Computer Science & Engineering 423/823
Design and Analysis of Algorithms
Lecture 08 — All-Pairs Shortest Paths (Chapter 25)

Stephen Scott and Vinodchandran N. Variyam

Introduction

» Similar to SSSP, but find shortest paths for all pairs of
vertices
» Given a weighted, directed graph G = (V, E) with weight
function w : E — R, find 6(u, v) for all (u,v) € V x V
» One solution: Run an algorithm for SSSP | V| times,
treating each vertex in V as a source
» If no negative weight edges, use Dijkstra’s algorithm, for
time complexity of O(| V|3 + |V||E|) = O(] V|3) for array
implementation, O(| V||E| log | V|) if heap used
» If negative weight edges, use Bellman-Ford and get
O(|V?|E|) time algorithm, which is O(|V|*) if graph dense
» Can we do better?
» Matrix multiplication-style algorithm: ©(|V|*log | V|)
» Floyd-Warshall algorithm: O(|V/|?)
» Both algorithms handle negative weight edges

Adjacency Matrix Representation

» Will use adjacency matrix representation
» Assume vertices are numbered: V = {1,2,...,n}
» Input to our algorithms will be n x n matrix W:

0 ifi—
w; = { weight of edge (i,j) if (i,j) € E
00 it (i,/)) ¢ E

» For now, assume negative weight cycles are absent
» In addition to distance matrices L and D produced by
algorithms, can also build predecessor matrix 1, where
mjj = predecessor of j on a shortest path from i to j, or NIL
if i = j or no path exists
» Well-defined due to optimal substructure property

Print-All-Pairs-Shortest-Path(I, /, j)

-

if i == j then
| printi;
3 else if m; == NIL then
4 \ print “no path from ” i “to ” j “ exists” ;
5 else
6 PRINT-ALL-PAIRS-SHORTEST-PATH(M, i, j) ;
7 printj ;

N

Shortest Paths and Matrix Multiplication

» Will maintain a series of matrices L(™ = (65.].'")), where

él(jm) = the minimum weight of any path from i to j that uses
at most m edges

» Special case: = 0if i =, oo otherwise

2

0 1 4
gga) = 00, £g3) =8, 5&3) =7

Recursive Solution

» Exploit optimal substructure property to get a recursive
definition of £
» To follow shortest path from j to j using at most m edges,
either:
1. Take shortest path from j to j using < m — 1 edges and stay
ut, or
2. EI)'ake shortest path from i to some k using < m — 1 edges
and traverse edge (K, j)

(m) _ (m—1) ; (m—1) _
E = min (E ’1g1klgn (E,-k + Wk/))

» Since w; = 0 for all j, simplify to

ﬁ() = min <€,(-:7_1) + ij>

1<k<n

» If no negative weight cycles, then since all shortest paths
have < n— 1 edges,

(i) = €71 =) — D)

Bottum-Up Computation of L Matrices

» Start with weight matrix W and compute series of matrices
L, 1@ D)

» Core of the algorithm is a routine to compute L™t given
L(™ and W

» Start with L") = W, and iteratively compute new L
matrices until we get L("1)

> Why is L) == W?

» Can we detect negative-weight cycles with this algorithm?

How?

Extend-Shortest-Paths(L, W)

o B W N

o

10
1"

N = number of rows of L

create new n x n matrix L’
fori=1tondo
forj=1tondo
l; =00,
fork =1tondo
| £ =min (¢, ¢
end
end

nd
Feturn L ;

// This is L(™ :
// This will be L™ ;

ik + ij)

Slow-All-Pairs-Shortest-Paths(W)

1 |n = number of rows of W ;

2 LD = w;

3 form=2ton—1do

4 || L' = EXTEND-SHORTEST-PATHS(L!"~"), W) ;
5 lend

6 return L1 ;

|
|

—4
7
11
2
0

A_ﬂos.l.

—4
-1
3
-2
0

1

-3 2
—4
0 5

1

-5 0
6

1
0
4
-1
5

S N~ AN

) L@

—4
-1
11
-2
0

1
5
=5 0
6

0 3 =3 2
3 0 —4

7 4 0

2 -1

8 5

L3

Improving Running Time

>

What is time complexity of
SLOW-ALL-PAIRS-SHORTEST-PATHS?

Can we do better?

Note that if, in EXTEND-SHORTEST-PATHS, we change + to
multiplication and min to +, get matrix multiplication of L
and W

If we let @ represent this “multiplication” operator, then
SLOW-ALL-PAIRS-SHORTEST-PATHS computes

L@ = (Meow = wd® .
B = (Pow = wd®

[(n=1) _— L(”—25@W - Wt

Thus, we get L") by iteratively “multiplying” W via
EXTEND-SHORTEST-PATHS

Improving Running Time (2)

>

>

But we don’t need every L(™; we only want L")

E.g., if we want to compute 754, we could multiply 7 by
itself 64 times, or we could square it 6 times

In our application, once we have a handle on L(("™=1)/2) we
can immediately get L") from one call to
EXTEND-SHORTEST-PATHsS(L(("=1)/2) [((n=1)/2))

Of course, we can similarly get L(("=1)/2) from “squaring”
L((n=1)/4) "and so on

Starting from the beginning, we initialize L(") = W, then
compute LB = LW o L) D =1C) ¢ L),

L&) =1*) 5 L® and soon

What happens if n — 1 is not a power of 2 and we
“overshoot” it?

