(|V|^3 + |V||E|) = O(|V|^3)$ for array implementation, $O(|V||E|\log|V|)$ if heap used
 - If negative weight edges, use Bellman-Ford and get $O(|V|^2|E|)$ time algorithm, which is $O(|V|^4)$ if graph dense
- Can we do better?
 - ▶ Matrix multiplication-style algorithm: $\Theta(|V|^3 \log |V|)$
 - ▶ Floyd-Warshall algorithm: $\Theta(|V|^3)$
 - Both algorithms handle negative weight edges

Adjacency Matrix Representation

- Will use adjacency matrix representation
- ▶ Assume vertices are numbered: $V = \{1, 2, ..., n\}$
- ▶ Input to our algorithms will be $n \times n$ matrix W:

$$w_{ij} = \begin{cases} 0 & \text{if } i = j \\ \text{weight of edge } (i,j) & \text{if } (i,j) \in E \\ \infty & \text{if } (i,j) \notin E \end{cases}$$

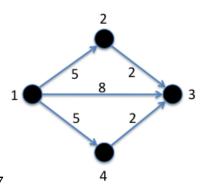
- For now, assume negative weight cycles are absent
- In addition to distance matrices L and D produced by algorithms, can also build predecessor matrix Π, where π_{ij} = predecessor of j on a shortest path from i to j, or NIL if i = j or no path exists
 - Well-defined due to optimal substructure property

Print-All-Pairs-Shortest-Path(Π , i, j)

```
if i == j then
| print i;
selse if \pi_{ij} == NIL then
| print "no path from " i " to " j " exists";
selse
| PRINT-ALL-PAIRS-SHORTEST-PATH(\Pi, i, \pi_{ij});
print j;
```

Shortest Paths and Matrix Multiplication

- ▶ Will maintain a series of matrices $L^{(m)} = \ell^{(m)}_{ij}$, where $\ell^{(m)}_{ij} =$ the minimum weight of any path from i to j that uses at most m edges
 - ▶ Special case: $\ell_{ij}^{(0)} = 0$ if $i = j, \infty$ otherwise



$$\ell_{13}^{(0)} = \infty$$
, $\ell_{13}^{(1)} = 8$, $\ell_{13}^{(2)} = 7$

Recursive Solution

- Exploit optimal substructure property to get a recursive definition of $\ell_{ij}^{(m)}$
- ➤ To follow shortest path from i to j using at most m edges, either:
 - 1. Take shortest path from i to j using $\leq m-1$ edges and stay put, or
 - 2. Take shortest path from i to some k using $\leq m-1$ edges and traverse edge (k,j)

$$\ell_{ij}^{(m)} = \min \left(\ell_{ij}^{(m-1)}, \min_{1 \le k \le n} \left(\ell_{ik}^{(m-1)} + \mathbf{w}_{kj} \right) \right)$$

▶ Since $w_{ij} = 0$ for all j, simplify to

$$\ell_{ij}^{(m)} = \min_{1 < k < n} \left(\ell_{ik}^{(m-1)} + \mathbf{w}_{kj} \right)$$

▶ If no negative weight cycles, then since all shortest paths have $\leq n-1$ edges,

$$\delta(i,j) = \ell_{ij}^{(n-1)} = \ell_{ij}^{(n)} = \ell_{ij}^{(n+1)} = \cdots$$

Bottum-Up Computation of *L* Matrices

- Start with weight matrix W and compute series of matrices $L^{(1)}, L^{(2)}, \ldots, L^{(n-1)}$
- Core of the algorithm is a routine to compute L^(m+1) given L^(m) and W
- Start with $L^{(1)} = W$, and iteratively compute new L matrices until we get $L^{(n-1)}$
 - Why is $L^{(1)} == W$?
- Can we detect negative-weight cycles with this algorithm? How?

Extend-Shortest-Paths(L, W)

```
// This is L^{(m)};
 <sub>1</sub> n = number of rows of L
                                           // This will be L^{(m+1)}:
 2 create new n \times n matrix L'
   for i = 1 to n do
         for j = 1 to n do
               \ell'_{ii}=\infty ;
 5
               for k = 1 to n do
 6
                 | \ell'_{ii} = \min \left( \ell'_{ii}, \ell_{ik} + \mathbf{w}_{ki} \right)
 7
               end
 8
         end
 9
10 end
11 return L';
```

Slow-All-Pairs-Shortest-Paths(W)

```
n = number of rows of W;

L^{(1)} = W;

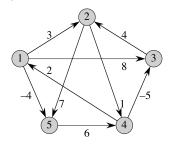
for m = 2 to n - 1 do

L^{(m)} = \text{EXTEND-SHORTEST-PATHS}(L^{(m-1)}, W);

end

return L^{(n-1)};
```

Example



$$L^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$L^{(3)} = \begin{pmatrix} 0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad L^{(4)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$L^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad L^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix}$$

$$L^{(4)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

Improving Running Time

- What is time complexity of SLOW-ALL-PAIRS-SHORTEST-PATHS?
- Can we do better?
- Note that if, in EXTEND-SHORTEST-PATHS, we change + to multiplication and min to +, get matrix multiplication of L and W
- ► If we let ⊙ represent this "multiplication" operator, then SLOW-ALL-PAIRS-SHORTEST-PATHS computes

► Thus, we get $L^{(n-1)}$ by iteratively "multiplying" W via EXTEND-SHORTEST-PATHS

Improving Running Time (2)

- ▶ But we don't need every $L^{(m)}$; we only want $L^{(n-1)}$
- ► E.g., if we want to compute 7⁶⁴, we could multiply 7 by itself 64 times, or we could square it 6 times
- ▶ In our application, once we have a handle on $L^{((n-1)/2)}$, we can immediately get $L^{(n-1)}$ from one call to EXTEND-SHORTEST-PATHS($L^{((n-1)/2)}, L^{((n-1)/2)}$)
- ▶ Of course, we can similarly get $L^{((n-1)/2)}$ from "squaring" $L^{((n-1)/4)}$, and so on
- ▶ Starting from the beginning, we initialize $L^{(1)} = W$, then compute $L^{(2)} = L^{(1)} \odot L^{(1)}$, $L^{(4)} = L^{(2)} \odot L^{(2)}$, $L^{(8)} = L^{(4)} \odot L^{(4)}$, and so on
- ▶ What happens if n 1 is not a power of 2 and we "overshoot" it?
- How many steps of repeated squaring do we need to make?
- What is time complexity of this new algorithm?

