
1/36

Computer Science & Engineering 423/823
Design and Analysis of Algorithms

Lecture 07 — Single-Source Shortest Paths (Chapter 24)

Stephen Scott and Vinodchandran N. Variyam

2/36

Introduction

I Given a weighted, directed graph G = (V ,E) with weight
function w : E → R

I The weight of path p = 〈v0, v1, . . . , vk 〉 is the sum of the
weights of its edges:

w(p) =
k∑

i=1

w(vi−1, vi)

I Then the shortest-path weight from u to v is

δ(u, v) =

{
min{w(p) : u

p
 v} if there is a path from u to v

∞ otherwise

I A shortest path from u to v is any path p with weight
w(p) = δ(u, v)

I Applications: Network routing, driving directions

3/36

Types of Shortest Path Problems

Given G as described earlier,
I Single-Source Shortest Paths: Find shortest paths from

source node s to every other node
I Single-Destination Shortest Paths: Find shortest paths

from every node to destination t
I Can solve with SSSP solution. How?

I Single-Pair Shortest Path: Find shortest path from
specific node u to specific node v

I Can solve via SSSP; no asymptotically faster algorithm
known

I All-Pairs Shortest Paths: Find shortest paths between
every pair of nodes

I Can solve via repeated application of SSSP, but can do
better

4/36

Optimal Substructure of a Shortest Path

The shortest paths problem has the optimal substructure
property: If p = 〈v0, v1, . . . , vk 〉 is a SP from v0 to vk , then for
0 ≤ i ≤ j ≤ k , pij = 〈vi , vi+1, . . . , vj〉 is a SP from vi to vj

Proof: Let p = v0
p0i vi

pij
 vj

pjk
 vk with weight

w(p) = w(p0i) + w(pij) + w(pjk). If there exists a path p′ij
from vi to vj with w(p′ij) < w(pij), then p is not a SP since

v0
p0i vi

p′ij
 vj

pjk
 vk has less weight than p

5/36

Negative-Weight Edges (1)

I What happens if the graph G has edges with negative
weights?

I Dijkstra’s algorithm cannot handle this, Bellman-Ford can,
under the right circumstances (which circumstances?)

6/36

Negative-Weight Edges (2)

7/36

Cycles

I What kinds of cycles might appear in a shortest path?
I Negative-weight cycle
I Zero-weight cycle
I Positive-weight cycle

8/36

Relaxation

I Given weighted graph G = (V ,E) with source node s ∈ V
and other node v ∈ V (v 6= s), we’ll maintain d [v], which is
upper bound on δ(s, v)

I Relaxation of an edge (u, v) is the process of testing
whether we can decrease d [v], yielding a tighter upper
bound

9/36

Initialize-Single-Source(G, s)

1 for each vertex v ∈ V do
2 d [v] =∞ ;
3 π[v] = NIL ;

4 end
5 d [s] = 0 ;

10/36

Relax(u, v ,w)

1 if d [v] > d [u] + w(u, v) then
2 d [v] = d [u] + w(u, v) ;
3 π[v] = u ;

11/36

Relaxation Example

Numbers in nodes are values of d

12/36

Bellman-Ford Algorithm

I Works with negative-weight edges and detects if there is a
negative-weight cycle

I Makes |V | − 1 passes over all edges, relaxing each edge
during each pass

I No cycles implies all shortest paths have ≤ |V | − 1 edges,
so that number of relaxations is sufficient

13/36

Bellman-Ford(G,w , s)

1 INITIALIZE-SINGLE-SOURCE(G, s) ;
2 for i = 1 to |V | − 1 do
3 for each edge (u, v) ∈ E do
4 RELAX(u, v ,w) ;
5 end

6 end
7 for each edge (u, v) ∈ E do
8 if d [v] > d [u] + w(u, v) then
9 return FALSE // G has a negative-wt cycle ;

10 end
11 return TRUE // G has no neg-wt cycle reachable frm s ;

14/36

Bellman-Ford Algorithm Example (1)

Within each pass, edges relaxed in this order:
(t , x), (t , y), (t , z), (x , t), (y , x), (y , z), (z, x), (z, s), (s, t), (s, y)

15/36

Bellman-Ford Algorithm Example (2)

Within each pass, edges relaxed in this order:
(t , x), (t , y), (t , z), (x , t), (y , x), (y , z), (z, x), (z, s), (s, t), (s, y)

16/36

Time Complexity of Bellman-Ford Algorithm

I INITIALIZE-SINGLE-SOURCE takes how much time?
I RELAX takes how much time?
I What is time complexity of relaxation steps (nested loops)?
I What is time complexity of steps to check for

negative-weight cycles?
I What is total time complexity?

