
1/36

Computer Science & Engineering 423/823
Design and Analysis of Algorithms

Lecture 07 — Single-Source Shortest Paths (Chapter 24)

Stephen Scott and Vinodchandran N. Variyam

2/36

Introduction
I Given a weighted, directed graph G = (V ,E) with weight

function w : E ! R
I The weight of path p = hv0, v1, . . . , vk i is the sum of the

weights of its edges:

w(p) =
kX

i=1

w(vi�1, vi)

I Then the shortest-path weight from u to v is

�(u, v) =

(
min{w(p) : u

p v} if there is a path from u to v
1 otherwise

I A shortest path from u to v is any path p with weight
w(p) = �(u, v)

I
Applications: Network routing, driving directions

3/36

Types of Shortest Path Problems

Given G as described earlier,
I

Single-Source Shortest Paths: Find shortest paths from
source node s to every other node

I
Single-Destination Shortest Paths: Find shortest paths
from every node to destination t

I Can solve with SSSP solution. How?
I

Single-Pair Shortest Path: Find shortest path from
specific node u to specific node v

I Can solve via SSSP; no asymptotically faster algorithm
known

I
All-Pairs Shortest Paths: Find shortest paths between
every pair of nodes

I Can solve via repeated application of SSSP, but can do
better

3/36

Notes and Questions

4/36

Optimal Substructure of a Shortest Path

The shortest paths problem has the optimal substructure

property: If p = hv0, v1, . . . , vk i is a SP from v0 to vk , then for
0  i  j  k , pij = hvi , vi+1, . . . , vji is a SP from vi to vj

Proof: Let p = v0
p0i vi

pij vj
pjk vk with weight

w(p) = w(p0i) + w(pij) + w(pjk). If there exists a path p0
ij

from vi to vj with w(p0
ij) < w(pij), then p is not a SP since

v0
p0i vi

p0
ij vj

pjk vk has less weight than p

4/36

Notes and Questions

5/36

Negative-Weight Edges (1)

I What happens if the graph G has edges with negative
weights?

I Dijkstra’s algorithm cannot handle this, Bellman-Ford can,
under the right circumstances (which circumstances?)

5/36

Notes and Questions

6/36

Negative-Weight Edges (2)

6/36

Notes and Questions

7/36

Cycles

I What kinds of cycles might appear in a shortest path?
I Negative-weight cycle
I Zero-weight cycle
I Positive-weight cycle

7/36

Notes and Questions

8/36

Relaxation

I Given weighted graph G = (V ,E) with source node s 2 V
and other node v 2 V (v 6= s), we’ll maintain d [v], which is
upper bound on �(s, v)

I
Relaxation of an edge (u, v) is the process of testing
whether we can decrease d [v], yielding a tighter upper
bound

8/36

Notes and Questions

9/36

Initialize-Single-Source(G, s)

1 for each vertex v 2 V do

2 d [v] = 1 ;
3 ⇡[v] = NIL ;
4 end

5 d [s] = 0 ;

9/36

Notes and Questions

10/36

Relax(u, v ,w)

1 if d [v] > d [u] + w(u, v) then

2 d [v] = d [u] + w(u, v) ;
3 ⇡[v] = u ;

10/36

Notes and Questions

11/36

Relaxation Example

Numbers in nodes are values of d

11/36

Notes and Questions

12/36

Bellman-Ford Algorithm

I Works with negative-weight edges and detects if there is a
negative-weight cycle

I Makes |V |� 1 passes over all edges, relaxing each edge
during each pass

I No cycles implies all shortest paths have  |V |� 1 edges,
so that number of relaxations is sufficient

12/36

Notes and Questions

13/36

Bellman-Ford(G,w , s)

1 INITIALIZE-SINGLE-SOURCE(G, s) ;
2 for i = 1 to |V |� 1 do

3 for each edge (u, v) 2 E do

4 RELAX(u, v ,w) ;
5 end

6 end

7 for each edge (u, v) 2 E do

8 if d [v] > d [u] + w(u, v) then

9 return FALSE // G has a negative-wt cycle ;
10 end

11 return TRUE // G has no neg-wt cycle reachable frm s ;

13/36

Notes and Questions

14/36

Bellman-Ford Algorithm Example (1)

Within each pass, edges relaxed in this order:
(t , x), (t , y), (t , z), (x , t), (y , x), (y , z), (z, x), (z, s), (s, t), (s, y)

14/36

Notes and Questions

15/36

Bellman-Ford Algorithm Example (2)

Within each pass, edges relaxed in this order:
(t , x), (t , y), (t , z), (x , t), (y , x), (y , z), (z, x), (z, s), (s, t), (s, y)

15/36

Notes and Questions

16/36

Time Complexity of Bellman-Ford Algorithm

I INITIALIZE-SINGLE-SOURCE takes how much time?
I RELAX takes how much time?
I What is time complexity of relaxation steps (nested loops)?
I What is time complexity of steps to check for

negative-weight cycles?
I What is total time complexity?