Faster-All-Pairs-Shortest-Paths(W)

```
1 n= number of rows of W;

2 L^{(1)}=W;

3 m=1;

4 while m< n-1 do

5 L^{(2m)}= EXTEND-SHORTEST-PATHS(L^{(m)},L^{(m)});

6 m=2m;

7 end

8 return L^{(m)};
```

Floyd-Warshall Algorithm

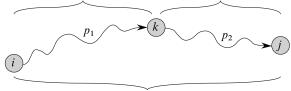
- Shaves the logarithmic factor off of the previous algorithm
- As with previous algorithm, start by assuming that there are no negative weight cycles; can detect negative weight cycles the same way as before
- Considers a different way to decompose shortest paths, based on the notion of an intermediate vertex
 - ▶ If simple path $p = \langle v_1, v_2, v_3, \dots, v_{\ell-1}, v_\ell \rangle$, then the set of intermediate vertices is $\{v_2, v_3, \dots, v_{\ell-1}\}$

Structure of Shortest Path

- ▶ Again, let $V = \{1, ..., n\}$, and fix $i, j \in V$
- For some $1 \le k \le n$, consider set of vertices $V_k = \{1, \dots, k\}$
- Now consider all paths from i to j whose intermediate vertices come from V_k and let p be a minimum-weight path from them
- Is k ∈ p?
 - 1. If not, then all intermediate vertices of p are in V_{k-1} , and a SP from i to j based on V_{k-1} is also a SP from i to j based on V_k
 - 2. If so, then we can decompose p into $i \stackrel{p_1}{\leadsto} k \stackrel{p_2}{\leadsto} j$, where p_1 and p_2 are each shortest paths based on V_{k-1}

Structure of Shortest Path (2)

all intermediate vertices in $\{1,2,\ldots,k-1\}$ all intermediate vertices in $\{1,2,\ldots,k-1\}$



p: all intermediate vertices in $\{1, 2, \dots, k\}$

Recursive Solution

- What does this mean?
- It means that a shortest path from i to j based on V_k is either going to be the same as that based on V_{k-1} , or it is going to go through k
- ▶ In the latter case, a shortest path from i to j based on V_k is going to be a shortest path from i to k based on V_{k-1} , followed by a shortest path from k to j based on V_{k-1}
- Let matrix $D^{(k)} = (d_{ij}^{(k)})$, where $d_{ij}^{(k)} =$ weight of a shortest path from i to j based on V_k :

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0\\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1 \end{cases}$$

▶ Since all SPs are based on $V_n = V$, we get $d_{ij}^{(n)} = \delta(i,j)$ for all $i,j \in V$

Floyd-Warshall(W)

```
1 n = \text{number of rows of } W;

2 D^{(0)} = W;

3 \text{for } k = 1 \text{ to } n \text{ do}

4 \text{for } j = 1 \text{ to } n \text{ do}

6 \text{for } j = 1 \text{ to } n \text{ do}

6 \text{distance}_{j}^{(k)} = \min \left( d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right)

7 \text{end}

8 \text{end}

9 \text{end}

10 \text{return } D^{(n)};
```

Transitive Closure

- Used to determine whether paths exist between pairs of vertices
- ▶ Given directed, unweighted graph G = (V, E) where $V = \{1, ..., n\}$, the *transitive closure* of G is $G^* = (V, E^*)$, where

$$E^* = \{(i,j) : \text{there is a path from } i \text{ to } j \text{ in } G\}$$

- How can we directly apply Floyd-Warshall to find E*?
- ▶ Simpler way: Define matrix T similarly to D:

$$t_{ij}^{(0)} = \begin{cases} 0 & \text{if } i \neq j \text{ and } (i,j) \notin E \\ 1 & \text{if } i = j \text{ or } (i,j) \in E \end{cases}$$
$$t_{ii}^{(k)} = t_{ii}^{(k-1)} \vee \left(t_{ik}^{(k-1)} \wedge t_{ki}^{(k-1)} \right)$$

I.e., you can reach j from i using V_k if you can do so using V_{k-1} or if you can reach k from i and reach j from k, both using V_{k-1}

Transitive-Closure(*G*)

```
allocate and initialize n \times n matrix T^{(0)};

for k = 1 to n do

allocate n \times n matrix T^{(k)};

for i = 1 to n do

for j = 1 to n do

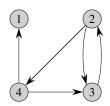
t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)}

end

end

return T^{(n)};
```

Example



$$T^{(0)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix} \quad T^{(1)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix} \quad T^{(2)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

Analysis

- ▶ Like Floyd-Warshall, time complexity is officially $\Theta(n^3)$
- However, use of 0s and 1s exclusively allows implementations to use bitwise operations to speed things up significantly, processing bits in batch, a word at a time
- Also saves space
- Another space saver: Can update the T matrix (and F-W's D matrix) in place rather than allocating a new matrix for each step (Exercise 25.2-4)