
Computer Science & Engineering 423/823

Design and Analysis of Algorithms

Lecture 05 — Minimum-Weight Spanning Trees (Chapter 23)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

sscott@cse.unl.edu

Introduction

I Given a connected, undirected graph G = (V ,E), a spanning tree is an
acyclic subset T ✓ E that connects all vertices in V

I T acyclic) a tree
I T connects all vertices) spans G

I If G is weighted, then T ’s weight is w(T) =
P

(u,v)2T w(u, v)

I A minimum weight spanning tree (or minimum spanning tree, or
MST) is a spanning tree of minimum weight

I Not necessarily unique

I Applications: anything where one needs to connect all nodes with
minimum cost, e.g., wires on a circuit board or fiber cable in a network

MST Example Kruskal’s Algorithm

I Greedy algorithm: Make the locally best choice at each step

I Starts by declaring each vertex to be its own tree (so all nodes together
make a forest)

I Iteratively identify the minimum-weight edge (u, v) that connects two
distinct trees, and add it to the MST T , merging u’s tree with v ’s tree

MST-Kruskal(G ,w)

1 A = ;
2 for each vertex v 2 V do

3 Make-Set(v)

4 end

5 sort edges in E into nondecreasing order by weight w

6 for each edge (u, v) 2 E, taken in nondecreasing order
do

7 if Find-Set(u) 6= Find-Set(v) then
8 A = A [{(u, v)}
9 Union(u, v)

10

11 end

12 return A

More on Kruskal’s Algorithm

I
Find-Set(u) returns a representative element from the set (tree) that
contains u

I
Union(u, v) combines u’s tree to v ’s tree

I These functions are based on the disjoint-set data structure

I More on this later

Example (1) Example (2)

Example (3) Disjoint-Set Data Structure

I Given a universe U = {x1, . . . , xn} of elements (e.g., the vertices in a
graph G), a DSDS maintains a collection S = {S1, . . . , Sk} of disjoint
sets of elements such that

I Each element x
i

is in exactly one set S
j

I No set S
j

is empty

I Membership in sets is dynamic (changes as program progresses)

I Each set S 2 S has a representative element x 2 S

I Chapter 21

Disjoint-Set Data Structure (2)

I DSDS implementations support the following functions:
I

Make-Set(x) takes element x and creates new set {x}; returns pointer
to x as set’s representative

I
Union(x , y) takes x ’s set (S

x

) and y ’s set (S
y

, assumed disjoint from
S
x

), merges them, destroys S
x

and S
y

, and returns representative for new
set from S

x

[S
y

I
Find-Set(x) returns a pointer to the representative of the unique set
that contains x

I Section 21.3: can perform d D-S operations on e elements in time
O(d ↵(e)), where ↵(e) = o(lg⇤ e) = o(log e) is very slowly growing:

↵(e) =

8
>>>><

>>>>:

0 if 0  e  2
1 if e = 3
2 if 4  e  7
3 if 8  e  2047
4 if 2048  e  22048 (� 10600)

lg⇤(e) =

8
>>>>>><

>>>>>>:

0 if e  1
1 if 1 < e  2
2 if 2 < e  4
3 if 4 < e  16
4 if 16 < e  65536
5 if 65536 < e  265536

Analysis of Kruskal’s Algorithm

I Sorting edges takes time O(|E | log |E |)
I Number of disjoint-set operations is O(|V |+ |E |) on O(|V |) elements,

which can be done in time O((|V |+ |E |)↵(|V |)) = O(|E |↵(|V |)) since
|E | � |V |� 1

I Since ↵(|V |) = o(log |V |) = O(log |E |), we get total time of
O(|E | log |E |) = O(|E | log |V |) since log |E | = O(log |V |)

Prim’s Algorithm

I Greedy algorithm, like Kruskal’s

I In contrast to Kruskal’s, Prim’s algorithm maintains a single tree rather
than a forest

I Starts with an arbitrary tree root r

I Repeatedly finds a minimum-weight edge that is incident to a node not
yet in tree

MST-Prim(G ,w , r)

1 A = ;
2 for each vertex v 2 V do

3 key [v] = 1
4 ⇡[v] = nil

5 end

6 key [r] = 0

7 Q = V

8 while Q 6= ; do

9 u = Extract-Min(Q)

10 for each v 2 Adj [u] do
11 if v 2 Q and w(u, v) < key [v] then
12 ⇡[v] = u

13 key [v] = w(u, v)

14

15 end

16 end

More on Prim’s Algorithm

I key [v] is the weight of the minimum weight edge from v to any node
already in MST

I
Extract-Min uses a minimum heap (minimum priority queue) data
structure

I Binary tree where the key at each node is  keys of its children
I Thus minimum value always at top
I Any subtree is also a heap
I Height of tree is ⇥(log n)
I Can build heap on n elements in O(n) time
I After returning the minimum, can filter new minimum to top in time

O(log n)
I Based on Chapter 6

Example (1)

Example (2) Analysis of Prim’s Algorithm

I
Invariant: Prior to each iteration of the while loop:
1. Nodes already in MST are exactly those in V \ Q
2. For all vertices v 2 Q, if ⇡[v] 6= nil, then key [v] < 1 and key [v] is the

weight of the lightest edge that connects v to a node already in the tree

I Time complexity:
I Building heap takes time O(|V |)
I Make |V | calls to Extract-Min, each taking time O(log |V |)
I For loop iterates O(|E |) times

I
In for loop, need constant time to check for queue membership and

O(log |V |) time for decreasing v ’s key and updating heap

I Yields total time of O(|V | log |V |+ |E | log |V |) = O(|E | log |V |)
I Can decrease total time to O(|E |+ |V | log |V |) using Fibonacci heaps

Proof of Correctness of Both Algorithms

I Both algorithms use greedy approach for optimality
I Maintain invariant that at any time, set of edges A selected so far is

subset of some MST
) Optimal substructure property

I Each iteration of each algorithm looks for a safe edge e such that
A [{e} is also a subset of an MST
) Greedy choice

I Prove invariant via use of cut (S ,V � S) that respects A (no edges
span cut)

Proof of Correctness of Both Algorithms (2)

I
Theorem: Let A ✓ E be included in some MST of G , (S ,V � S) be a
cut respecting A, and (u, v) 2 E be a minimum-weight edge crossing
cut. Then (u, v) is a safe edge for A.

I
Proof:

I Let T be an MST including A and not including (u, v)
I Let p be path from u to v in T , and (x , y) be edge from p crossing cut

() not in A)
I Since T is a spanning tree, so is T 0 = T � {(x , y)} [{(u, v)}
I Both (u, v) and (x , y) cross cut, so w(u, v)  w(x , y)
I So, w(T 0) = w(T)� w(x , y) + w(u, v)  w(T)
) T 0 is MST
) (u, v) safe for A since A [{(u, v)} ✓ T 0

Proof of Correctness of Both Algorithms (3)

