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Introduction

I Given a weighted, directed graph G = (V ,E) with weight
function w : E → R

I The weight of path p = 〈v0, v1, . . . , vk 〉 is the sum of the
weights of its edges:

w(p) =
k∑

i=1

w(vi−1, vi)

I Then the shortest-path weight from u to v is

δ(u, v) =

{
min{w(p) : u

p
 v} if there is a path from u to v

∞ otherwise

I A shortest path from u to v is any path p with weight
w(p) = δ(u, v)

I Applications: Network routing, driving directions
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Types of Shortest Path Problems

Given G as described earlier,
I Single-Source Shortest Paths: Find shortest paths from

source node s to every other node
I Single-Destination Shortest Paths: Find shortest paths

from every node to destination t
I Can solve with SSSP solution. How?

I Single-Pair Shortest Path: Find shortest path from
specific node u to specific node v

I Can solve via SSSP; no asymptotically faster algorithm
known

I All-Pairs Shortest Paths: Find shortest paths between
every pair of nodes

I Can solve via repeated application of SSSP, but can do
better
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Optimal Substructure of a Shortest Path

The shortest paths problem has the optimal substructure
property: If p = 〈v0, v1, . . . , vk 〉 is a SP from v0 to vk , then for
0 ≤ i ≤ j ≤ k , pij = 〈vi , vi+1, . . . , vj〉 is a SP from vi to vj

Proof: Let p = v0
p0i vi

pij
 vj

pjk
 vk with weight

w(p) = w(p0i) + w(pij) + w(pjk ). If there exists a path p′ij
from vi to vj with w(p′ij) < w(pij), then p is not a SP since

v0
p0i vi

p′ij
 vj

pjk
 vk has less weight than p
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Negative-Weight Edges (1)

I What happens if the graph G has edges with negative
weights?

I Dijkstra’s algorithm cannot handle this, Bellman-Ford can,
under the right circumstances (which circumstances?)
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Negative-Weight Edges (2)
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Cycles

I What kinds of cycles might appear in a shortest path?
I Negative-weight cycle
I Zero-weight cycle
I Positive-weight cycle
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Relaxation

I Given weighted graph G = (V ,E) with source node s ∈ V
and other node v ∈ V (v 6= s), we’ll maintain d [v ], which is
upper bound on δ(s, v)

I Relaxation of an edge (u, v) is the process of testing
whether we can decrease d [v ], yielding a tighter upper
bound
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Initialize-Single-Source(G, s)

1 for each vertex v ∈ V do
2 d [v ] =∞ ;
3 π[v ] = NIL ;

4 end
5 d [s] = 0 ;
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Relax(u, v ,w)

1 if d [v ] > d [u] + w(u, v) then
2 d [v ] = d [u] + w(u, v) ;
3 π[v ] = u ;
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Relaxation Example

Numbers in nodes are values of d
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Bellman-Ford Algorithm

I Works with negative-weight edges and detects if there is a
negative-weight cycle

I Makes |V | − 1 passes over all edges, relaxing each edge
during each pass

I No cycles implies all shortest paths have ≤ |V | − 1 edges,
so that number of relaxations is sufficient
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Bellman-Ford(G,w , s)

1 INITIALIZE-SINGLE-SOURCE(G, s) ;
2 for i = 1 to |V | − 1 do
3 for each edge (u, v) ∈ E do
4 RELAX(u, v ,w) ;
5 end

6 end
7 for each edge (u, v) ∈ E do
8 if d [v ] > d [u] + w(u, v) then
9 return FALSE // G has a negative-wt cycle ;

10 end
11 return TRUE // G has no neg-wt cycle reachable frm s ;
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Bellman-Ford Algorithm Example (1)

Within each pass, edges relaxed in this order:
(t , x), (t , y), (t , z), (x , t), (y , x), (y , z), (z, x), (z, s), (s, t), (s, y)
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Bellman-Ford Algorithm Example (2)

Within each pass, edges relaxed in this order:
(t , x), (t , y), (t , z), (x , t), (y , x), (y , z), (z, x), (z, s), (s, t), (s, y)
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Time Complexity of Bellman-Ford Algorithm

