Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 04 — Greedy Algorithms (Chapter 16)

Prepared by Stephen Scott and Vinodchandran N. Variyam

4□ ▷ ←面 ▷ ← 臺 ▷ ← 臺 → ○ へ ○ 1/25

Introduction

- Greedy methods: A technique for solving optimization problems
 - Choose a solution to a problem that is best per an objective function
- Similar to dynamic programming in that we examine subproblems, exploiting optimal substructure property
- Key difference: In dynamic programming we considered all possible subproblems
- In contrast, a greedy algorithm at each step commits to just one subproblem, which results in its greedy choice (locally optimal choice)
- Examples: Minimum spanning tree, single-source shortest paths

4 ロト 4 団 ト 4 恵 ト 4 恵 ト - 恵 - 夕久(や)

Activity Selection (1)

- ▶ Consider the problem of scheduling classes in a classroom
- Many courses are candidates to be scheduled in that room, but not all can have it (can't hold two courses at once)
- Want to maximize utilization of the room in terms of number of classes scheduled
- ► This is an example of the activity selection problem:
 - Given: Set S = {a₁, a₂,..., a_n} of n proposed activities that wish to use a resource that can serve only one activity at a time
 - a_i has a start time s_i and a finish time f_i , $0 \le s_i < f_i < \infty$
 - ▶ If a_i is scheduled to use the resource, it occupies it during the interval $[s_i, f_i)$ ⇒ can schedule both a_i and a_j iff $s_i \ge f_j$ or $s_j \ge f_i$ (if this happens, then we say that a_i and a_j are **compatible**)
 - ▶ Goal is to find a largest subset $S' \subseteq S$ such that all activities in S' are pairwise compatible
 - Assume that activities are sorted by finish time:

 $f_1 \leq f_2 \leq \cdots \leq f_n$

Notes and Questions

←□ト ←□ト ← ≧ ト ← ≧ ト ・ 室 ・ りへで

Activity Selection (2)

i	1	2	3	4	5	6	7	8	9 8 12	10	11
Si	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

Sets of mutually compatible activities: $\{a_3, a_9, a_{11}\}, \{a_1, a_4, a_8, a_{11}\}, \{a_2, a_4, a_9, a_{11}\}$

Optimal Substructure of Activity Selection

- Let S_{ij} be set of activities that start after a_i finishes and that finish before a_i starts
- ▶ Let A_{ij} ⊆ S_{ij} be a largest set of activities that are mutually compatible
- ▶ If activity $a_k \in A_{ij}$, then we get two subproblems: S_{ik} (subset starting after a_i finishes and finishing before a_k starts) and S_{ki}
- ▶ If we extract from A_{ij} its set of activities from S_{ik} , we get $A_{ik} = A_{ij} \cap S_{ik}$, which is an optimal solution to S_{ik}
 - If it weren't, then we could take the better solution to S_{ik} (call it A'_{ik}) and plug its tasks into A_{ij} and get a better solution
 - ▶ Works because subproblem S_{ik} independent from S_{ki}
- Thus if we pick an activity a_k to be in an optimal solution and then solve the subproblems, our optimal solution is A_{ij} = A_{ik} ∪ {a_k} ∪ A_{kj}, which is of size |A_{ik}| + |A_{kj}| + 1

4 D > 4 D > 4 E > 4 E > 9 9 9

Notes and Questions

4 D F 4 Ø F 4 E F 4 E F 990

Optimal Substructure Example

- ▶ Let¹ $S_{ij} = S_{1,11} = \{a_1, \dots, a_{11}\}$ and $A_{ij} = A_{1,11} = \{a_1, a_4, a_8, a_{11}\}$
- ► For $a_k = a_8$, get $S_{1k} = S_{1,8} = \{a_1, a_2, a_3, a_4\}$ and $S_{8,11} = \{a_{11}\}$
- $A_{1,8} = A_{1,11} \cap S_{1,8} = \{a_1, a_4\}$, which is optimal for $S_{1,8}$
- $A_{8,11} = A_{1,11} \cap S_{8,11} = \{a_{11}\}$, which is optimal for $S_{8,11}$

$^{-1}$ Left-hand boundary condition addressed by adding to S activity a_0 with

Notes and Questions

4□ ► 4∰ ► 4분 ► 4분 ► 분 90 €

$f_0=0$ and setting i=0

Recursive Definition

▶ Let c[i,j] be the size of an optimal solution to S_{ij}

$$c[\textit{i},\textit{j}] = \left\{ \begin{array}{ll} 0 & \text{if } S_{\textit{ij}} = \emptyset \\ \max_{\textit{a}_k \in S_{\textit{ij}}} \{\textit{c}[\textit{i},\textit{k}] + \textit{c}[\textit{k},\textit{j}] + 1\} & \text{if } S_{\textit{ij}} \neq \emptyset \end{array} \right.$$

- In dynamic programming, we need to try all a_k since we don't know which one is the best choice...
- ...or do we?