17/36

Correctness of Bellman-Ford: Finds SP Lengths

I Assume no negative-weight cycles
I Since no cycles appear in SPs, every SP has at most
|V | − 1 edges

I Then define sets S0,S1, . . .S|V |−1:

Sk = {v ∈ V : ∃s p
 v s.t. δ(s, v) = w(p) and |p| ≤ k}

I Loop invariant: After i th iteration of outer relaxation loop
(Line 2), for all v ∈ Si , we have d [v] = δ(s, v)

I aka path-relaxation property (Lemma 24.15)
I Can prove via induction on i :

I Obvious for i = 0
I If holds for v ∈ Si−1, then definition of relaxation and optimal

substructure⇒ holds for v ∈ Si

I Implies that, after |V | − 1 iterations, d [v] = δ(s, v) for all
v ∈ V = S|V |−1

18/36

Correctness of Bellman-Ford: Detects
Negative-Weight Cycles

I Let c = 〈v0, v1, . . . , vk = v0〉 be neg-weight cycle reachable
from s:

k∑
i=1

w(vi−1, vi) < 0

I If algorithm incorrectly returns TRUE, then (due to Line 8)
for all nodes in the cycle (i = 1,2, . . . , k),

d [vi] ≤ d [vi−1] + w(vi−1, vi)

I By summing, we get

k∑
i=1

d [vi] ≤
k∑

i=1

d [vi−1] +
k∑

i=1

w(vi−1, vi)

I Since v0 = vk ,
∑k

i=1 d [vi] =
∑k

i=1 d [vi−1]

I This implies that 0 ≤
∑k

i=1 w(vi−1, vi), a contradiction

19/36

SSSPs in Directed Acyclic Graphs

I Why did Bellman-Ford have to run |V | − 1 iterations of
edge relaxations?

I To confirm that SP information fully propagated to all
nodes (path-relaxation property)

I What if we knew that, after we relaxed an edge just once,
we would be completely done with it?

I Can do this if G a dag and we relax edges in correct order
(what order?)

20/36

Dag-Shortest-Paths(G,w , s)

1 topologically sort the vertices of G ;
2 INITIALIZE-SINGLE-SOURCE(G, s) ;
3 for each vertex u ∈ V, taken in topo sorted

order do
4 for each v ∈ Adj[u] do
5 RELAX(u, v ,w) ;
6 end

7 end

21/36

SSSP dag Example (1)

22/36

SSSP dag Example (2)

23/36

Analysis

I Correctness follows from path-relaxation property similar to
Bellman-Ford, except that relaxing edges in topologically
sorted order implies we relax the edges of a shortest path
in order

I Topological sort takes how much time?
I INITIALIZE-SINGLE-SOURCE takes how much time?
I How many calls to RELAX?
I What is total time complexity?

24/36

Dijkstra’s Algorithm

I Greedy algorithm
I Faster than Bellman-Ford
I Requires all edge weights to be nonnegative
I Maintains set S of vertices whose final shortest path

weights from s have been determined
I Repeatedly select u ∈ V \ S with minimum SP estimate,

add u to S, and relax all edges leaving u
I Uses min-priority queue to repeatedly make greedy choice

25/36

Dijkstra(G,w , s)

1 INITIALIZE-SINGLE-SOURCE(G, s) ;
2 S = ∅ ;
3 Q = V ;
4 while Q 6= ∅ do
5 u = EXTRACT-MIN(Q) ;
6 S = S ∪ {u} ;
7 for each v ∈ Adj[u] do
8 RELAX(u, v ,w) ;
9 end

10 end

26/36

Dijkstra’s Algorithm Example (1)

27/36

Dijkstra’s Algorithm Example (2)

28/36

Time Complexity of Dijkstra’s Algorithm

I Using array to implement priority queue,
I INITIALIZE-SINGLE-SOURCE takes how much time?
I What is time complexity to create Q?
I How many calls to EXTRACT-MIN?
I What is time complexity of EXTRACT-MIN?
I How many calls to RELAX?
I What is time complexity of RELAX?
I What is total time complexity?

I Using heap to implement priority queue, what are the
answers to the above questions?

I When might you choose one queue implementation over
another?

