Computer Science & Engineering 423/823
Design and Analysis of Algorithms
Lecture 08 — All-Pairs Shortest Paths (Chapter 25)

Stephen Scott and Vinodchandran N. Variyam

Adjacency Matrix Representation

» Will use adjacency matrix representation
» Assume vertices are numbered: V = {1,2,...,n}
» Input to our algorithms will be n x n matrix W:

0 ifi=jf
w; = < weight of edge (i,j) if(i,j) € E
o0 it (i.j) ¢ E
» For now, assume negative weight cycles are absent

» In addition to distance matrices L and D produced by
algorithms, can also build predecessor matrix I, where
wjj = predecessor of j on a shortest path from i to j, or NIL
if i = j or no path exists

» Well-defined due to optimal substructure property

Shortest Paths and Matrix Multiplication

» Will maintain a series of matrices L(™ = (é,(.jm)>, where

Zf.j'”) = the minimum weight of any path from i to j that uses
at most m edges

» Special case: Zf-/-o) = 0if i = j, co otherwise

2

1 v 3
49 = o,) = 8,49 =7 ‘

Introduction

» Similar to SSSP, but find shortest paths for all pairs of
vertices
» Given a weighted, directed graph G = (V, E) with weight
function w: E — R, find §(u, v) for all (u,v) e V. x V
» One solution: Run an algorithm for SSSP | V| times,
treating each vertex in V as a source
» If no negative weight edges, use Dijkstra’s algorithm, for
time complexity of O(|V|® + |V||E|) = O(| V|?) for array
implementation, O(| V||E|log |V|) if heap used
» If negative weight edges, use Bellman-Ford and get
O(| V|?|E|) time algorithm, which is O(| V|*) if graph dense
» Can we do better?
» Matrix multiplication-style algorithm: ©(|V|® log|V/|)
> Floyd-Warshall algorithm: ©(|V|?)
» Both algorithms handle negative weight edges

Print-All-Pairs-Shortest-Path(I1, i, j)

if i == j then
| printi;
else if m; == NIL then
\ print “no path from " j “to ” j “ exists” ;
else
PRINT-ALL-PAIRS-SHORTEST-PATH(I, i, 7)) ;
printj;

N o o & W N o=

Recursive Solution

» Exploit optimal substructure property to get a recursive
definition of ¢\
» To follow shortest path from j to j using at most m edges,
either:
1. Take shortest path from i to j using < m — 1 edges and stay
put, or
2. Take shortest path from i to some k using < m — 1 edges
and traverse edge (k,j)
(my _ (m=1) . (m—1) .
éij = min (éij ’1§mk|2n (éik +ij))
» Since wj; = 0 for all j, simplify to
(m _ (m=1) .
47 = min, (407 + wy)
» If no negative weight cycles, then since all shortest paths
have < n— 1 edges,

B(0,J) = 7 = 0 —

Bottum-Up Computation of L Matrices

Start with weight matrix W and compute series of matrices
L (@ -1
Core of the algorithm is a routine to compute L(™+1) given
L™ and W
Start with L") = W, and iteratively compute new L
matrices until we get L("~1)

» Whyis L) == W?
Can we detect negative-weight cycles with this algorithm?
How?

Slow-All-Pairs-Shortest-Paths(W)

In = number of rows of W ;
L =w;
form=2ton—1do
L(™ — EXTEND-SHORTEST-PATHS(L(™ D, W) ;
end

LS)

return L") ;

o

Improving Running Time

>

What is time complexity of
SLOW-ALL-PAIRS-SHORTEST-PATHS?

Can we do better?

Note that if, in EXTEND-SHORTEST-PATHS, we change + to
multiplication and min to +, get matrix multiplication of L
and W

If we let @ represent this “multiplication” operator, then
SLOW-ALL-PAIRS-SHORTEST-PATHS computes

@ = Mew = w®
O = @ow = wO,
L(n—1) _ L(n—2i ow Wn@1

Thus, we get L("=1) by iteratively “multiplying” W via
EXTEND-SHORTEST-PATHS

Extend-Shortest-Paths(L, W)

1 |n = number of rows of L // This is L™ :
2 [create new n x nmatrix L’ // This will be L™ ;
3 fori=1tondo

4 forj=1tondo

5 lj=o00;

6 fork=1tondo

7 ‘ £ = min (£}, i + Wig)

8 end

9 end

10 end

11 return L’ ;

0 3 8 oo —4 0 3 8 2 —4
© 0 oo 1 7 30 -4 1 7
LW=| o0 4 0 o oo L@=] o 4 o0 5 11
2 0 -5 0 oo 2 -1 -5 0 -2
oo 00 © 6 0 8 oo 1 6 0
0 3 -3 2 —4 0 1 -3 2 —4
30 -4 1 -1 30 -4 1 -1
L®=[7 4 o0 5 11 W=7 4 05 3
2 -1 -5 0 -2 2 -1 -5 0 -2
8 5 1.6 0 8 5 1.6 0

Improving Running Time (2)

>

>

But we don’t need every L(M; we only want L")

E.g., if we want to compute 784, we could multiply 7 by
itself 64 times, or we could square it 6 times

In our application, once we have a handle on L("~1)/2) we
can immediately get L("=) from one call to
EXTEND-SHORTEST-PATHS(L(("-1)/2) [((n=1)/2))

Of course, we can similarly get L(("=1)/2) from “squaring”
L((n=1)/4) " and so on

Starting from the beginning, we initialize L(") = W, then
compute L&) = M o (D [= [®) 5 ()

L® = 1* o L™, and so on

What happens if n — 1 is not a power of 2 and we
“overshoot” it?

