Introduction

- Given a connected, undirected graph G = (V, E), a spanning tree is an acyclic subset $T \subseteq E$ that connects all vertices in V
 - T acyclic \Rightarrow a tree
 - T connects all vertices \Rightarrow spans G
 - ▶ If G is weighted, then T's weight is $w(T) = \sum_{(u,v) \in T} w(u,v)$
 - A minimum weight spanning tree (or minimum spanning tree, or MST) is a spanning tree of minimum weight
 Not necessarily unique
 - Applications: anything where one needs to connect all nodes with minimum cost, e.g., wires on a circuit board or fiber cable in a network

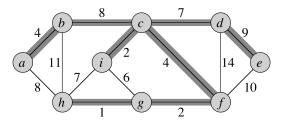
Computer Science & Engineering 423/823 Design and Analysis of Algorithms Lecture 05 — Minimum-Weight Spanning Trees (Chapter 23)

> Stephen Scott (Adapted from Vinodchandran N. Variyam)

sscott@cse.unl.edu

・ロト (雪) (注) (注) きょうのくの

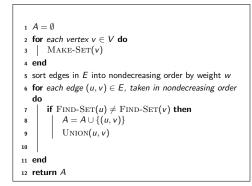
MST Example



Kruskal's Algorithm

- Greedy algorithm: Make the locally best choice at each step
- Starts by declaring each vertex to be its own tree (so all nodes together make a forest)
- Iteratively identify the minimum-weight edge (u, v) that connects two distinct trees, and add it to the MST T, merging u's tree with v's tree

MST-Kruskal(G, w)

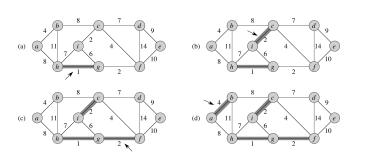


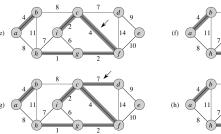
More on Kruskal's Algorithm

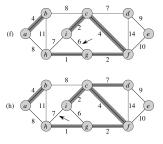
- FIND-SET(u) returns a representative element from the set (tree) that contains u
- ▶ UNION(*u*, *v*) combines *u*'s tree to *v*'s tree
- ▶ These functions are based on the disjoint-set data structure
- More on this later

Example (1)

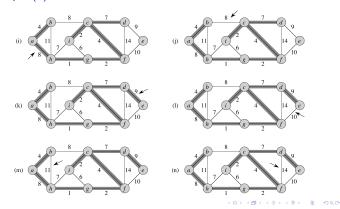
Example (2)







Example (3)



Disjoint-Set Data Structure

- Given a **universe** $U = \{x_1, \ldots, x_n\}$ of elements (e.g., the vertices in a graph *G*), a DSDS maintains a collection $S = \{S_1, \ldots, S_k\}$ of disjoint sets of elements such that
 - Each element x_i is in exactly one set S_j
 No set S_j is empty
- Membership in sets is dynamic (changes as program progresses)
- Each set $S \in S$ has a **representative element** $x \in S$
- Chapter 21

Disjoint-Set Data Structure (2)

- DSDS implementations support the following functions:
 - MAKE-SET(x) takes element x and creates new set {x}; returns pointer to x as set's representative
 - ▶ UNION(*x*, *y*) takes *x*'s set (*S_x*) and *y*'s set (*S_y*, assumed disjoint from *S_x*), merges them, destroys *S_x* and *S_y*, and returns representative for new set from *S_x* ∪ *S_y*
 - FIND-SET(x) returns a pointer to the representative of the unique set that contains x
- ▶ Section 21.3: can perform *d* D-S operations on *e* elements in time $O(d \alpha(e))$, where $\alpha(e) = o(\lg^{e} e) = o(\log e)$ is very slowly growing:

$$\alpha(e) = \begin{cases} 0 & \text{if } 0 \le e \le 2 \\ 1 & \text{if } e = 3 \\ 2 & \text{if } 4 \le e \le 7 \\ 3 & \text{if } 8 \le e \le 2047 \\ 4 & \text{if } 2048 \le e \le 2^{2048} \ (\gg 10^{600}) \end{cases} \quad |g^*(e) = \begin{cases} 0 & \text{if } e \le 1 \\ 1 & \text{if } 1 < e \le 2 \\ 2 & \text{if } 2 < e \le 4 \\ 3 & \text{if } 4 < e \le 16 \\ 4 & \text{if } 16 < e \le 65536 \\ 5 & \text{if } 65536 < e \le 2^{65536} \end{cases}$$