Greedy Choice (1)

Notes and Questions

- What if, instead of trying all activities a_k, we simply chose the one with the earliest finish time of all those still compatible with the scheduled ones?
- ► This is a **greedy choice** in that it maximizes the amount of time left over to schedule other activities
- ▶ Let $S_k = \{a_i \in S : s_i \ge f_k\}$ be set of activities that start after a_k finishes
- If we greedily choose a₁ first (with earliest finish time), then S₁ is the only subproblem to solve

4 D > 4 D > 4 E > 4 E > E +990

4 m + 4 m + 4 m + 4 m + 2 m 9 q @

Greedy Choice (2)

- ▶ **Theorem:** Consider any nonempty subproblem S_k and let a_m be an activity in S_k with earliest finish time. Then a_m is in **some** maximum-size subset of mutually compatible activities of S_k
- ► Proof (by construction):
 - Let A_k be an optimal solution to S_k and let a_j have earliest finish time of all in A_k
 - If $a_j = a_m$, we're done
 - ▶ If $a_i \neq a_m$, then define $A_k' = A_k \setminus \{a_i\} \cup \{a_m\}$
 - Activities in A' are mutually compatible since those in A are mutually compatible and f_m ≤ f_j
 - Since $|A_k'| = |A_k|$, we get that A_k' is a maximum-size subset of mutually compatible activities of S_k that includes a_m

4 D F 4 D F 4 E F 4 E F 9 Q C

What this means is that there exists an optimal solution that uses the greedy choice

Notes and Questions

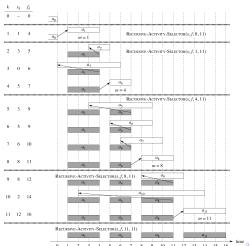
4 □ > 4 Ø > 4 毫 > 4

Greedy-Activity-Selector(s, f, n)

1 $A = \{a_1\}$; 2 k = 1; 3 for m = 2 to n do 4 | if $s[m] \ge f[k]$ then 5 | $A = A \cup \{a_m\}$; 6 | k = m7 end 8 return A

What is the time complexity?

Example



Notes and Questions

4 D > 4 B > 4 B > 4 B > 4 B > 9 Q P

Greedy vs Dynamic Programming (1)

- Like with dynamic programming, greedy leverages a problem's optimal substructure property
- When can we get away with a greedy algorithm instead of DP?
- When we can argue that the greedy choice is part of an optimal solution, implying that we need not explore all subproblems
- Example: The knapsack problem
 - ► There are n items that a thief can steal, item i weighing w_i pounds and worth v_i dollars
 - The thief's goal is to steal a set of items weighing at most W pounds and maximizes total value
 - ► In the 0-1 knapsack problem, each item must be taken in its entirety (e.g., gold bars)
 - ► In the fractional knapsack problem, the thief can take part of an item and get a proportional amount of its value (e.g., gold dust)

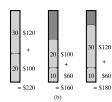
Notes and Questions

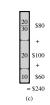
Greedy vs Dynamic Programming (2)

- There's a greedy algorithm for the fractional knapsack problem
 - Sort the items by v_i/w_i and choose the items in descending order
 - Has greedy choice property, since any optimal solution lacking the greedy choice can have the greedy choice swapped in
 - Works because one can always completely fill the knapsack at the last step
- Greedy strategy does not work for 0-1 knapsack, but do have O(nW)-time dynamic programming algorithm
 - Note that time complexity is pseudopolynomial
 - ▶ Decision problem is NP-complete

Greedy vs Dynamic Programming (3)

Notes and Questions





Problem instance

0-1 (greedy is suboptimal)

Fractional

Huffman Coding

- Interested in encoding a file of symbols from some alphabet
- Want to minimize the size of the file, based on the frequencies of the symbols
- ► **Fixed-length code** uses $\lceil \log_2 n \rceil$ bits per symbol, where n is the size of the alphabet C
- Variable-length code uses fewer bits for more frequent symbols

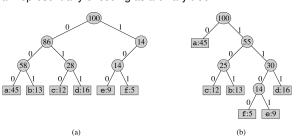
	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

Fixed-length code uses 300k bits, variable-length uses 224k

Notes and Questions

Huffman Coding (2)

Can represent any encoding as a binary tree



If c.freq = frequency of codeword and $d_T(c) =$ depth, cost of tree T is

$$B(T) = \sum_{c \in C} c.freq \cdot d_T(c)$$

Algorithm for Optimal Codes

- Can get an optimal code by finding an appropriate prefix code, where no codeword is a prefix of another
- ▶ Optimal code also corresponds to a full binary tree
- Huffman's algorithm builds an optimal code by greedily building its tree
- ► Given alphabet *C* (which corresponds to leaves), find the two least frequent ones, merge them into a subtree
- ► Frequency of new subtree is the sum of the frequencies of its children
- Then add the subtree back into the set for future consideration