29/36

Correctness of Dijkstra’s Algorithm

I Invariant: At the start of each iteration of the while loop,
d [v] = δ(s, v) for all v ∈ S

I Proof: Let u be first node added to S where d [u] 6= δ(s,u)
I Let p = s

p1 x → y
p2 u be SP to u and y first node on p in

V − S
I Since y ’s predecessor x ∈ S, d [y] = δ(s, y) due to

relaxation of (x , y)

I Since y precedes u in p and
edge wts non-negative:
d [y] = δ(s, y) ≤ δ(s,u) ≤ d [u]

I Since u was chosen before y in line 5, d [u] ≤ d [y], so
d [y] = δ(s, y) = δ(s,u) = d [u], a contradiction

Since all vertices eventually end up in S, get correctness of the
algorithm

30/36

Linear Programming

I Given an m × n matrix A and a size-m vector b and a
size-n vector c, find a vector x of n elements that
maximizes

∑n
i=1 cixi subject to Ax ≤ b

I E.g., c =
[

2 −3
]
, A =

 1 1
1 −2
−1 0

, b =

 22
4
−8


implies:
maximize 2x1 − 3x2 subject to

x1 + x2 ≤ 22
x1 − 2x2 ≤ 4

x1 ≥ 8

I Solution: x1 = 16, x2 = 6

31/36

Difference Constraints and Feasibility

I Decision version of this problem: No objective function
to maximize; simply want to know if there exists a feasible
solution, i.e., an x that satisfies Ax ≤ b

I Special case is when each row of A has exactly one 1 and
one −1, resulting in a set of difference constraints of the
form

xj − xi ≤ bk

I Applications: Any application in which a certain amount
of time must pass between events (x variables represent
times of events)

32/36

Difference Constraints and Feasibility (2)

A =



1 −1 0 0 0
1 0 0 0 −1
0 1 0 0 −1
−1 0 1 0 0
−1 0 0 1 0
0 0 −1 1 0
0 0 −1 0 1
0 0 0 −1 1


and b =



0
−1
1
5
4
−1
−3
−3



33/36

Difference Constraints and Feasibility (3)

Is there a setting for x1, . . . , x5 satisfying:

x1 − x2 ≤ 0
x1 − x5 ≤ −1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤ −1
x5 − x3 ≤ −3
x5 − x4 ≤ −3

One solution: x = (−5,−3,0,−1,−4)

34/36

Constraint Graphs

I Can represent instances of this problem in a constraint
graph G = (V ,E)

I Define a vertex for each variable, plus one more: If
variables are x1, . . . , xn, get V = {v0, v1, . . . , vn}

I Add a directed edge for each constraint, plus an edge from
v0 to each other vertex:

E = {(vi , vj) : xj − xi ≤ bk is a constraint}
∪{(v0, v1), (v0, v2), . . . , (v0, vn)}

I Weight of edge (vi , vj) is bk , weight of (v0, v`) is 0 for all
` 6= 0

35/36

Constraint Graph Example

x1 − x2 ≤ 0
x1 − x5 ≤ −1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤ −1
x5 − x3 ≤ −3
x5 − x4 ≤ −3

(−5,−3,0,−1,−4)

36/36

Solving Feasibility with Bellman-Ford
Theorem: Let G be constraint graph for system of difference
constraints. If G has a negative-weight cycle, then there is no
feasible solution. If G has no negative-weight cycle, then a
feasible solution is

x = [δ(v0, v1), δ(v0, v2), . . . , δ(v0, vn)]

I Proof: For any edge (vi , vj) ∈ E , triangle inequality says
δ(v0, vj) ≤ δ(v0, vi) + w(vi , vj), so
δ(v0, vj)− δ(v0, vi) ≤ w(vi , vj)

⇒ xi = δ(v0, vi) and xj = δ(v0, vj) satisfies constraint
xi − xj ≤ w(vi , vj)

I If there is a negative-weight cycle
c = 〈vi , vi+1, . . . , vk = vi〉, then there is a system of
inequalities xi+1 − xi ≤ w(vi , vi+1),
xi+2 − xi+1 ≤ w(vi+1, vi+2), . . ., xk − xk−1 ≤ w(vk−1, vk).
Summing both sides gives 0 ≤ w(c) < 0, implying that a
negative-weight cycle indicates no solution

Can solve with Bellman-Ford in time O(n2 + nm)

	Introduction
	Optimal Substructure of a Shortest Path
	Negative-Weight Edges
	Cycles
	Relaxation

	Bellman-Ford Algorithm
	Introduction
	The Algorithm
	Example
	Analysis

	SSSPs in Directed Acyclic Graphs
	Introduction
	The Algorithm
	Example
	Analysis

	Dijkstra's Algorithm
	Introduction
	The Algorithm
	Example
	Analysis

	Difference Constraints and Shortest Paths
	Linear Programming
	Difference Constraints and Feasibility
	Constraint Graphs
	Solving Feasibility with Bellman-Ford