Analysis of Kruskal's Algorithm

- Sorting edges takes time $O(|E|\log|E|)$
- ▶ Number of disjoint-set operations is O(|V| + |E|) on O(|V|) elements, which can be done in time $O((|V| + |E|) \alpha(|V|)) = O(|E| \alpha(|V|))$ since $|E| \ge |V| 1$
- ► Since $\alpha(|V|) = o(\log |V|) = O(\log |E|)$, we get total time of $O(|E|\log |E|) = O(|E|\log |V|)$ since $\log |E| = O(\log |V|)$

1010 (B) (2) (2) (2) (2) (2) (2)

Prim's Algorithm

MST-Prim(G, w, r)

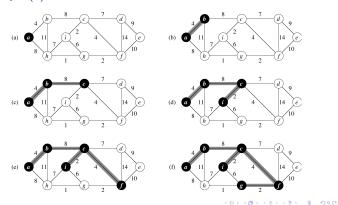
- ► Greedy algorithm, like Kruskal's
- > In contrast to Kruskal's, Prim's algorithm maintains a single tree rather than a forest
- Starts with an arbitrary tree root r
- Repeatedly finds a minimum-weight edge that is incident to a node not yet in tree

$1 \quad A = \emptyset$ 2 for each vertex $v \in V$ do 3 $key[v] = \infty$ 4 $\pi[v] = NIL$ 5 end 6 key[r] = 07 Q = Vwhile $Q \neq \emptyset$ do 8 u = Extract-Min(Q)9 for each $v \in Adj[u]$ do if $v \in Q$ and w(u, v) < key[v] then $\pi[v] = u$ 10 11 12 13 key[v] = w(u, v)14 15 end 16 end

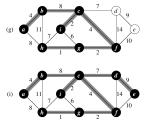
More on Prim's Algorithm

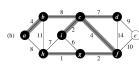
- key[v] is the weight of the minimum weight edge from v to any node already in MST
- ▶ EXTRACT-MIN uses a minimum heap (minimum priority queue) data structure
 - \blacktriangleright Binary tree where the key at each node is \leq keys of its children
 - Thus minimum value always at top
 - Any subtree is also a heap
 - Height of tree is ⊖(log n)
 - Can build heap on n elements in O(n) time
 - After returning the minimum, can filter new minimum to top in time $O(\log n)$
 - Based on Chapter 6

Example (1)



Example (2)



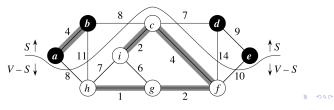


Analysis of Prim's Algorithm

- Invariant: Prior to each iteration of the while loop:
- 1. Nodes already in MST are exactly those in $V \setminus Q$
- 2. For all vertices $v \in Q$, if $\pi[v] \neq NL$, then $key[v] < \infty$ and key[v] is the weight of the lightest edge that connects v to a node already in the tree
- Time complexity:
 - Building heap takes time O(|V|)
 - ► Make |V| calls to EXTRACT-MIN, each taking time O(log |V|)
 - For loop iterates O(|E|) times
 - In for loop, need constant time to check for queue membership and $O(\log |V|)$ time for decreasing v's key and updating heap
 - ▶ Yields total time of $O(|V| \log |V| + |E| \log |V|) = O(|E| \log |V|)$ ▶ Can decrease total time to $O(|E| + |V| \log |V|)$ using Fibonacci heaps

Proof of Correctness of Both Algorithms

- Both algorithms use greedy approach for optimality
 Maintain invariant that at any time, set of edges A selected so far is subset of some MST
- ⇒ Optimal substructure property
- Each iteration of each algorithm looks for a safe edge e such that $A \cup \{e\}$ is also a subset of an MST \Rightarrow Greedy choice
- ▶ Prove invariant via use of cut (S, V S) that respects A (no edges span cut)



Proof of Correctness of Both Algorithms (2)

- **Theorem:** Let $A \subseteq E$ be included in some MST of G, (S, V S) be a cut respecting A, and $(u, v) \in E$ be a minimum-weight edge crossing cut. Then (u, v) is a safe edge for A.
- Proof:
 - Let T be an MST including A and not including (u, v)
 Let p be path from u to v in T, and (x, y) be edge from p crossing cut
 - $(\Rightarrow not in A)$
 - Since T is a spanning tree, so is $T' = T \{(x, y)\} \cup \{(u, v)\}$ Both (u, v) and (x, y) cross cut, so $w(u, v) \le w(x, y)$
 - So, $w(T') = w(T) w(x, y) + w(u, v) \le w(T)$ $\Rightarrow T' \text{ is MST}$

 - \Rightarrow (*u*, *v*) safe for *A* since $A \cup \{(u, v)\} \subseteq T'$

Proof of Correctness of Both Algorithms (3)