<□> <□> <□> <=> <=> = > <= > = <= 17

Notes and Questions

Huffman(C)

```
1 n = |C|;

2 Q = C // min-priority queue;

3 for i = 1 to n - 1 do

4 allocate node z;

5 z.left = x = \text{EXTRACT-MIN}(Q);

6 z.right = y = \text{EXTRACT-MIN}(Q);

7 z.freq = x.freq + y.freq;

8 INSERT(Q, z);

9 end

10 return EXTRACT-MIN(Q) // return root;
```

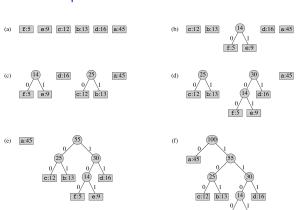
Time complexity: n-1 iterations, $O(\log n)$ time per iteration, total $O(n\log n)$

<□ > <∄ > < Ē > < Ē > ☐ € < 9 < € > 18

Notes and Questions

4□ > ◆□ > ◆ 분 > ◆분 > 분 % < 약

Huffman Example



Optimal Coding Has Greedy Choice Property (1)

- Lemma: Let C be an alphabet in which symbol c ∈ C has frequency c.freq and let x, y ∈ C have lowest frequencies. Then there exists an optimal prefix code for C in which codewords for x and y have the same length and differ only in the last bit.
 - ► I.e., an optimal solution exists that merges lowest frequencies first
- Proof: Let T be a tree representing an arbitrary optimal prefix code, and let a and b be siblings of maximum depth in T
 - ▶ Assume, w.l.o.g., that x.freq ≤ y.freq and a.freq ≤ b.freq
 - ► Since *x* and *y* are the two least frequent nodes, we get *x.freq* ≤ *a.freq* and *y.freq* ≤ *b.freq*
 - Convert T to T' by exchanging a and x, then convert to T" by exchanging b and y
 - ▶ In T", x and y are siblings of maximum depth

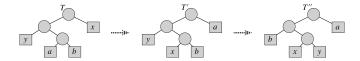
m depth

Notes and Questions

←□→ ←□→ ←□→ ←□→ □ ♥9<</p>

Optimal Coding Has Greedy Choice Property (2)

Notes and Questions



Is T'' optimal?

< □ > < ∰ > < 분 > < 분 > 를 90<

Optimal Coding Has Greedy Choice Property (3)

Notes and Questions

Cost difference between T and T' is B(T) - B(T'):

$$= \sum_{c \in C} c. freq \cdot d_T(c) - \sum_{c \in C} c. freq \cdot d_{T'}(c)$$

$$= x.freq \cdot d_T(x) + a.freq \cdot d_T(a) - x.freq \cdot d_{T'}(x) - a.freq \cdot d_{T'}(a)$$

$$= x.freq \cdot d_T(x) + a.freq \cdot d_T(a) - x.freq \cdot d_T(a) - a.freq \cdot d_T(x)$$

$$= (a.freq - x.freq)(d_T(a) - d_T(x)) \ge 0$$

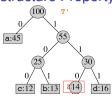
since a.freq $\geq x$.freq and $d_T(a) \geq d_T(x)$ Similarly, $B(T') - B(T'') \geq 0$, so $B(T'') \leq B(T)$, so T'' is optimal

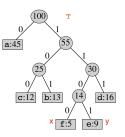
Optimal Coding Has Optimal Substructure Property (1)

Notes and Questions

Lemma:

- ► Let C be an alphabet in which symbol c ∈ C has frequency c.freq and let x, y ∈ C have lowest frequencies
- ▶ Let $C' = C \setminus \{x, y\} \cup \{z\}$ and z.freq = x.freq + y.freq
- ► Let T' be any tree representing an optimal prefix code for C'
- ⇒ Then T, which is T' with leaf z replaced by internal node with children x and y, represents an optimal prefix code for C





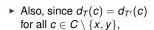
Optimal Coding Has Optimal Substructure Property (2)

Proof:

► Since
$$d_T(x) = d_T(y) = d_{T'}(z) + 1$$
,

$$x.freq \cdot d_T(x) + y.freq \cdot d_T(y)$$

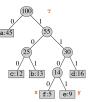
= $(x.freq + y.freq)(d_{T'}(z) + 1)$
= $z.freq \cdot d_{T'}(z) + (x.freq + y.freq)$



$$B(T) = B(T') + x.freq + y.freq$$

and

$$B(T') = B(T) - x.freq - y.freq$$



Notes and Questions

Notes and Questions

Optimal Coding Has Optimal Substructure Property (3)

- ► Assume that *T* is not optimal, i.e., B(T'') < B(T) for some T''
- Assume w.l.o.g. (based on greedy choice lemma) that x and y are siblings in T"
- In T", replace x, y, and parent with z such that z.freq = x.freq + y.freq, to get T"":

$$B(T''') = B(T'') - x.freq - y.freq$$

 $< B(T) - x.freq - y.freq$
 $= B(T')$

(prev. slide)
(subopt assump)
(prev. slide)

Contradicts assumption that T' is optimal for C'