How many steps of repeated squaring do we need to
make?

What is time complexity of this new algorithm?

Faster-All-Pairs-Shortest-Paths(W)

1 |n = number of rows of W ;

2 LD =w;

3 m=1;

4 whilem< n—1do

5 L(2m) — EXTEND-SHORTEST-PATHS(L(M), L(M)) ;
6 m=2m;

7 end

8 return L(M ;

Structure of Shortest Path

» Again,let V={1,...,n},andfixi,je V

» For some 1 < k < n, consider set of vertices
Vik={1,....k}

» Now consider all paths from i to j whose intermediate
vertices come from Vj and let p be a minimum-weight path
from them

> Iskep?

1. If not, then all intermediate vertices of p are in V4_4, and a
SP from j to j based on Vj_1 is also a SP from i to j based
on Vy

2. If so, then we can decompose p into i LA 3 J, where py
and p, are each shortest paths based on Vj_4

Recursive Solution

» What does this mean?

» It means that a shortest path from i to j based on Vj is
either going to be the same as that based on Vj_4, oritis
going to go through k

» In the latter case, a shortest path from i to j based on Vj is
going to be a shortest path from i to k based on Vj_1,
followed by a shortest path from k to j based on Vj_4

» Let matrix D) = (d,s.k)), where d,j(.k) = weight of a shortest
path from i to j based on Vj:

w;i ifk=0
dtf) = ! (k=1) J(k=1) |, (k—1)
i min (0, af " + o) itk =1

» Since all SPs are based on V,, = V, we get dg.”) = 4(i,) for
alli;jeV

Floyd-Warshall Algorithm

» Shaves the logarithmic factor off of the previous algorithm

» As with previous algorithm, start by assuming that there
are no negative weight cycles; can detect negative weight
cycles the same way as before

» Considers a different way to decompose shortest paths,
based on the notion of an intermediate vertex

» If simple path p = (vy, va, v3, ..., Vs—1, V), then the set of

intermediate vertices is {vz, v3, ..., Vi—1}

Structure of Shortest Path (2)

all intermediate vertices in {1,2, ..., k —1} all intermediate vertices in {1,2, ..., k—1}

— T T
P e P2
@
®
w_/

p: all intermediate vertices in {1,2,..., k}

Floyd-Warshall(W)

In = number of rows of W ;
DO = W
for k =1 tondo
fori=1tondo
forj=1tondo

k . k—1) (k-1 k—1
‘ d}j) = min (d;),d,(k)4 d,ij))
end

o o AW N =

~

8 end
9 end

return D(") ;

°

Transitive Closure

» Used to determine whether paths exist between pairs of

vertices

» Given directed, unweighted graph G = (V, E) where
V ={1,...,n}, the transitive closure of Gis G* = (V, E*),

where

E* = {(i,) : there is a path from i to j in G}

» How can we directly apply Floyd-Warshall to find E*?

» Simpler way: Define matrix T similarly to D:

0
t,.j(-):{

0
1

ifijand (i,j) ¢ E
ifi=jor(ij)eE

() _ (k1) (1) 5 kD)
69 =470y (A

» l.e., you can reach j from i using Vj if you can do so using

Vi_4 or if you can reach k from i and reach j from k, both

using Vj_1

Example

—_ O =
S == O
—_—0 = O

7O — (
7G) = (

— oo —
—_—— o
_——o
—_——

B
)~

—_—o o -
)
- ——o

-0 = O

)~

_——o
- — =0

=)
~——

—_—o o =

(=R =]

- — =0

Transitive-Closure(G)

allocate and initialize n x n matrix 7() ;
for k =1 tondo
allocate n x n matrix T() ;
fori=1tondo
forj=1tondo

k k—1 k—1 k—1
| 9= Vv Ay

end
end

© ® N o s W N =

end
return T(" ;

=)

Analysis

» Like Floyd-Warshall, time complexity is officially ©(n®)

» However, use of 0s and 1s exclusively allows
implementations to use bitwise operations to speed things
up significantly, processing bits in batch, a word at a time

» Also saves space

» Another space saver: Can update the T matrix (and F-W’s
D matrix) in place rather than allocating a new matrix for

each step (Exercise 25.2-4)