I INITIALIZE-SINGLE-SOURCE takes how much time?
I RELAX takes how much time?
I What is time complexity of relaxation steps (nested loops)?
I What is time complexity of steps to check for

negative-weight cycles?
I What is total time complexity?
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Correctness of Bellman-Ford: Finds SP Lengths

I Assume no negative-weight cycles
I Since no cycles appear in SPs, every SP has at most
|V | − 1 edges

I Then define sets S0,S1, . . .S|V |−1:

Sk = {v ∈ V : ∃s p
 v s.t. δ(s, v) = w(p) and |p| ≤ k}

I Loop invariant: After i th iteration of outer relaxation loop
(Line 2), for all v ∈ Si , we have d [v ] = δ(s, v)

I aka path-relaxation property (Lemma 24.15)
I Can prove via induction on i :

I Obvious for i = 0
I If holds for v ∈ Si−1, then definition of relaxation and optimal

substructure⇒ holds for v ∈ Si

I Implies that, after |V | − 1 iterations, d [v ] = δ(s, v) for all
v ∈ V = S|V |−1
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Correctness of Bellman-Ford: Detects
Negative-Weight Cycles

I Let c = 〈v0, v1, . . . , vk = v0〉 be neg-weight cycle reachable
from s:

k∑
i=1

w(vi−1, vi) < 0

I If algorithm incorrectly returns TRUE, then (due to Line 8)
for all nodes in the cycle (i = 1,2, . . . , k ),

d [vi ] ≤ d [vi−1] + w(vi−1, vi)

I By summing, we get

k∑
i=1

d [vi ] ≤
k∑

i=1

d [vi−1] +
k∑

i=1

w(vi−1, vi)

I Since v0 = vk ,
∑k

i=1 d [vi ] =
∑k

i=1 d [vi−1]

I This implies that 0 ≤
∑k

i=1 w(vi−1, vi), a contradiction
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SSSPs in Directed Acyclic Graphs

I Why did Bellman-Ford have to run |V | − 1 iterations of
edge relaxations?

I To confirm that SP information fully propagated to all
nodes (path-relaxation property)

I What if we knew that, after we relaxed an edge just once,
we would be completely done with it?

I Can do this if G a dag and we relax edges in correct order
(what order?)
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Dag-Shortest-Paths(G,w , s)

1 topologically sort the vertices of G ;
2 INITIALIZE-SINGLE-SOURCE(G, s) ;
3 for each vertex u ∈ V, taken in topo sorted

order do
4 for each v ∈ Adj[u] do
5 RELAX(u, v ,w) ;
6 end

7 end
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SSSP dag Example (1)
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SSSP dag Example (2)
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Analysis

I Correctness follows from path-relaxation property similar to
Bellman-Ford, except that relaxing edges in topologically
sorted order implies we relax the edges of a shortest path
in order

I Topological sort takes how much time?
I INITIALIZE-SINGLE-SOURCE takes how much time?
I How many calls to RELAX?
I What is total time complexity?
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Dijkstra’s Algorithm

I Greedy algorithm
I Faster than Bellman-Ford
I Requires all edge weights to be nonnegative
I Maintains set S of vertices whose final shortest path

weights from s have been determined
I Repeatedly select u ∈ V \ S with minimum SP estimate,

add u to S, and relax all edges leaving u
I Uses min-priority queue to repeatedly make greedy choice
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Dijkstra(G,w , s)

1 INITIALIZE-SINGLE-SOURCE(G, s) ;
2 S = ∅ ;
3 Q = V ;
4 while Q 6= ∅ do
5 u = EXTRACT-MIN(Q) ;
6 S = S ∪ {u} ;
7 for each v ∈ Adj[u] do
8 RELAX(u, v ,w) ;
9 end

10 end
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Dijkstra’s Algorithm Example (1)
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Dijkstra’s Algorithm Example (2)
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Time Complexity of Dijkstra’s Algorithm

I Using array to implement priority queue,
I INITIALIZE-SINGLE-SOURCE takes how much time?
I What is time complexity to create Q?
I How many calls to EXTRACT-MIN?
I What is time complexity of EXTRACT-MIN?
I How many calls to RELAX?
I What is time complexity of RELAX?
I What is total time complexity?

I Using heap to implement priority queue, what are the
answers to the above questions?