How many steps of repeated squaring do we need to
make?

What is time complexity of this new algorithm?

Faster-All-Pairs-Shortest-Paths(W)

o ua & W N

n = number of rows of W ;

L) =w;

m=1;

while m < n— 1 do
L(m) — EXTEND-SHORTEST-PATHS(L(™, L(M) ;
m=2m;

end

return L(™) ;

Floyd-Warshall Algorithm

» Shaves the logarithmic factor off of the previous algorithm

» As with previous algorithm, start by assuming that there
are no negative weight cycles; can detect negative weight
cycles the same way as before

» Considers a different way to decompose shortest paths,
based on the notion of an intermediate vertex

» If simple path p = (vq, va, v, ..., Vo—1, V), then the set of
intermediate vertices is {vz, v3,..., V;_1}

Structure of Shortest Path

v

v

v

v

Again,let V ={1,...,n},andfixi,je V
For some 1 < k < n, consider set of vertices
Vi ={1,....k}
Now consider all paths from / to j whose intermediate
vertices come from V) and let p be a minimum-weight path
from them
Is k € p?
1. If not, then all intermediate vertices of p are in V,_4, and a

SP from i to j based on Vi_1 is also a SP from i to j based
on Vg

2. If so, then we can decompose p into i Byp L2 J, where p;
and p. are each shortest paths based on Vj_;

Structure of Shortest Path (2)

all intermediate vertices in {1,2,..., k — 1} all intermediate vertices in {1,2, ..., k—1}

— T
P1 e D2
@
0
\/_/

p: all intermediate vertices in {1,2, ..., k}

Recursive Solution

» What does this mean?

» It means that a shortest path from / to j based on Vj is
either going to be the same as that based on Vj_4, oritis
going to go through k

» In the latter case, a shortest path from j to j based on Vj is
going to be a shortest path from j to k based on Vj_+,
followed by a shortest path from k to j based on Vj_4

» Let matrix D) = <d,§.k)>, where d,.j(.k) = weight of a shortest
path from i to j based on V:

Wi ifk=0
dt) = ! k—1) (k-1 k—1
i min (o, df 7 4+ df V) itk > 1
» Since all SPs are based on V,, = V, we get d = 0(i,j) for

alli,jeV

Floyd-Warshall(W)

1 |0 = number of rows of W ;
2 DO = W ;

3 for k =1tondo

4 fori=1tondo
5 forj=1tondo

6 d,;k) = min (d,.j(.k_1), di(kk_n +
7 end

8 end

9 lend

10 feturn D(" ;

(k=1)
d

)

Transitive Closure

» Used to determine whether paths exist between pairs of
vertices

Given directed, unweighted graph G = (V, E) where

V ={1,...,n}, the transitive closure of Gis G* = (V, E*),
where

v

E* ={(i,j) : there is a path from i to j in G}

v

How can we directly apply Floyd-Warshall to find E*?
Simpler way: Define matrix T similarly to D:

#0) _ 0 ifi#jand (i,j) ¢ E
o1 ifi=jor(i,j)eE

v

k k—1 k—1 k—1
(9 = v (60 A)

l.e., you can reach j from i using Vj if you can do so using
Vi_4 or if you can reach k from i and reach j from k, both
using Vji_1

v

Transitive-Closure(G)

1 gllocate and initialize n x n matrix 7(©) ;
2 fork =1tondo
3 allocate n x n matrix T() ;
4 fori=1tondo
5 forj=1tondo
(K) _ pf(k=1) , f(k=1) (k—1)
6 |80 =D A
7 end
8 end

9 end
Feturn T .

a
=)

S — —

O — — —

S — — O

—_ 0 O -

72

O — O -

S — = -

S = — O

—_ o O —

71

S — o~ —

O o —

O = =

— e —

7®

O o =

O

O e

— o O —

7G)

Analysis

» Like Floyd-Warshall, time complexity is officially ©(n®)

» However, use of 0s and 1s exclusively allows
implementations to use bitwise operations to speed things
up significantly, processing bits in batch, a word at a time

» Also saves space

» Another space saver: Can update the T matrix (and F-W’s
D matrix) in place rather than allocating a new matrix for
each step (Exercise 25.2-4)

	Introduction
	Shortest Paths and Matrix Multiplication
	Recursive Solution
	Bottom-Up Computation
	Example
	Improving Running Time

	Floyd-Warshall Algorithm
	Structure of Shortest Path
	Recursive Solution
	Bottom-Up Computation
	Transitive Closure

