
Computer Science & Engineering 423/823
Design and Analysis of Algorithms

Lecture 08 — Lower Bounds (Sections 8.1 and 33.3)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

sscott@cse.unl.edu

mailto:sscott@cse.unl.edu


Remember when ...

... I said: “Upper Bound of an Algorithm”

I An algorithm A has an upper bound of f (n) for input of size n if there
exists no input of size n such that A requires more than f (n) time

I E.g., we know from prior courses that Quicksort and Bubblesort take no
more time than O(n2), while Mergesort has an upper bound of
O(n log n)

... I said: “Upper Bound of a Problem”

I A problem has an upper bound of f (n) if there exists at least one

algorithm that has an upper bound of f (n)
I I.e., there exists an algorithm with time/space complexity of at most f (n)

on all inputs of size n

I E.g., since algorithm Mergesort has worst-case time complexity of
O(n log n), the problem of sorting has an upper bound of O(n log n)



Remember when ...

... I said: “Lower Bound of a Problem”

I A problem has a lower bound of f (n) if, for any algorithm A to solve
the problem, there exists at least one input of size n that forces A to
take at least f (n) time/space

I This pathological input depends on the specific algorithm A

I E.g., reverse order forces Bubblesort to take ⌦(n2) steps

I Since every sorting algorithm has an input of size n forcing ⌦(n log n)
steps, sorting problem has time complexity lower bound of ⌦(n log n)

I To argue a lower bound for a problem, can use an adversarial argument:
An algorithm that simulates arbitrary algorithm A to build a
pathological input

I Needs to be in some general (algorithmic) form since the nature of the
pathological input depends on the specific algorithm A

I Adversary has unlimited computing resources

I Can also reduce one problem to another to establish lower bounds



Comparison-Based Sorting Algorithms

I Our lower bound applies only to comparison-based sorting algorithms

I The sorted order it determines is based only on comparisons between the
input elements

I E.g., Insertion Sort, Selection Sort, Mergesort, Quicksort, Heapsort

I What is not a comparison-based sorting algorithm?
I The sorted order it determines is based on additional information, e.g.,

bounds on the range of input values
I E.g., Counting Sort, Radix Sort



Decision Trees

I A decision tree is a full binary tree that represents comparisions
between elements performed by a particular sorting algorithm operating
on a certain-sized input (n elements)

I
Key point: a tree represents an algorithm’s behavior on all possible
inputs of size n

I Thus, an adversarial argument could use such a tree to choose a
pathological input

I Each internal node represents one comparison made by algorithm
I Each node labeled as i : j , which represents comparison A[i ]  A[j ]
I If, in the particular input, it is the case that A[i ]  A[j ], then control flow

moves to left child, otherwise to the right child
I Each leaf represents a possible output of the algorithm, which is a

permutation of the input
I All permutations must be in the tree in order for algorithm to work

properly



Example for Insertion Sort

I If n = 3, Insertion Sort first compares A[1] to A[2]

I If A[1]  A[2], then compare A[2] to A[3]

I If A[2] > A[3], then compare A[1] to A[3]

I If A[1]  A[3], then sorted order is A[1], A[3], A[2]



Example for Insertion Sort (2)

I Example: A = [7, 8, 4]

I First compare 7 to 8, then 8 to 4, then 7 to 4

I Output permutation is h3, 1, 2i, which implies sorted order is 4, 7, 8

I What are worst-case inputs for this algorithm? What are not?



Proof of Lower Bound

I Length of path from root to output leaf is number of comparisons made
by algorithm on that input

I Worst-case number of comparisons = length of longest path = height h

) Adversary chooses a deepest leaf to create worst-case input

I Number of leaves in tree is n! = number of outputs (permutations)

I A binary tree of height h has at most 2h leaves

I Thus we have 2h � n! �
p
2⇡n

�
n
e

�n

I Take base-2 logs of both sides to get

h � lg
p
2⇡ + (1/2) lg n + n lg n � n lg e = ⌦(n log n)

) Every comparison-based sorting algorithm has some input that forces it
to make ⌦(n log n) comparisons

) Mergesort and Heapsort are asymptotically optimal



Another Lower Bound: Convex Hull

I Use sorting lower bound to get lower bound on convex hull problem:
I Given a set Q = {p1, p2, . . . , pn} of n points, each from R2, output

CH(Q), which is the smallest convex polygon P such that each point from
Q is on P ’s boundary or in its interior

Example output of CH algorithm: ordered set hp10, p3, p1, p0, p12i



Another Lower Bound: Convex Hull (2)
I We will reduce the problem of sorting to that of finding a convex hull
I I.e., given any instance of the sorting problem A = {x1, . . . , xn}, we will

transform it to an instance of convex hull such that the time complexity
of the new algorithm sorting will be no more than that of convex hull

I The reduction: transform A to Q = {(x1, x21 ), (x2, x22 ), . . . , (xn, x2n )}
) Takes O(n) time



Another Lower Bound: Convex Hull (3)
E.g., A = {2.1,�1.4, 1.0,�0.7,�2.0},
CH(Q) = h(�1.4, 1.96), (�2, 4), (2.1, 4.41), (1, 1), (�0.7, 0.49)i

I Since the points in Q are on a parabola, all points of Q are on CH(Q)
I How can we get a sorted version of A from this?



Another Lower Bound: Convex Hull (4)

I CHSort yields a sorted list of points from (any) A

I Time complexity of CHSort: time to transform A to Q + time to find
CH of Q + time to read sorted list from CH

) O(n)+ time to find CH +O(n)
I If time for convex hull is o(n log n), then sorting is o(n log n)

) Since that cannot happen, we know that convex hull is ⌦(n log n)


	Introduction
	Decision Trees
	Lower Bound Proof