16/36

Notes and Questions

17/36

Correctness of Bellman-Ford: Finds SP Lengths

I Assume no negative-weight cycles
I Since no cycles appear in SPs, every SP has at most

|V |� 1 edges
I Then define sets S0,S1, . . .S|V |�1:

Sk = {v 2 V : 9s
p v s.t. �(s, v) = w(p) and |p|  k}

I
Loop invariant: After i th iteration of outer relaxation loop
(Line 2), for all v 2 Si , we have d [v] = �(s, v)

I aka path-relaxation property (Lemma 24.15)
I Can prove via induction on i :

I Obvious for i = 0
I If holds for v 2 Si�1, then definition of relaxation and optimal

substructure) holds for v 2 Si

I Implies that, after |V |� 1 iterations, d [v] = �(s, v) for all
v 2 V = S|V |�1

17/36

Notes and Questions

18/36

Correctness of Bellman-Ford: Detects
Negative-Weight Cycles

I Let c = hv0, v1, . . . , vk = v0i be neg-weight cycle reachable
from s:

kX

i=1

w(vi�1, vi) < 0

I If algorithm incorrectly returns TRUE, then (due to Line 8)
for all nodes in the cycle (i = 1, 2, . . . , k),

d [vi]  d [vi�1] + w(vi�1, vi)

I By summing, we get

kX

i=1

d [vi] 
kX

i=1

d [vi�1] +
kX

i=1

w(vi�1, vi)

I Since v0 = vk ,
Pk

i=1 d [vi] =
Pk

i=1 d [vi�1]

I This implies that 0 
Pk

i=1 w(vi�1, vi), a contradiction
18/36

Notes and Questions

19/36

SSSPs in Directed Acyclic Graphs

I Why did Bellman-Ford have to run |V |� 1 iterations of
edge relaxations?

I To confirm that SP information fully propagated to all
nodes (path-relaxation property)

I What if we knew that, after we relaxed an edge just once,
we would be completely done with it?

I Can do this if G a dag and we relax edges in correct order
(what order?)

19/36

Notes and Questions

20/36

Dag-Shortest-Paths(G,w , s)

1 topologically sort the vertices of G ;
2 INITIALIZE-SINGLE-SOURCE(G, s) ;
3 for each vertex u 2 V, taken in topo sorted

order do

4 for each v 2 Adj[u] do

5 RELAX(u, v ,w) ;
6 end

7 end

20/36

Notes and Questions

21/36

SSSP dag Example (1)

21/36

Notes and Questions

22/36

SSSP dag Example (2)

22/36

Notes and Questions

23/36

Analysis

I Correctness follows from path-relaxation property similar to
Bellman-Ford, except that relaxing edges in topologically
sorted order implies we relax the edges of a shortest path
in order

I Topological sort takes how much time?
I INITIALIZE-SINGLE-SOURCE takes how much time?
I How many calls to RELAX?
I What is total time complexity?

23/36

Notes and Questions

24/36

Dijkstra’s Algorithm

I Greedy algorithm
I Faster than Bellman-Ford
I Requires all edge weights to be nonnegative
I Maintains set S of vertices whose final shortest path

weights from s have been determined
I Repeatedly select u 2 V \ S with minimum SP estimate,

add u to S, and relax all edges leaving u
I Uses min-priority queue to repeatedly make greedy choice

24/36

Notes and Questions

25/36

Dijkstra(G,w , s)

1 INITIALIZE-SINGLE-SOURCE(G, s) ;
2 S = ; ;
3 Q = V ;
4 while Q 6= ; do

5 u = EXTRACT-MIN(Q) ;
6 S = S [{u} ;
7 for each v 2 Adj[u] do

8 RELAX(u, v ,w) ;
9 end

10 end

25/36

Notes and Questions

26/36

Dijkstra’s Algorithm Example (1)

26/36

Notes and Questions

27/36

Dijkstra’s Algorithm Example (2)

27/36

Notes and Questions

28/36

Time Complexity of Dijkstra’s Algorithm

I Using array to implement priority queue,
I INITIALIZE-SINGLE-SOURCE takes how much time?
I What is time complexity to create Q?
I How many calls to EXTRACT-MIN?
I What is time complexity of EXTRACT-MIN?
I How many calls to RELAX?
I What is time complexity of RELAX?
I What is total time complexity?

I Using heap to implement priority queue, what are the
answers to the above questions?