I When might you choose one queue implementation over
another?
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Correctness of Dijkstra’s Algorithm

I Invariant: At the start of each iteration of the while loop,
d [v ] = δ(s, v) for all v ∈ S

I Proof: Let u be first node added to S where d [u] 6= δ(s,u)
I Let p = s

p1 x → y
p2 u be SP to u and y first node on p in

V − S
I Since y ’s predecessor x ∈ S, d [y ] = δ(s, y) due to

relaxation of (x , y)

I Since y precedes u in p and
edge wts non-negative:
d [y ] = δ(s, y) ≤ δ(s,u) ≤ d [u]

I Since u was chosen before y in line 5, d [u] ≤ d [y ], so
d [y ] = δ(s, y) = δ(s,u) = d [u], a contradiction

Since all vertices eventually end up in S, get correctness of the
algorithm



30/36

Linear Programming

I Given an m × n matrix A and a size-m vector b and a
size-n vector c, find a vector x of n elements that
maximizes

∑n
i=1 cixi subject to Ax ≤ b

I E.g., c =
[

2 −3
]
, A =

 1 1
1 −2
−1 0

, b =

 22
4
−8


implies:
maximize 2x1 − 3x2 subject to

x1 + x2 ≤ 22
x1 − 2x2 ≤ 4

x1 ≥ 8

I Solution: x1 = 16, x2 = 6
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Difference Constraints and Feasibility

I Decision version of this problem: No objective function
to maximize; simply want to know if there exists a feasible
solution, i.e., an x that satisfies Ax ≤ b

I Special case is when each row of A has exactly one 1 and
one −1, resulting in a set of difference constraints of the
form

xj − xi ≤ bk

I Applications: Any application in which a certain amount
of time must pass between events (x variables represent
times of events)
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Difference Constraints and Feasibility (2)

A =



1 −1 0 0 0
1 0 0 0 −1
0 1 0 0 −1
−1 0 1 0 0
−1 0 0 1 0
0 0 −1 1 0
0 0 −1 0 1
0 0 0 −1 1


and b =



0
−1
1
5
4
−1
−3
−3


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Difference Constraints and Feasibility (3)

Is there a setting for x1, . . . , x5 satisfying:

x1 − x2 ≤ 0
x1 − x5 ≤ −1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤ −1
x5 − x3 ≤ −3
x5 − x4 ≤ −3

One solution: x = (−5,−3,0,−1,−4)
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Constraint Graphs

I Can represent instances of this problem in a constraint
graph G = (V ,E)

I Define a vertex for each variable, plus one more: If
variables are x1, . . . , xn, get V = {v0, v1, . . . , vn}

I Add a directed edge for each constraint, plus an edge from
v0 to each other vertex:

E = {(vi , vj) : xj − xi ≤ bk is a constraint}
∪{(v0, v1), (v0, v2), . . . , (v0, vn)}

I Weight of edge (vi , vj) is bk , weight of (v0, v`) is 0 for all
` 6= 0
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Constraint Graph Example

x1 − x2 ≤ 0
x1 − x5 ≤ −1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤ −1
x5 − x3 ≤ −3
x5 − x4 ≤ −3

(−5,−3,0,−1,−4)
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Solving Feasibility with Bellman-Ford
Theorem: Let G be constraint graph for system of difference
constraints. If G has a negative-weight cycle, then there is no
feasible solution. If G has no negative-weight cycle, then a
feasible solution is

x = [δ(v0, v1), δ(v0, v2), . . . , δ(v0, vn)]

I Proof: For any edge (vi , vj) ∈ E , triangle inequality says
δ(v0, vj) ≤ δ(v0, vi) + w(vi , vj), so
δ(v0, vj)− δ(v0, vi) ≤ w(vi , vj)

⇒ xi = δ(v0, vi) and xj = δ(v0, vj) satisfies constraint
xi − xj ≤ w(vi , vj)

I If there is a negative-weight cycle
c = 〈vi , vi+1, . . . , vk = vi〉, then there is a system of
inequalities xi+1 − xi ≤ w(vi , vi+1),
xi+2 − xi+1 ≤ w(vi+1, vi+2), . . ., xk − xk−1 ≤ w(vk−1, vk ).
Summing both sides gives 0 ≤ w(c) < 0, implying that a
negative-weight cycle indicates no solution

Can solve with Bellman-Ford in time O(n2 + nm)
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