I When might you choose one queue implementation over
another?

28/36

Notes and Questions

29/36

Correctness of Dijkstra’s Algorithm

I
Invariant: At the start of each iteration of the while loop,
d [v] = �(s, v) for all v 2 S

I
Proof: Let u be first node added to S where d [u] 6= �(s, u)

I Let p = s
p1 x ! y

p2 u be SP to u and y first node on p in
V � S

I Since y ’s predecessor x 2 S, d [y] = �(s, y) due to
relaxation of (x , y)

I Since y precedes u in p and
edge wts non-negative:
d [y] = �(s, y)  �(s, u)  d [u]

I Since u was chosen before y in line 5, d [u]  d [y], so
d [y] = �(s, y) = �(s, u) = d [u], a contradiction

Since all vertices eventually end up in S, get correctness of the
algorithm

29/36

Notes and Questions

30/36

Linear Programming

I Given an m ⇥ n matrix A and a size-m vector b and a
size-n vector c, find a vector x of n elements that
maximizes

Pn
i=1 cixi subject to Ax  b

I E.g., c =
⇥

2 �3
⇤
, A =

2

4
1 1
1 �2
�1 0

3

5, b =

2

4
22
4
�8

3

5

implies:
maximize 2x1 � 3x2 subject to

x1 + x2  22
x1 � 2x2  4

x1 � 8

I
Solution: x1 = 16, x2 = 6

30/36

Notes and Questions

31/36

Difference Constraints and Feasibility

I
Decision version of this problem: No objective function
to maximize; simply want to know if there exists a feasible

solution, i.e., an x that satisfies Ax  b
I Special case is when each row of A has exactly one 1 and

one �1, resulting in a set of difference constraints of the
form

xj � xi  bk

I
Applications: Any application in which a certain amount
of time must pass between events (x variables represent
times of events)

31/36

Notes and Questions

32/36

Difference Constraints and Feasibility (2)

A =

2

66666666664

1 �1 0 0 0
1 0 0 0 �1
0 1 0 0 �1
�1 0 1 0 0
�1 0 0 1 0
0 0 �1 1 0
0 0 �1 0 1
0 0 0 �1 1

3

77777777775

and b =

2

66666666664

0
�1
1
5
4
�1
�3
�3

3

77777777775

32/36

Notes and Questions

33/36

Difference Constraints and Feasibility (3)

Is there a setting for x1, . . . , x5 satisfying:

x1 � x2  0
x1 � x5  �1
x2 � x5  1
x3 � x1  5
x4 � x1  4
x4 � x3  �1
x5 � x3  �3
x5 � x4  �3

One solution: x = (�5,�3, 0,�1,�4)

33/36

Notes and Questions

34/36

Constraint Graphs

I Can represent instances of this problem in a constraint

graph G = (V ,E)

I Define a vertex for each variable, plus one more: If
variables are x1, . . . , xn, get V = {v0, v1, . . . , vn}

I Add a directed edge for each constraint, plus an edge from
v0 to each other vertex:

E = {(vi , vj) : xj � xi  bk is a constraint}
[{(v0, v1), (v0, v2), . . . , (v0, vn)}

I Weight of edge (vi , vj) is bk , weight of (v0, v`) is 0 for all
` 6= 0

34/36

Notes and Questions

35/36

Constraint Graph Example

x1 � x2  0
x1 � x5  �1
x2 � x5  1
x3 � x1  5
x4 � x1  4
x4 � x3  �1
x5 � x3  �3
x5 � x4  �3

(�5,�3, 0,�1,�4)

35/36

Notes and Questions

36/36

Solving Feasibility with Bellman-Ford
Theorem: Let G be constraint graph for system of difference
constraints. If G has a negative-weight cycle, then there is no
feasible solution. If G has no negative-weight cycle, then a

feasible solution is

x = [�(v0, v1), �(v0, v2), . . . , �(v0, vn)]

I
Proof: For any edge (vi , vj) 2 E , triangle inequality says
�(v0, vj)  �(v0, vi) + w(vi , vj), so
�(v0, vj)� �(v0, vi)  w(vi , vj)

) xi = �(v0, vi) and xj = �(v0, vj) satisfies constraint
xi � xj  w(vi , vj)

I If there is a negative-weight cycle
c = hvi , vi+1, . . . , vk = vii, then there is a system of
inequalities xi+1 � xi  w(vi , vi+1),
xi+2 � xi+1  w(vi+1, vi+2), . . ., xk � xk�1  w(vk�1, vk).
Summing both sides gives 0  w(c) < 0, implying that a
negative-weight cycle indicates no solution

Can solve with Bellman-Ford in time O(n2 + nm)
36/36

Notes and Questions

